Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
World J Gastroenterol ; 30(22): 2923-2926, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38947287

RESUMO

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, showed a wide spectrum of intestinal and extra-intestinal manifestations, which rendered the patients physically inactive and impaired their quality of life. It has been found that physical activity is a non-pharmacological intervention that improves the quality of life for those patients. Irisin is one member of the myokines secreted by muscle contraction during exercise and could be used as an anti-inflammatory biomarker in assessing the physical activity of IBD patients. In addition, experimental studies showed that exogenous irisin significantly decreased the inflammatory markers and the histological changes of the intestinal mucosa observed in experimental colitis. Furthermore, irisin produces changes in the diversity of the microbiota. Therefore, endogenous or exogenous irisin, via its anti-inflammatory effects, will improve the health of IBD patients and will limit the barriers to physical activity in patients with IBD.


Assuntos
Biomarcadores , Exercício Físico , Fibronectinas , Qualidade de Vida , Humanos , Fibronectinas/sangue , Exercício Físico/fisiologia , Biomarcadores/sangue , Mucosa Intestinal/patologia , Animais , Doenças Inflamatórias Intestinais/sangue , Doença de Crohn/sangue , Doença de Crohn/diagnóstico , Doença de Crohn/terapia , Microbioma Gastrointestinal , Colite Ulcerativa/sangue , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/imunologia , Colite Ulcerativa/terapia , Miocinas
2.
BMC Complement Med Ther ; 24(1): 243, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909225

RESUMO

BACKGROUND: Cucurbita pepo cv Dayangua (CPD) is an edible plant with diverse pharmacological properties. The current research on CPD has primarily focused on initial investigations of its chemical composition and pharmacological effects, and no comprehensive toxicity assessment has been conducted to date. METHODS: In the present study, the toxicity of CPD was evaluated through both acute and sub-chronic oral toxicity tests in mice. 16S rDNA sequencing was used to analyze the composition of the gut microbiota of mice at different time points to observe the effect of CPD on these microbial communities. RESULTS: In the acute toxicity test, CPD exhibited low toxicity, with a median lethal dose (LD50) > 2000 mg/kg. The sub-chronic toxicity test indicated that CPD administration at doses of 200, 400, and 600 mg/kg did not cause mortality or significant organ damage in mice. Furthermore, analysis of the gut microbiota after gavage administration of CPD at 400 and 600 mg/kg revealed an improved abundance of some beneficial gut bacteria. CONCLUSIONS: In summary, no acute or sub-chronic toxic effects were observed in mice following the oral administration of CPD. CPD did not affect the structure and diversity of the gut microbiota and may contribute to an increase in the number of beneficial gut bacteria.


Assuntos
Cucurbita , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Feminino , Testes de Toxicidade Aguda
3.
Steroids ; 208: 109455, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876407

RESUMO

Polycystic ovary syndrome (PCOS) represents major endocrine and metabolic disorder among women largely characterized by hyperandrogenism and oligomenorrhea precipitates serious complications such as type 2 diabetes, early atherosclerosis, infertility, and endometrial cancer. Several etiological theories were proposed to define the exact cause of the PCOS, which is characterized, by the hypothalamic-pituitary axis, ovarian morphology, and release of adrenal steroid hormones, metabolic syndrome, and hereditary factors. The review explored the role of dysbiosis and the mechanisms through which microbial dysbiosis can affect PCOS development. In recent time, various research groups highlighted the role of microbial gut dysbiosis associated with obesity as potential etiological factor for the PCOS. In the present review, we reviewed the mechanisms attributed to the microbial dysbiosis and treatment approaches to deal with the situation.


Assuntos
Disbiose , Microbioma Gastrointestinal , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/terapia , Síndrome do Ovário Policístico/microbiologia , Síndrome do Ovário Policístico/epidemiologia , Humanos , Disbiose/microbiologia , Feminino , Prevalência
4.
Sleep Med ; 120: 56-64, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878352

RESUMO

Sleep-disordered breathing promotes not only unfavorable craniofacial changes in untreated pediatric patients but also neurocognitive, metabolic, cardiovascular, and even long-term social alterations. This systematic review evaluated whether children diagnosed with obstructive sleep apnea syndrome (OSAS) have different intestinal microbiota constitutions from healthy children and was based on the PRISMA guidelines (PROSPERO: CRD42022360074). A total of 1562 clinical studies published between 2019 and 2023 were selected from the PubMed/MEDLINE, Embase, Web of Science, Scopus, and Cochrane Library databases, of which five were included in the qualitative analysis, three being randomized and two prospective. The methodological quality was assessed (RoB 2.0 and ROBINS-I) and all studies showed a negative effect of intervention. Sleep deprivation and intermittent hypoxia in children with OSAS seem to trigger a cascade of inflammatory pathways that exacerbate the tissue response to the release of reactive oxygen species and the generation of oxidative stress, leading to a reduction in oxygen supply to the intestinal mucosa and the integral destruction of the intestinal barrier. More evidence-based investigations are needed to optimize the identification of possible alterations in the gut microbiota of pediatric patients, given that its composition may be influenced by the patient's sleep quality and, consequently, by OSAS, showing quantitative and qualitative alterations compared to that found in healthy individuals.


Assuntos
Microbioma Gastrointestinal , Apneia Obstrutiva do Sono , Humanos , Microbioma Gastrointestinal/fisiologia , Apneia Obstrutiva do Sono/fisiopatologia , Apneia Obstrutiva do Sono/microbiologia , Criança
5.
Food Res Int ; 189: 114535, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876588

RESUMO

The impact of different forms of dietary fiber (total, insoluble or soluble) derived from the same source on health remains incompletely understood. In this study, the effects of total, insoluble, and soluble dietary fiber extracted from highland barley (HDF, HIDF, and HSDF) on combating obesity were evaluated and compared. A high-fat diet (HFD) was used to induce obesity in a murine model, followed by gavage administration of HDF, HIDF, or HSDF, and a comprehensive multi-omics approach was utilized to assess and compare the effects of these dietary fibers on obesity-related parameters. The results showed that all three dietary fibers significantly reduced body weight, modified blood lipid profiles, and ameliorated tissue damage in HFD-fed mice. Additionally, 16S rRNA sequencing analysis of mice feces showed that three types of dietary fiber exerted varying degrees of impact on the composition and abundance of gut microbiota while simultaneously promoting the biosynthesis of short-chain fatty acids. Specifically, HDF supplementation remarkably enhanced the abundance of Coprococcus, while HIDF and HSDF supplementation elevated the levels of Akkermansia and Allobaculum, respectively. Transcriptomic and proteomic results suggested the PPAR signaling pathway as a central regulatory mechanism influenced by these fibers. HDF and HIDF were particularly effective in modulating biological processes related to triglyceride and fatty acid metabolism, identifying Abcc3 and Dapk1 as potential targets. Conversely, HSDF primarily affected processes related to membrane lipids, ceramides, and phospholipids metabolism, with Pck1 identified as a potential target. Collectively, HDF, HIDF, and HSDF demonstrated distinct mechanisms in exerting exceptional anti-obesity properties. These insights may inform the development of personalized dietary interventions for obesity.


Assuntos
Fármacos Antiobesidade , Dieta Hiperlipídica , Fibras na Dieta , Microbioma Gastrointestinal , Hordeum , Camundongos Endogâmicos C57BL , Obesidade , Hordeum/química , Fibras na Dieta/farmacologia , Animais , Camundongos , Masculino , Fármacos Antiobesidade/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Proteômica , Modelos Animais de Doenças , Multiômica
6.
Curr Obes Rep ; 13(2): 214-223, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760652

RESUMO

PURPOSE OF REVIEW: Detail recent advancements in the science on ultra-processed food (UPF) addiction, focusing on estimated prevalence rates and emerging health disparities; progress towards identifying biological underpinnings and behavioral mechanisms; and implications for weight management. RECENT FINDINGS: Notable developments in the field have included: (1) estimating the global prevalence of UPF addiction at 14% of adults and 15% of youths; (2) revealing health disparities for persons of color and those with food insecurity; (3) observing altered functioning across the brain-gut-microbiome axis; (4) providing early evidence for UPF withdrawal; and (5) elucidating poorer weight management outcomes among persons with UPF addiction. The breadth of recent work on UPF addiction illustrates continued scientific and public interest in the construct and its implications for understanding and treating overeating behaviors and obesity. One pressing gap is the lack of targeted interventions for UPF addiction, which may result in more optimal clinical outcomes for this underserved population.


Assuntos
Fast Foods , Dependência de Alimentos , Obesidade , Humanos , Prevalência , Microbioma Gastrointestinal , Eixo Encéfalo-Intestino , Disparidades nos Níveis de Saúde , Manipulação de Alimentos , Alimento Processado
7.
Environ Res ; 252(Pt 4): 119135, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38740291

RESUMO

Cyhalofop-butyl (CB) poses a significant threat to aquatic organisms, but there is a discrepancy in evidence about hepatotoxicity after prolonged exposure to environmental levels. The aim of this study was to investigate long-term hepatotoxicity and its effects on the gut-liver axis through the exposure of zebrafish to environmental concentrations of CB (0.1,1,10 µg/L) throughout their life cycle. Zebrafish experienced abnormal obesity symptoms and organ index after a prolonged exposure of 120 days. The gut-liver axis was found to be damaged both morphologically and functionally through an analysis of histology, electron microscopy subcellular structure, and liver function. The disruption of the gut-liver axis inflammatory process by CB is suggested by the rise in inflammatory factors and the alteration of inflammatory genes. Furthermore, there was a noticeable alteration in the blood and gut-liver axis biochemical parameters as well as gene expression linked to lipid metabolism, which may led to an imbalance in the gut flora. In conclusion, the connection between the gut-liver axis, intestinal microbiota, and liver leads to the metabolic dysfunction of zebrafish exposed to long-term ambient concentrations of CB, and damaged immune system and liver lipid metabolism. This study gives another knowledge into the hepatotoxicity component of long haul openness to ecological centralization of CB, and might be useful to assess the potential natural and wellbeing dangers of aryloxyphenoxypropionate herbicides.


Assuntos
Fígado , Poluentes Químicos da Água , Peixe-Zebra , Animais , Fígado/efeitos dos fármacos , Fígado/patologia , Poluentes Químicos da Água/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos
8.
J Microbiol Biotechnol ; 34(4): 828-837, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38668685

RESUMO

Vancomycin (VAN) and metronidazole (MTR) remain the current drugs of choice for the treatment of non-severe Clostridioides difficile infection (CDI); however, while their co-administration has appeared in clinical treatment, the efficacy varies greatly and the mechanism is unknown. In this study, a CDI mouse model was constructed to evaluate the therapeutic effects of VAN and MTR alone or in combination. For a perspective on the intestinal ecology, 16S rRNA amplicon sequencing and non-targeted metabolomics techniques were used to investigate changes in the fecal microbiota and metabolome of mice under the co-administration treatment. As a result, the survival rate of mice under co-administration was not dramatically different compared to that of single antibiotics, and the former caused intestinal tissue hyperplasia and edema. Co-administration also significantly enhanced the activity of amino acid metabolic pathways represented by phenylalanine, arginine, proline, and histidine, decreased the level of deoxycholic acid (DCA), and downregulated the abundance of beneficial microbes, such as Bifidobacterium and Akkermansia. VAN plays a dominant role in microbiota regulation in co-administration. In addition, co-administration reduced or increased the relative abundance of antibiotic-sensitive bacteria, including beneficial and harmful microbes, without a difference. Taken together, there are some risks associated with the co-administration of VAN and MTR, and this combination mode should be used with caution in CDI treatment.


Assuntos
Antibacterianos , Clostridioides difficile , Infecções por Clostridium , Modelos Animais de Doenças , Quimioterapia Combinada , Fezes , Microbioma Gastrointestinal , Metronidazol , RNA Ribossômico 16S , Vancomicina , Animais , Metronidazol/administração & dosagem , Vancomicina/administração & dosagem , Vancomicina/farmacologia , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , RNA Ribossômico 16S/genética , Fezes/microbiologia , Intestinos/microbiologia , Intestinos/efeitos dos fármacos , Masculino , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Metaboloma/efeitos dos fármacos
9.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674158

RESUMO

With the continuous rise of the sea cucumber aquaculture industry in China, the tropical sea cucumber aquaculture industry is also improving. However, research on the gut microorganisms of tropical sea cucumbers in captivity is scarce. In this study, high-throughput sequencing methods were used to analyze the gut microbial composition of Stichopus monotuberculatus and Holothuria scabra in the dry season and wet season of artificial environments. The results showed that 66 phyla were obtained in all samples, of which 59 phyla were obtained in the dry season, and 45 phyla were obtained in the wet season. The Tax4Fun analysis showed that certain gut bacterial communities affect the daily metabolism of two sea cucumber species and are involved in maintaining gut microecological balance in the gut of two sea cucumber species. In addition, compared with differences between species, PCoA and UPGMA clustering analysis showed the gut prokaryotes of the same sea cucumber species varied more in different seasons, indicating that the influence of environment was higher than the feeding choices of sea cucumbers under relatively closed conditions. These results revealed the gut bacterial community composition of S. monotuberculatus and H. scabra and the differences in gut bacterial structure between two sea cucumber species in different seasons were compared, which would provide the foundation for tropical sea cucumber aquaculture in the future.


Assuntos
Bactérias , Microbioma Gastrointestinal , Pepinos-do-Mar , Estações do Ano , Animais , Microbioma Gastrointestinal/genética , Bactérias/classificação , Bactérias/genética , Pepinos-do-Mar/microbiologia , Pepinos-do-Mar/genética , Aquicultura , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Holothuria/microbiologia , Holothuria/genética , Stichopus/microbiologia , Stichopus/genética , RNA Ribossômico 16S/genética
10.
Front Cell Infect Microbiol ; 14: 1373737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686094

RESUMO

Background: The mechanism by which high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) improves swallowing function by regulating intestinal flora remains unexplored. We aimed to evaluate this using fecal metabolomics and 16S rRNA sequencing. Methods: A Post-stroke dysphagia (PSD) rat model was established by middle cerebral artery occlusion. The magnetic stimulation group received HF-rTMS from the 7th day post-operation up to 14th day post-surgery. Swallowing function was assessed using a videofluoroscopic swallowing study (VFSS). Hematoxylin-eosin (H&E) staining was used to assess histopathological changes in the intestinal tissue. Intestinal flora levels were evaluated by sequencing the 16S rRNA V3-V4 region. Metabolite changes within the intestinal flora were evaluated by fecal metabolomics using liquid chromatography-tandem mass spectrometry. Results: VFSS showed that the bolus area and pharyngeal bolus speed were significantly decreased in PSD rats, while the bolus area increased and pharyngeal transit time decreased after HF-rTMS administration (p < 0.05). In the PSD groups, H&E staining revealed damaged surface epithelial cells and disrupted cryptal glands, whereas HF-rTMS reinforced the integrity of the intestinal epithelial cells. 16S rRNA sequencing indicated that PSD can disturb the intestinal flora and its associated metabolites, whereas HF-rTMS can significantly regulate the composition of the intestinal microflora. Firmicutes and Lactobacillus abundances were lower in the PSD group than in the baseline group at the phylum and genus levels, respectively; however, both increased after HF-rTMS administration. Levels of ceramides (Cer), free fatty acids (FA), phosphatidylethanolamine (PE), triacylglycerol (TAG), and sulfoquinovosyl diacylglycerol were increased in the PSD group. The Cer, FA, and DG levels decreased after HF-rTMS treatment, whereas the TAG levels increased. Peptococcaceae was negatively correlated with Cer, Streptococcus was negatively correlated with DG, and Acutalibacter was positively correlated with FA and Cer. However, these changes were effectively restored by HF-rTMS, resulting in recovery from dysphagia. Conclusion: These findings suggest a synergistic role for the gut microbiota and fecal metabolites in the development of PSD and the therapeutic mechanisms underlying HF-rTMS.


Assuntos
Transtornos de Deglutição , Modelos Animais de Doenças , Fezes , Microbioma Gastrointestinal , Metabolômica , RNA Ribossômico 16S , Acidente Vascular Cerebral , Animais , RNA Ribossômico 16S/genética , Fezes/microbiologia , Fezes/química , Ratos , Metabolômica/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Transtornos de Deglutição/terapia , Masculino , Estimulação Magnética Transcraniana/métodos , Ratos Sprague-Dawley , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo
11.
Neurosci Biobehav Rev ; 161: 105653, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582194

RESUMO

The evolution of the gut-microbiota-brain axis in animals reveals that microbial inputs influence metabolism, the regulation of inflammation and the development of organs, including the brain. Inflammatory, neurodegenerative and psychiatric disorders are more prevalent in people of low socioeconomic status (SES). Many aspects of low SES reduce exposure to the microbial inputs on which we are in a state of evolved dependence, whereas the lifestyle of wealthy citizens maintains these exposures. This partially explains the health deficit of low SES, so focussing on our evolutionary history and on environmental and lifestyle factors that distort microbial exposures might help to mitigate that deficit. But the human microbiota is complex and we have poor understanding of its functions at the microbial and mechanistic levels, and in the brain. Perhaps its composition is more flexible than the microbiota of animals that have restricted habitats and less diverse diets? These uncertainties are discussed in relation to the encouraging but frustrating results of attempts to treat psychiatric disorders by modulating the microbiota.


Assuntos
Evolução Biológica , Microbioma Gastrointestinal , Classe Social , Humanos , Microbioma Gastrointestinal/fisiologia , Animais , Eixo Encéfalo-Intestino/fisiologia , Transtornos Mentais/microbiologia , Saúde Mental , Baixo Nível Socioeconômico
12.
Science ; 383(6688): eadj9223, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484069

RESUMO

Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle.


Assuntos
Celulose , Fibras na Dieta , Microbioma Gastrointestinal , Ruminococcus , Humanos , Celulose/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Ruminococcus/classificação , Ruminococcus/enzimologia , Ruminococcus/genética , Fibras na Dieta/metabolismo , Filogenia , Desenvolvimento Industrial
13.
NPJ Biofilms Microbiomes ; 10(1): 19, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467678

RESUMO

Lower socioeconomic status (SES) is related to increased incidence and mortality due to chronic diseases in adults. Association between SES variables and gut microbiome variation has been observed in adults at the population level, suggesting that biological mechanisms may underlie the SES associations; however, there is a need for larger studies that consider individual- and neighborhood-level measures of SES in racially diverse populations. In 825 participants from a multi-ethnic cohort, we investigated how SES shapes the gut microbiome. We determined the relationship of a range of individual- and neighborhood-level SES indicators with the gut microbiome. Individual education level and occupation were self-reported by questionnaire. Geocoding was applied to link participants' addresses with neighborhood census tract socioeconomic indicators, including average income and social deprivation in the census tract. Gut microbiome was measured using 16SV4 region rRNA gene sequencing of stool samples. We compared α-diversity, ß-diversity, and taxonomic and functional pathway abundance by SES. Lower SES was significantly associated with greater α-diversity and compositional differences among groups, as measured by ß-diversity. Several taxa related to low SES were identified, especially an increasing abundance of Prevotella copri and Catenibacterium sp000437715, and decreasing abundance of Dysosmobacter welbionis in terms of their high log-fold change differences. In addition, nativity and race/ethnicity have emerged as ecosocial factors that also influence the gut microbiota. Together, these results showed that lower SES was strongly associated with compositional and taxonomic measures of the gut microbiome, and may contribute to shaping the gut microbiota.


Assuntos
Etnicidade , Microbioma Gastrointestinal , Adulto , Humanos , Classe Social , Fatores Socioeconômicos , Renda
14.
Toxins (Basel) ; 16(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535788

RESUMO

A recent study published data on the growth performance, relative weights of the organs of the gastrointestinal tract, liver histology, serum biochemistry, and hematological parameters for turkey poults fed an experimental diet contaminated with aflatoxin B1 (AFB1) and humic acids (HA) extracted from vermicompost. The negative effects of AFB1 (250 ng AFB1/g of feed) were significantly reduced by HA supplementation (0.25% w/w), suggesting that HA might be utilized to ameliorate the negative impact of AFB1 from contaminated diets. The present study shows the results of the remaining variables, as an extension of a previously published work which aimed to evaluate the impact of HA on the intestinal microbiota, gut integrity, ileum morphometry, and cellular immunity of turkey poults fed an AFB1-contaminated diet. For this objective, five equal groups of 1-day-old female Nicholas-700 turkey poults were randomly assigned to the following treatments: negative control (basal diet), positive control (basal diet + 250 ng AFB1/g), HA (basal diet + 0.25% HA), HA + AFB1 (basal diet + 0.25% HA + 250 ng AFB1/g), and Zeolite (basal diet + 0.25% zeolite + 250 ng AFB1/g). In the experiment, seven replicates of ten poults each were used per treatment (n = 70). In general, HA supplementation with or without the presence of AFB1 showed a significant increase (p < 0.05) in the number of beneficial butyric acid producers, ileum villi height, and ileum total area, and a significant reduction in serum levels of fluorescein isothiocyanate-dextran (FITC-d), a marker of intestinal integrity. In contrast, poults fed with AFB1 showed a significant increase in Proteobacteria and lower numbers of beneficial bacteria, clearly suggesting gut dysbacteriosis. Moreover, poults supplemented with AFB1 displayed the lowest morphometric parameters and the highest intestinal permeability. Furthermore, poults in the negative and positive control treatments had the lowest cutaneous basophil hypersensitivity response. These findings suggest that HA supplementation enhanced intestinal integrity (shape and permeability), cellular immune response, and healthier gut microbiota composition, even in the presence of dietary exposure to AFB1. These results complement those of the previously published study, suggesting that HA may be a viable dietary intervention to improve gut health and immunity in turkey poults during aflatoxicosis.


Assuntos
Microbioma Gastrointestinal , Zeolitas , Animais , Feminino , Aflatoxina B1 , Ácido Butírico , Dieta , Substâncias Húmicas , Imunidade Celular , Perus
15.
Artif Cells Nanomed Biotechnol ; 52(1): 201-217, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38488151

RESUMO

The main purpose of this study was to explore the changes of biomarkers in different developmental stages of bleomycin-induced pulmonary fibrosis (PF) in rats via comprehensive pathophysiology, UPLC-QTOF/MS metabonomic technology, and 16S rRNA gene sequencing of intestinal microbiota. The rats were randomly divided into normal control and 1-, 2- and 4-week model group. The rat model of PF was established by one-time intratracheal instillation of bleomycin. The levels of inflammatory and fibrosis-related factors such as hydroxyproline (HYP), type III procollagen (COL-III), type IV collagen (COL-IV), hyaluronidase (HA), laminin (LN), interleukin (IL)-1ß, IL-6, malondialdehyde (MDA) increased and superoxide dismutase (SOD) decreased as the PF cycle progressed. In the 1-, 2- and 4-week model group, 2, 19 and 18 potential metabolic biomarkers and 3, 16 and 12 potential microbial biomarkers were detected, respectively, which were significantly correlated. Glycerophospholipid metabolism pathway was observed to be an important pathway affecting PF at 1, 2 and 4 weeks; arginine and proline metabolism pathways significantly affected PF at 2 weeks. Linoleic acid metabolism pathway exhibited clear metabolic abnormalities at 2 and 4 weeks of PF, and alpha-linolenic acid metabolism pathway significantly affected PF at 4 weeks.


In this study, metabolomics technology and intestinal microbiota 16S rRNA gene sequencing were used to search for biomarkers with significant differences in each stage of pulmonary fibrosis. Finally, the variation characteristics of each stage of the disease were discussed. The hope is to provide new insights into the development of diagnostic biomarkers and potential therapeutic targets at all stages.


Assuntos
Microbioma Gastrointestinal , Fibrose Pulmonar , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , RNA Ribossômico 16S , Bleomicina/efeitos adversos , Biomarcadores
16.
Maturitas ; 184: 107951, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471294

RESUMO

In the face of rising global urbanisation, understanding how the associated environment and lifestyle impact public health is a cornerstone for prevention, research, and clinical practice. Cardiovascular disease is the leading cause of morbidity and mortality worldwide, with urban risk factors contributing greatly to its burden. The current narrative review adopts an exposome approach to explore the effect of urban-associated physical-chemical factors (such as air pollution) and lifestyle on cardiovascular health and ageing. In addition, we provide new insights into how these urban-related factors alter the gut microbiome, which has been associated with an increased risk of cardiovascular disease. We focus on vascular ageing, before disease onset, to promote preventative research and practice. We also discuss how urban ecosystems and social factors may interact with these pathways and provide suggestions for future research, precision prevention and management of vascular ageing. Most importantly, future research and decision-making would benefit from adopting an exposome approach and acknowledging the diverse and boundless universe of the microbiome.


Assuntos
Envelhecimento , Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Envelhecimento/fisiologia , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/microbiologia , Doenças Cardiovasculares/etiologia , Fatores de Risco , Estilo de Vida , Poluição do Ar/efeitos adversos , Expossoma
17.
Comp Med ; 74(2): 55-69, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508697

RESUMO

Disturbances in gut microbiota are prevalent in inflammatory bowel disease (IBD), which includes ulcerative colitis (UC). However, whether these disturbances contribute to development of the disease or are a result of the disease is unclear. In pairs of human twins discordant for IBD, the healthy twin has a higher risk of developing IBD and a gut microbiota that is more similar to that of IBD patients as compared with healthy individuals. Furthermore, appropriate medical treatment may mitigate these disturbances. To study the correlation between microbiota and IBD, we transferred stool samples from a discordant human twin pair: one twin being healthy and the other receiving treatment for UC. The stool samples were transferred from the disease-discordant twins to germ-free pregnant dams. Colitis was induced in the offspring using dextran sodium sulfate. As compared with offspring born to mice dams inoculated with stool from the healthy cotwin, offspring born to dams inoculated with stool from the UC-afflicted twin had a lower disease activity index, less gut inflammation, and a microbiota characterized by higher α diversity and a more antiinflammatory profile that included the presence and higher abundance of antiinflammatory species such as Akkermansia spp., Bacteroides spp., and Parabacteroides spp. These findings suggest that the microbiota from the healthy twin may have had greater inflammatory properties than did that of the twin undergoing UC treatment.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Animais , Colite Ulcerativa/microbiologia , Humanos , Camundongos , Feminino , Vida Livre de Germes , Sulfato de Dextrana/toxicidade , Fezes/microbiologia , Gravidez , Masculino , Modelos Animais de Doenças , Transplante de Microbiota Fecal
18.
J Trauma Acute Care Surg ; 97(1): 158-163, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441071

RESUMO

ABSTRACT: Postinjury infection continues to plague trauma and emergency surgery patients fortunate enough to survive the initial injury. Rapid response systems, massive transfusion protocols, and the development of level 1 trauma centers, among others, have improved the outcome for millions of patients worldwide. Nonetheless, despite this excellent initial care, patients still remain vulnerable to postinjury infections that can result in organ failure, prolonged critical illness, and even death. While risk factors have been identified (degree of injury, blood loss, time to definitive care, immunocompromise, etc.), they remain probabilistic, not deterministic, and do not explain outcome variability at the individual case level. Here, we assert that analysis of the social determinants of health, as reflected in the patient's microbiome composition (i.e., community structure, membership) and function (metabolomic output), may offer a "window" with which to define individual variability following traumatic injury. Given emerging knowledge in the field, a more comprehensive evaluation of biomarkers within the patient's microbiome, from stool-based microbial metabolites to those in plasma and those present in exhaled breath, when coupled with clinical metadata and machine learning, could lead to a more deterministic assessment of an individual's risk for a poor outcome and those factors that are modifiable. The aim of this piece is to examine how measurable elements of the social determinants of health and the life history of the patient may be buried within the ecologic memory of the gut microbiome. Here we posit that interrogation of the gut microbiome in this manner may be used to inform novel approaches to drive recovery following a surgical injury.


Assuntos
Determinantes Sociais da Saúde , Ferimentos e Lesões , Humanos , Ferimentos e Lesões/microbiologia , Ferimentos e Lesões/cirurgia , Fatores de Risco , Microbiota , Microbioma Gastrointestinal/fisiologia
19.
Anal Chem ; 96(9): 3870-3878, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38373348

RESUMO

Gut microbiota can regulate host brain functions and influence various physiological and pathological processes through the brain-gut axis. To systematically elucidate the intervention of different gut environments on different brain regions, we implemented an integrated approach that combines 11-plex DiLeu isobaric tags with a "BRIDGE" normalization strategy to comparatively analyze the proteome of six brain regions in germ-free (GF)- and conventionally raised (ConvR)-mice. A total of 5945 proteins were identified and 5656 were quantifiable, while 1906 of them were significantly changed between GF- and ConvR-mice; 281 proteins were filtered with FC greater than 1.2 in at least one brain region, of which heatmap analysis showed clear protein profile disparities, both between brain regions and gut microbiome conditions. Gut microbiome impact is most overt in the hypothalamus and the least in the thalamus region. Collectively, this approach allows an in-depth investigation of the induced protein changes by multiple gut microbiome environments in a brain region-specific manner. This comprehensive proteomic work improves the understanding of the brain region protein association networks impacted by the gut microbiome and highlights the critical roles of the brain-gut axis.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Proteômica , Encéfalo , Proteoma
20.
J Exp Biol ; 227(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38344873

RESUMO

Gut symbionts influence the physiology and behavior of their host, but the extent to which these effects scale to social behaviors is an emerging area of research. The use of the western honeybee (Apis mellifera) as a model enables researchers to investigate the gut microbiome and behavior at several levels of social organization. Insight into gut microbial effects at the societal level is critical for our understanding of how involved microbial symbionts are in host biology. In this Commentary, we discuss recent findings in honeybee gut microbiome research and synthesize these with knowledge of the physiology and behavior of other model organisms to hypothesize how host-microbe interactions at the individual level could shape societal dynamics and evolution.


Assuntos
Microbioma Gastrointestinal , Abelhas , Animais , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA