Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134170, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613957

RESUMO

Cyanobacterial blooms, often dominated by Microcystis aeruginosa, are capable of producing estrogenic effects. It is important to identify specific estrogenic compounds produced by cyanobacteria, though this can prove challenging owing to the complexity of exudate mixtures. In this study, we used untargeted metabolomics to compare components of exudates from microcystin-producing and non-microcystin-producing M. aeruginosa strains that differed with respect to their ability to produce microcystins, and across two growth phases. We identified 416 chemicals and found that the two strains produced similar components, mainly organoheterocyclic compounds (20.2%), organic acids and derivatives (17.3%), phenylpropanoids and polyketides (12.7%), benzenoids (12.0%), lipids and lipid-like molecules (11.5%), and organic oxygen compounds (10.1%). We then predicted estrogenic compounds from this group using random forest machine learning. Six compounds (daidzin, biochanin A, phenylethylamine, rhein, o-Cresol, and arbutin) belonging to phenylpropanoids and polyketides (3), benzenoids (2), and organic oxygen compound (1) were tested and exhibited estrogenic potency based upon the E-screen assay. This study confirmed that both Microcystis strains produce exudates that contain compounds with estrogenic properties, a growing concern in cyanobacteria management.


Assuntos
Estrogênios , Aprendizado de Máquina , Metabolômica , Microcistinas , Microcystis , Microcystis/metabolismo , Microcystis/crescimento & desenvolvimento , Microcistinas/metabolismo , Microcistinas/análise , Microcistinas/química , Estrogênios/metabolismo , Estrogênios/química
2.
Anal Biochem ; 687: 115429, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38113981

RESUMO

Microcystin-producing cyanobacterial blooms are a global issue threatening drinking water supplies and recreation on lakes and beaches. Direct measurement of microcystins is the only way to ensure waters have concentrations below guideline concentrations; however, analyzing water for microcystins takes several hours to days to obtain data. We tested LightDeck Diagnostics' bead beater cell lysis and two versions of the quantification system designed to give microcystin concentrations within 20 min and compared it to the standard freeze-thaw cycle lysis method and ELISA quantification. The bead beater lyser was only 30 % effective at extracting microcystins compared to freeze-thaw. When considering freeze-thaw samples analyzed in 2021, there was good agreement between ELISA and LightDeck version 2 (n = 152; R2 = 0.868), but the LightDeck slightly underestimated microcystins (slope of 0.862). However, we found poor relationships between LightDeck version 2 and ELISA in 2022 (n = 49, slopes 0.60 to 1.6; R2 < 0.6) and LightDeck version 1 (slope = 1.77 but also a high number of less than quantifiable concentrations). After the quantification issues are resolved, combining the LightDeck system with an already-proven rapid lysis method (such as microwaving) will allow beach managers and water treatment operators to make quicker, well-informed decisions.


Assuntos
Técnicas Biossensoriais , Cianobactérias , Microcistinas/análise , Microcistinas/metabolismo , Proliferação Nociva de Algas , Lagos/análise
3.
Water Res ; 245: 120648, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37738941

RESUMO

Cyanobacterial blooms release a large number of algal toxins (e.g., Microcystins, MCs) and seriously threaten the safety of drinking water sources what the SDG 6.1 pursues (to provide universal access to safe drinking water by 2030, United Nations Sustainable Development Goal). Nevertheless, algal toxins in lake water have not been routinely monitored and evaluated well and frequently so far. In this study, a total of 100 large lakes (>25 km2) in densely populated eastern China were studied, and a remote sensing scheme of human health risks from MCs based on Sentinel-3 OLCI data was developed. The spatial and temporal dynamics of MCs risk in eastern China lakes since OLCI satellite observation data (2016-2021) were first mapped. The results showed that most of the large lakes in eastern China (80 out of 100) were detected with the occurrence of a high risk of more than 1 pixel (300×300 m) at least once. Fortunately, in terms of lake areas, the frequency of high human health risks in most waters (70.93% of total lake areas) was as less as 1%. This indicates that drinking water intakes can be set in most waters from the perspective of MCs, yet the management departments are required to reduce cyanobacterial blooms. This study highlights the potential of satellite in monitoring and assessing the risk of algal toxins and ensuring drinking water safety. It is also an important reference for SDG 6.1 reporting for lakes that lack routine monitoring.


Assuntos
Cianobactérias , Água Potável , Humanos , Microcistinas/análise , Desenvolvimento Sustentável , Lagos/microbiologia , Medição de Risco , China , Monitoramento Ambiental
4.
Environ Monit Assess ; 195(7): 852, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37326797

RESUMO

Increasing reports of cyanobacteria or cyanotoxins around the world expose a major threat for the environment, animal, and human health. Current water treatment processes are ineffective at eliminating cyanotoxins; hence, risk management relies mostly on early detection and on the development of specific regulatory frameworks. In developed countries, well-documented monitoring activities offer a good assessment of the cyanobacterial and/or cyanotoxin status and are used to prevent intoxications. In developing countries such as Peru, despite their potential threat to the environment and public health, cyanobacteria and cyanotoxins are still poorly studied. We found that the regulatory measures regarding cyanobacteria and/or cyanotoxin are almost non-existent. We also present and discuss some examples of recent monitoring efforts underwent by isolated local authorities and scientific reports that, whereas limited, may provide some important insights to be considered nationally. A revision of the available information of planktonic cyanobacteria or cyanotoxins in Peruvian freshwater lentic water bodies revealed a total of 50 documented reports of 15 different genera across 19 water bodies, including the reported highly toxic Dolichospermum and Microcystis. A unique case of microcystin-LR has been documented. We propose some recommendations to be implemented to improve potential toxic cyanobacteria risk management that include incorporating a widespread monitoring of cyanobacterial communities in lakes and reservoirs used for human consumption via specific guidelines. Aligning Peruvian regulations on cyanobacteria and cyanotoxins to international standards may also support law enforcement and ensure compliance.


Assuntos
Cianobactérias , Plâncton , Humanos , Animais , Peru , Prevalência , Monitoramento Ambiental , Microcistinas/análise , Toxinas de Cianobactérias , Lagos , Formulação de Políticas
5.
Environ Res ; 226: 115671, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907345

RESUMO

Potential endocrine-disrupting properties of cyanotoxins, such as microcystin-LR (MC-LR) and cylindrospermopsin (CYN) are of concern due to their increasing occurrence, the scarcity of reports on the topic (particularly for CYN) and the impact of human's health at different levels. Thus, this work performed for the first time the uterotrophic bioassay in rats, following the Organization for Economic Cooperation and Development (OECD) Test Guideline 440, to explore the oestrogenic properties of CYN and MC-LR (75, 150, 300 µg/kg b.w./day) in ovariectomized (OVX) rats. Results revealed neither changes in the wet and blotted uterus weights nor in the morphometric study of uteri. Moreover, among the steroid hormones analysed in serum, the most remarkable effect was the dose-dependent increase in progesterone (P) levels in rats exposed to MC-LR. Additionally, a histopathology study of thyroids and serum levels of thyroids hormones were determined. Tissue affectation (follicular hypertrophy, exfoliated epithelium, hyperplasia) was observed, as well as increased T3 and T4 levels in rats exposed to both toxins. Taken together, these results point out that CYN and MC-LR are not oestrogenic compounds at the conditions tested in the uterotrophic assay in OVX rats, but, however, thyroid disruption effects cannot be discarded.


Assuntos
Toxinas Bacterianas , Glândula Tireoide , Humanos , Animais , Ratos , Organização para a Cooperação e Desenvolvimento Econômico , Estrogênios/toxicidade , Toxinas Bacterianas/toxicidade , Toxinas de Cianobactérias , Microcistinas/toxicidade , Microcistinas/análise
6.
J Environ Sci (China) ; 127: 1-14, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522044

RESUMO

Understanding the history of microcystins (MCs) pollution in large lakes can help inform future lake management. We collected sediment cores from Lake Taihu to: investigate the long-term record of MCs (MC-LR, MC-YR, and MC-RR), explore the main environmental drivers of MCs, and assess their public health and ecological risks. Results showed that MCs content in all cores increased over time. The core from north Taihu had the highest MC concentrations, with an average total MCs (sum of MC-LR, MC-YR, and MC-RR = TMCs) content of (74.31±328.55) ng/g. The core from eastern Taihu showed the lowest average TMCs content of (2.91±3.95) ng/g. PCA showed that sediment MCs at the three sites were positively correlated with sediment chlorophyll-a. MC-LR and MC-YR in northern and western Taihu negatively correlated with both the sediment total organic carbon/sediment total nitrogen ratio (STOC/STN) and water nitrate (NO3--N) concentration, but three MC congeners at eastern Taihu showed positive correlations with water orthophosphate (PO43--P), NO3--N, and STOC/STN. Generalized additive model analysis at each site revealed that NO3--N was the main TMCs driver in northern and western Taihu where phytoplankton dominated, whereas PO43--P was the main TMCs driver in eastern Taihu where macrophytes dominated. At the whole lake scale, total phosphorus (TP) and PO43--P were the most important environmental drivers influencing MCs; TP explained 47.4%, 44.2%, and 47.6% while orthophosphate explained 34.8%, 31.2%, and 34.7% of the deviance on TMCs, MC-LR, and MC-YR, respectively. NO3--N also showed a strong effect on MCs variation, especially on MC-YR. Risk assessment showed that both ecological and public health risk has increased in recent years. We conclude that while control of phosphorus and nitrogen input should be a major focus for future lake management, lake zone-specific management strategies may also be important.


Assuntos
Monitoramento Ambiental , Microcistinas , Microcistinas/análise , Fósforo/análise , Nitrogênio/análise , Medição de Risco , Fosfatos/análise , Água/análise , China
7.
Sci Total Environ ; 858(Pt 1): 159433, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244489

RESUMO

Fatal dog poisoning after uptake of neurotoxic cyanobacteria associated with aquatic macrophytes in Tegeler See (Berlin, Germany) raised concerns about critical exposure of humans, especially children, to cyanotoxins produced by macrophyte associated cyanobacteria during recreational activity. From 2017 to 2021 a total of 398 samples of macrophytes washed ashore at bathing sites located at 19 Berlin lakes were analysed for anatoxins, microcystins, and cylindrospermopsins, as were 463 water samples taken in direct proximity to macrophyte accumulations. Cyanotoxins were detected in 66 % of macrophyte samples and 50 % of water samples, with anatoxins being the most frequently detected toxin group in macrophyte samples (58 %) and cylindrospermopsins in water samples (41 %). Microcoleus sp. associated with the water moss Fontinalis antipyretica was identified as anatoxin producing cyanobacterium in isolated strains as well as in field samples from Tegeler See. Anatoxin contents in macrophyte samples rarely exceeded 1 µg/g macrophyte fresh weight and peaked at 9. 2 µg/g f.w. Based on established toxicological points of departure, a critical anatoxin content of macrophyte samples of 3 µg/g f.w. is proposed. Five samples, all taken in Tegeler See and all associated with the water moss Fontinalis antipyretica, exceeded this value. Contents and concentrations of microcystins and cylindrospermopsins did not reach critical levels. The potential exposure risks to anatoxins for children and dogs are assessed and recommendations are given.


Assuntos
Toxinas Bacterianas , Cianobactérias , Criança , Humanos , Cães , Animais , Microcistinas/análise , Toxinas de Cianobactérias , Berlim , Toxinas Bacterianas/análise , Medição de Risco , Água/análise
8.
Ecotoxicol Environ Saf ; 241: 113828, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36068755

RESUMO

We assessed the extent of pollution in an essential public water supply reservoir (southeastern Brazil). An environmental monitoring study was performed at the Billings Reservoir (at the water catchment site) to assess the water quality in 2017, 2018, and 2019. Physicochemical parameters were analyzed, quantifying the total cyanobacteria and the cyanotoxins microcystins (MCs) and saxitoxins (SXTs), as well as their possible ecological risk to the aquatic environment. We also determined metals and metalloids (As, Ba, Cd, Pb, Cu, Cr, Fe, Mn, Ni, Zn, and Sb) and fecal bacteria (Escherichia coli). Monthly samplings were performed for 2017, 2018, and 2019 (totaling 36 sampling campaigns). Metals, metalloids, and E. coli values were below the maximum limit allowed by the Brazilian legislation. High concentrations of total cyanobacteria (3.07 × 104 - 3.23 × 105 cells/mL), microcystin variants MC-LR (0.67-23.63 µg/L), MC-LA (0.03-8.66 µg/L), MC-RR (0.56-7.92 µg/L), and MC-YR (0.04-1.24 µg/L), as well as the saxitoxins GTX2 (0.18-5.37 µg/L), GTX3 (0.13-4.40 µg/L), and STX (0.12-2.92 µg/L) were detected. From an ecotoxicological point of view, the estimated values for the risk quotient (RQ) for microcystins and saxitoxins were largely greater than 1, indicating a high risk to aquatic life. Therefore, further efforts need to be made to delay the eutrophication of the reservoir.


Assuntos
Cianobactérias , Metaloides , Toxinas de Cianobactérias , Monitoramento Ambiental , Escherichia coli , Microcistinas/análise , Medição de Risco , Saxitoxina , Qualidade da Água
9.
Environ Pollut ; 309: 119791, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35850314

RESUMO

The frequent occurrence of microcystins (MCs) has caused a series of water security issues worldwide. Although MC pollution in natural waters of China has been reported, a systematic analysis of the risk of MCs in Chinese lakes and reservoirs is still lacking. In this study, the distribution, trend, and risk of MCs in Chinese lakes and reservoirs were comprehensively revealed through meta-analysis for the first time. The results showed that MC pollution occurrence in numerous lakes and reservoirs have been reported, with MC pollution being distributed in the waters of 15 provinces in China. For lakes, the maximum mean total MC (TMC) and dissolved MC (DMC) concentrations occurred in Lake Dianchi (23.06 µg/L) and Lake Taihu (1.00 µg/L), respectively. For reservoirs, the maximum mean TMC and DMC concentrations were detected in Guanting (4.31 µg/L) and Yanghe reservoirs (0.98 µg/L), respectively. The TMC concentrations in lakes were significantly higher than those in the reservoirs (p < 0.05), but no difference was observed in the DMC between the two water bodies (p > 0.05). Correlation analysis showed that the total phosphorus concentrations, pH, transparency, chlorophyll a, and dissolved oxygen were significantly related to the DMC in lakes and reservoirs. The ecological risks of DMC in Chinese lakes and reservoirs were generally at low levels, but high or moderate ecological risks of TMC had occurred in several waters, which were not negligible. Direct drinking water and consumption of aquatic products in several MC-polluted lakes and reservoirs may pose human health risks. This study systematically analyzed the pollution and risk of MCs in lakes and reservoirs nationwide in China and pointed out the need for further MC research and management in waters.


Assuntos
Lagos , Microcistinas , China , Clorofila A/análise , Monitoramento Ambiental , Humanos , Lagos/análise , Microcistinas/análise , Fósforo/análise
10.
Environ Pollut ; 294: 118594, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848287

RESUMO

Cyanobacterial blooms producing toxic metabolites occur frequently in freshwater, yet the environmental behaviors of complex cyanobacterial metabolites remain largely unknown. In this study, the seasonal and spatial variations of several classes of cyanotoxins (microcystins, cylindrospermopsins, saxitoxins) and taste-and-odor (T&O) compounds (ß-cyclocitral, ß-ionone, geosmin, 2-methylisoborneol) in Lake Taihu were simultaneously investigated for the first time. The total cyanotoxins were dominated by microcystins with concentrations highest in November (mean 2209 ng/L) and lowest in February (mean 48.7 ng/L). Cylindrospermopsins were abundant in May with the highest content of 622.8 ng/L. Saxitoxins only occurred in May (mean 19.2 ng/L) and November (mean 198.5 ng/L). Extracellular T&O compounds were most concentrated in August, the highest being extracellular ß-cyclocitral (mean 240.6 ng/L) followed by 2-methylisoborneol (mean 146.6 ng/L). Environment variables play conflicting roles in modulating the dynamics of different groups of cyanotoxins and T&O compounds. Total phosphorus (TP), total nitrogen (TN), chlorophyll-a and cyanobacteria density were important factors affecting the variation of total microcystins, ß-cyclocitral and ß-ionone concentrations. In contrast, total cylindrospermopsins, 2-methylisoborneol and geosmin concentrations were significantly influenced by water temperature and TP. There was a significant and linear relationship between microcystins and ß-cyclocitral/ß-ionone, while cylindrospermopsins were positively correlated with 2-methylisoborneol and geosmin. The perceptible odors may be good indicators for the existence of cyanotoxins. Hazard quotients revealed that potential human health risks from microcystins were high in August and November. Meanwhile, the risks from cylindrospermopsins were at moderate levels. Cylindrospermopsins and saxitoxins were first identified in this lake, suggesting that diverse cyanotoxins might co-occur more commonly than previously thought. Hence, the risks from other cyanotoxins beyond microcystins shouldn't be ignored. This study also highlights that the necessity for further assessing the combination effects of these complex metabolites.


Assuntos
Lagos , Poluentes Químicos da Água , China , Toxinas de Cianobactérias , Humanos , Microcistinas/análise , Odorantes/análise , Medição de Risco , Paladar , Poluentes Químicos da Água/análise
11.
Environ Sci Pollut Res Int ; 29(9): 13122-13140, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34570320

RESUMO

Water quality assessment relies mostly on physico-chemical-based characterization; however, eutrophication and climate change advocate the abundance of toxic microcystins (MCs) producing cyanobacteria as emerging bio-indicator. In the present study, a spatial-temporal analysis was carried out at ten sampling sites of Prayagraj and Varanasi during June 2017 and March 2018 to determine the Ganga River water quality using physico-chemical parameters, cyanobacteria diversity, detection of MCs producing strains and MC-LR equivalence. Coliform bacteria, COD, NO3-N, and phosphate are the significant contaminated parameters favoring the growth of putative MCs producing cyanobacteria. National Sanitation Foundation WQI (NSFWQI) indicates water quality, either bad or medium category at sampling points. The morphological analysis confirms the occurrence of diverse cyanobacterial genera such as Microcystis, Anabaena, Oscillatoria, and Phormidium. PCR amplification affirmed the presence of toxic microcystin (mcy) genes in uncultured cyanobacteria at all the sampling sites. The concentration of MC-LR equivalence in water samples by protein phosphatase 1 inhibition assay (PPIA) and high-performance liquid chromatography (HPLC) methods was observed in the range of 23.4-172 ng/L and 13.2-97.5 ng/L respectively which is lower than the harmful exposure limit by World Health Organization (WHO). Ganga isolate 1 was identified as Microcystis based on partial 16S rDNA sequence and its toxicity was confirmed due to presence of mcy genes and MCs production potential. These findings suggest the presence of MCs producers as new emerging parameter to monitor water quality index and identification up to species level will be valuable for restoration strategies of river Ganga.


Assuntos
Cianobactérias , Microcystis , Cianobactérias/genética , Ligases , Microcistinas/análise , Rios , Qualidade da Água
12.
Environ Res ; 192: 110291, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33027628

RESUMO

Due to population growth, urbanization and economic development, demand for freshwater in urban areas is increasing throughout Europe. At the same time, climate change, eutrophication and pollution are affecting the availability of water supplies. Sicily, a big island in southern Italy, suffers from an increasing drought and consequently water shortage. In the last decades, in Sicilian freshwater reservoirs several Microcystis aeruginosa and more recently Planktothrix rubescens blooms were reported. The aims of the study were: (1) identify and quantify the occurring species of cyanobacteria (CB), (2) identify which parameters, among those investigated in the waters, could favor their growth, (3) set up a model to identify reservoirs that need continuous monitoring due to the presences, current or prospected, of cyanobacterial blooms and of microcystins, relevant for environmental and, consequentially, for human health. Fifteen artificial reservoirs among the large set of Sicilian artificial water bodies were selected and examined for physicochemical and microbiological characterization. Additional parameters were assessed, including the presence, identification and count of the cyanobacterial occurring species, the measurement of microcystins (MCs) levels and the search for the genes responsible for the toxins production. Principal Component Analysis (PCA) was used to relate environmental condition to cyanobacterial growth. Water quality was poor for very few parameters, suggesting common anthropic pressures, and PCA highlighted clusters of reservoirs vulnerable to hydrological conditions, related to semi-arid Mediterranean climate and to the use of the reservoir. In summer, bloom was detected in only one reservoir and different species was highlighted among the Cyanobacteria community. The only toxins detected were microcystins, although always well below the WHO reference value for drinking waters (1.0 µg/L). However, molecular analysis could not show the presence of potential cyanotoxins producers since a few numbers of cells among total could be sufficient to produce these low MCs levels but not enough high to be proved by the traditional molecular method applied. A simple environmental risk-based model, which accounts for the high variability of both cyanobacteria growth and cyanotoxins producing, is proposed as a cost-effective tool to evaluate the need for monitoring activities in reservoirs aimed to guarantee supplying waters safety.


Assuntos
Cianobactérias , Qualidade da Água , Monitoramento Ambiental , Europa (Continente) , Eutrofização , Humanos , Microcistinas/análise , Sicília
13.
Environ Sci Pollut Res Int ; 27(36): 45095-45107, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32779064

RESUMO

The frequent occurrence of microcystins (MCs) in freshwater poses serious threats to the drinking water safety and health of human beings. Although MCs have been detected in individual fresh waters in China, little is known about their occurrence over a large geographic scale. An investigation of 30 subtropical lakes in eastern China was performed during summer 2018 to determine the MCs concentrations in water and their possible risk via direct water consumption to humans, and to assess the associated environmental factors. MCs were detected in 28 of 30 lakes, and the highest mean MCs concentrations occurred in Lake Chaohu (26.7 µg/L), followed by Lake Taihu (3.11 µg/L). MC-LR was the primary variant observed in our study, and MCs were mainly produced by Microcystis, Anabaena (Dolicospermum), and Oscillatoria in these lakes. Replete nitrogen and phosphorus concentrations, irradiance, and stable water column conditions were critical for dominance of MC-producing cyanobacteria and high MCs production in our study. Hazard quotients indicated that human health risk of MCs in most lakes was at moderate or low levels except Lakes Chaohu and Taihu. Nutrient control management is recommended to decrease the likelihood of high MCs production. Finally, we recommend the regional scale thresholds of total nitrogen and total phosphorus concentrations of 1.19 mg/L and 7.14 × 10-2 mg/L, respectively, based on the drinking water guideline of MC-LR (1 µg/L) recommended by World Health Organization. These targets for nutrient control will aid water quality managers to reduce human health risks created by exposure to MCs.


Assuntos
Lagos , Microcystis , China , Monitoramento Ambiental , Humanos , Microcistinas/análise , Medição de Risco
14.
Sci Total Environ ; 747: 141135, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32795791

RESUMO

Scale-up feasibility of the graphitized sand filter (GS1) for Microcystin-LR (MC-LR) removal and its impact on other water pollutants (WPs) was assessed through a mass-balance study, using a laboratory-based drinking water treatment plant (DWTP) micromodel named: SAP-1©. The treatment system comprised: raw water tank, pre-oxidation tank (oxidant: potassium permanganate), followed by a coagulation/flocculation tank (alum supplemented), sedimentation tank, filtration module and finally disinfection tank (dosed with hypochlorite solution). Two filter modules (FMs) were studied: a) FM1: graphitized-sand media + sand media = ½ GS1 + ½ sand and b) FM2: ½ sand + ½ sand. The MC-LR removal study (initial concentration: 50 µg/L) was performed for two varieties of MC-LR source: a) commercial MC-LR, and b) algal-biomass released MC-LR. Along with MC-LR, other WPs were also evaluated including metal ions (Fe2+ and Cu2+), total coliform, turbidity, ammonia-N and dissolved organic carbon. The removal efficiency of these WPs was determined for each treatment unit (as it passed). FM1 was able to reduce the inflow residual of MC-LR (coming from the preceding unit: sedimentation unit) from 12.1 µg/L and 25.4 µg/L (for commercial and algal-cell MC-LR source, respectively) to <0.61 µg/L and hence successfully complying the WHO guidelines (<1 µg/L). The protein phosphatase 1A (PP1A) toxicity assay confirmed a much safer and more toxic-free filtrate (by 40%-50%) for FM1 as compared to the filtrate obtained from FM2. The techno-economic evaluation showed that for an annual household filter application, 160 CAD needs to be spent on one GS1-based filter unit as compared to over 6000 CAD (equivalent price) for the conventional sand-based filter to provide MC-LR-free water. The present study demonstrates the feasibility of the utilization of these units in household filtration systems.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Água Potável/análise , Toxinas Marinhas , Microcistinas/análise , Areia , Poluentes Químicos da Água/análise
15.
Sci Total Environ ; 728: 138775, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32339839

RESUMO

It is essential to have tools that can be used to diagnose water resources. For this reason, this study sets out on the one hand to assess water quality in three reservoirs in Spain (Salas, A Baxe and Conchas) with Cyano-Habs problems through the application of water quality indexes: The National Sanitation Foundation Water Quality Index (NFSWQI), the General Quality Index (GQI), the Trophic State Index (TSI), and the Trophic Contamination Index (ICOTRO). On the other hand, it seeks to learn how parameters such as nitrogen and phosphorus influence the presence of cyanotoxin, specifically Microcystis aeruginosa. To that end, samples from the three reservoirs are cultured and physical-chemical parameters and the toxicity of the water are measured. The results show that Salas reservoir has the worst water quality rating (GQI is bad and NFSWQI medium), while As Conchas and A Baxe obtain very good figures for NFSWQI. This contrasts with the data obtained via the TSI of moderately eutrophic conditions for all three reservoirs, and hypereutrophic levels for As Conchas and A Baxe downstream. On the other hand, the toxicity analysis shows levels of 1.12 ±â€¯0.06 µg/l microcystin-LR (MC-LR) for As Conchas, 0.64 ±â€¯0.04 µg/l MC-LR for Salas, and 1.24 ±â€¯0.05 µg/l MC-LR for A Baxe, of which 20% corresponds to free MC-LR. This study finds that nitrogen is the parameter that most favors the production of MC-LR. We conclude that the eutrophication indexes are more reliable when studying the presence of cyanobacteria. Furthermore, nitrogen and phosphorous are the most significant parameters in this regard. They are taken into account in the quality indices (GQI, NFSWI), but they are not sufficiently representative. It is recommended as a future line of research that water quality indices be adapted or designed to incorporate eutrophication levels and even water toxicity.


Assuntos
Cianobactérias , Microcystis , Eutrofização , Microcistinas/análise , Espanha , Qualidade da Água
16.
Environ Pollut ; 259: 113884, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31918143

RESUMO

High concentrations of microcystins (MCs) in sediment pose a serious hazard to aquatic and terrestrial organisms. Hence, we investigated the seasonal variation of dominant MCs (MC-LR, MC-RR and MC-YR) in sediments of Lake Taihu over four seasons for the first time. Sediment MCs varied seasonally (p < 0.01) with concentrations highest in August and lowest in February. The MCs were dominated by MC-LR (61.47%) with the content ranging from 0.02 to 2.37 µg/g dry weight in sediment. The three MC congeners and their proportions were significantly correlated with latitude and longitude. Meiliang Bay in the north had the highest MCs of all sites, while the eastern part of the lake had a high level especially in August. Variation of MC-LR and MC-RR concentrations was significantly correlated (p < 0.05) with water temperature, dissolved total organic carbon, cyanobacteria density, total suspended solid particles, and total organic carbon and total nitrogen in sediment, while MC-YR was negatively correlated (p < 0.01) with nutrients in the water column and heavy metals in sediments. An ecological risk assessment suggested the MCs already pose significant adverse effects on Potamopyrgus antipodarum; although the adverse effects on humans were weak, children were at greater risk than adults.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Microcistinas , Criança , China , Sedimentos Geológicos/química , Humanos , Lagos/química , Microcistinas/análise , Microcistinas/toxicidade , Medição de Risco , Estações do Ano
17.
Environ Monit Assess ; 191(9): 569, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31418103

RESUMO

Microcystins (MCs) are toxic secondary metabolites produced by several cyanobacteria genera that have been implicated in human cancer cases and deaths. Human exposure routes include direct contact with contaminated water and the consumption of contaminated food. The present study investigated the presence of MCs in three commonly consumed vegetables at the point of sale in market places as a means of assessing the direct human health risk of buying vegetables. Overall, 53% of the vegetables obtained from different markets had levels of MCs that were higher than 1.00 µg/g. Amaranthus hybridus L. (smooth amaranth) had the highest MC concentration (4.79 µg/g) in samples obtained from Sabon Gari Market, while Lactuca sativa L. (garden lettuce) had the lowest concentration (0.17 µg/g) in samples obtained from Dan-Magaji Market. The highest total daily intake (TDI) of MCs by an adult weighing 60 kg was 3.19 µg/kg for A. hybridus, 1.41 µg/kg for Brassica oleracea L. (cabbage), and 2.94 µg/kg for L. sativa. The highest TDI of MCs for a child weighing 25 kg was highest in A. hybridus (1.91 µg/kg), followed by L. sativa (1.77 µg/kg). These results revealed that the consumption of vegetables sold in markets in Zaria, Nigeria, during the dry season represents a major exposure route to MCs. There is, therefore, an urgent need to develop policies and monitoring strategies to tackle this problem in developing countries.


Assuntos
Amaranthus/química , Brassica/química , Contaminação de Alimentos/análise , Lactuca/química , Microcistinas/análise , Humanos , Nigéria
18.
Ecotoxicol Environ Saf ; 183: 109477, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31369939

RESUMO

The increasing eutrophication of freshwater and brackish habitats globally has led to a corresponding increase in the occurrence of harmful cyanobacterial blooms. Cyanobacteria can produce highly toxic substances such as microcystins (MCs) that affect the health of livestock, wildlife, and humans. The present study broaden the understanding of cyanobacteria ecology and MC dynamics in the field, focusing on the estimation of the production and sedimentation rates of MCs in a natural habitat. The nutrient concentrations of the reservoir water and sediment pore water were monitored at 3-h intervals for 24 h during the summer cyanobacterial bloom. The DIN uptake rate of Microcystis in the Isahaya reservoir was estimated and the large-scale blooms in the reservoir were largely controlled by the interactions between rainfall and nutrient levels in the warm season. By using calculations based on the nitrogen budgets and tracking changes of the MC concentrations in the water column, the total MC production and sedimentation rates were estimated to be 52.2 kg MCs d-1 and 21.5 kg MCs d-1, respectively. Although MCs could be degraded in the environment, the MC sedimentation still comprised 41% of the in-water production.


Assuntos
Toxinas Bacterianas/análise , Baías/microbiologia , Toxinas Marinhas/análise , Microcistinas/análise , Toxinas Bacterianas/metabolismo , Baías/química , Toxinas de Cianobactérias , Ecossistema , Eutrofização , Sedimentos Geológicos/química , Japão , Toxinas Marinhas/metabolismo , Microcistinas/metabolismo , Microcystis/metabolismo , Nitrogênio/metabolismo , Nutrientes , Estações do Ano
19.
Chemosphere ; 229: 332-340, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31078890

RESUMO

In freshwater aquaculture ecosystems with high-frequency occurrences of cyanobacteria blooms, a chronic neurotoxic cyanobacteria toxin, ß-N-methylamino-l-alanine (BMAA), is a new pollutant that affects the normal growth, development, and reproduction of aquaculture organisms. BMAA poses a great threat to the food quality and food safety of aquatic products. In this paper, high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) was used to detect the contents of BMAA in the edible portions of six representative freshwater aquaculture products (Corbicula fluminea, Anodonta arcaeformis, Macrobrachium nipponense, Eriocheir sinensis, Ctenopharyngodon idella, and Mylopharyngodon piceus) from Taihu Lake Basin in China. Noncarcinogenic health risks were assessed with reference to the model recommended by the International Environmental Modelling and Software Society and based on the biomagnification characteristics of BMAA in the various aquaculture products investigated by the stable nitrogen isotope technique. The average BMAA concentrations in the edible portions of the six freshwater culture products were from 2.05 ±â€¯1.40 to 4.21 ±â€¯1.26 µg g-1 dry weight (DW), and the difference was significant (p < 0.05), such a difference increased with the increase in the trophic level in the aquaculture products. Although a biomagnification indication was observed, the trophic magnification factor (TMF) was only 1.20 which exhibited a relatively low biomagnification efficiency. The annual health risk values of BMAA in all the measured aquatic products were within the maximum tolerable range (<1 × 10-6 a-1), and the health risk increased with the increase in the trophic level. The risk values of BMAA in the six freshwater aquaculture products for children was slightly higher than the negligible level (<1 × 10-7 a-1), thus there might have potential health risks for children's long-term consumption. Considering China's national conditions, the guidance values of BMAA based on the quality and safety of freshwater aquaculture products were proposed to be 7.2 µg g-1 DW for adults and 1.8 µg g-1 DW for children.


Assuntos
Diamino Aminoácidos/análise , Aquicultura/métodos , Toxinas Bacterianas/análise , Lagos/química , Toxinas Marinhas/análise , Microcistinas/análise , Medição de Risco , Adulto , Diamino Aminoácidos/normas , Aquicultura/normas , Criança , China , Cromatografia Líquida de Alta Pressão , Toxinas de Cianobactérias , Inocuidade dos Alimentos , Humanos , Neurotoxinas/análise , Espectrometria de Massas em Tandem
20.
Environ Pollut ; 240: 44-50, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29729568

RESUMO

A 120-day field study was carried out near Lake Taihu to evaluate the bioaccumulation of microcystin (MC) congeners in a soil-plant system, as well as to assess human health risk when consuming edible plants irrigated with MCs-contaminated water. Natural cyanobacteria bloom-containing lake water (lake water) and half-diluted natural cyanobacteria bloom-containing lake water with tap water (half-lake water) were used to irrigate lettuce and rice. An additional treatment involving fertilization with a cyanobacteria bloom was applied just to the lettuce experiment. MCs in soils, roots, leaves and grains (rice) were detected. In the soil-lettuce system, the three MC congeners in soils fertilized with a cyanobacteria bloom were not detected. The highest concentrations of MCs detected in soils, lettuce roots and leaves were 24.8 (MC-LR 10.1, MC-RR 10.5, MC-YR 4.2) µg kg-1, 424 (MC-LR 168, MC-RR 194, MC-YR 61.5) µg kg-1 and 183 (MC-LR 78.0, MC-RR 76.8, MC-YR 28.1) µg kg-1, respectively, in the lake water treatment. In the soil-rice system, the highest concentration of MCs was accumulated in roots 1504 (MC-LR 634, MC-RR 573, MC-YR 297) µg kg-1, in the lake water treatment. However, the concentration of MCs that accumulated in grains was extremely low with a total MCs concentration of 5.2 (MC-LR 2.1, MC-RR 2.0, MC-YR 1.1) µg kg-1 in the lake water treatment. According to the estimated daily intake (EDI) value, fertilizing with an appropriate amount (0.2% or less, w/w, dry weight (DW)) of a cyanobacteria bloom, as well as consuming rice irrigated with lake water would not pose a threat to human health. However, the EDI values for both adults and children reached tolerable daily intake (TDI) value, assuming they consumed lettuce irrigated with lake water. Results obtained from the growth and yield indicators suggest that MCs bioaccumulation in edible plants is not necessarily coupled with phytotoxic effects.


Assuntos
Monitoramento Ambiental , Microcistinas/análise , Folhas de Planta/química , China , Cianobactérias , Humanos , Lagos/microbiologia , Lactuca/crescimento & desenvolvimento , Toxinas Marinhas , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Medição de Risco , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA