Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 226: 116390, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914316

RESUMO

Infigratinib, an oral FGFR inhibitor for advanced cholangiocarcinoma, yielded two active metabolites, BHS697 and CQM157, with similar receptor affinity. Our study characterized P450s that are responsible for the metabolism of infigratinib to its two major active metabolites, BHS697 and CQM157. In vitro inhibition of P450s and UGTs by infigratinib, BHS697 or CQM157 was further investigated. The unbound apparent Km values for metabolism of infigratinib to BHS697 by HLM, human recombinant CYP2C8, CYP2C19, CYP2D6 and CYP3A4 enzymes are 4.47, 0.65, 2.50, 30.6 and 2.08 µM, while Vmax values are 90.0 pmol/min/mg protein, 0.13, 0.027, 0.81, and 0.56 pmol/min/pmol protein, respectively. The unbound apparent Km value for metabolism of infigratinib to CQM157 by HLM is 0.049 µM, while the Vmax value is 0.32 pmol/min/mg protein respectively. In HLM, infigratinib displayed moderate inhibition of CYP3A4 and CYP2C19 and weak or negligible inhibition of other P450 isoforms. BHS697 exhibited weak inhibition of CYP2B6, CYP2C9, CYP2C19 and CYP3A4, and no inhibition of CYP2C8 and CYP2D6. CQM157 moderately inhibited CYP2C9 and CYP3A4, and weakly or negligibly inhibited other P450 isoforms. Regarding UGTs, infigratinib moderately inhibited UGT1A4 and weakly inhibited UGT1A1, respectively. BHS697 weakly inhibited UGT1A1. In contrast, CQM157 moderately inhibited both UGT1A1 and UGT1A4. Our findings provide novel insights into the metabolism of and potential DDIs implicating infigratinib.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450 , Glucuronosiltransferase , Humanos , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Pirimidinas/farmacologia , Pirimidinas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Compostos de Fenilureia
2.
Drug Metab Dispos ; 52(7): 654-661, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38729662

RESUMO

The delicate balance between ischemic and bleeding risks is a critical factor in antiplatelet therapy administration. Clopidogrel and prasugrel, belonging to the thienopyridine class of antiplatelet drugs, are known for their variability in individual responsiveness and high incidence of bleeding events, respectively. The present study is centered on the development and assessment of a range of deuterated thienopyridine derivatives, leveraging insights from structure-pharmacokinetic relationships of clopidogrel and prasugrel. Our approaches were grounded in the molecular framework of clopidogrel and incorporated the C2-pharmacophore design from prasugrel. The selection of ester or carbamate substituents at the C2-position facilitated the generation of the 2-oxointermediate through hydrolysis, akin to prasugrel, thereby bypassing the issue of CYP2C19 dependency. The bulky C2-pharmacophore in our approach distinguishes itself from prasugrel's acetyloxy substituent by exhibiting a moderated hydrolysis rate, resulting in a more gradual formation of the active metabolite. Excessive and rapid release of the active metabolite, believed to be linked with an elevated risk of bleeding, is thus mitigated. Our proposed structural modification retains the hydrolysis-sensitive methyl ester of clopidogrel but substitutes it with a deuterated methyl group, shown to effectively reduce metabolic deactivation. Three promising compounds demonstrated a pharmacokinetic profile similar to that of clopidogrel at four times the dose, while also augmenting its antiplatelet activity. SIGNIFICANCE STATEMENT: Inspired by the structure-pharmacokinetic relationship of clopidogrel and prasugrel, a range of clopidogrel derivatives were designed, synthesized, and assessed. Among them, three promising compounds have been identified, striking a delicate balance between efficacy and safety for antiplatelet therapy. Additionally, the ozagrel prodrug conjugate was discovered to exert a synergistic therapeutic effect alongside clopidogrel.


Assuntos
Clopidogrel , Inibidores da Agregação Plaquetária , Cloridrato de Prasugrel , Clopidogrel/farmacocinética , Clopidogrel/farmacologia , Inibidores da Agregação Plaquetária/farmacocinética , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/química , Humanos , Cloridrato de Prasugrel/farmacocinética , Cloridrato de Prasugrel/farmacologia , Citocromo P-450 CYP2C19/metabolismo , Relação Estrutura-Atividade , Ativação Metabólica , Masculino , Hidrólise , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos
3.
Toxicology ; 505: 153828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740169

RESUMO

The fungicide fluxapyroxad (BAS 700 F) has been shown to significantly increase the incidence of liver tumours in male Wistar rats at dietary levels of 1500 and 3000 ppm and in female rats at a dietary level of 3000 ppm via a non-genotoxic mechanism. In order to elucidate the mode of action (MOA) for fluxapyroxad-induced rat liver tumour formation a series of in vivo and in vitro investigative studies were undertaken. The treatment of male and female Wistar rats with diets containing 0 (control), 50, 250, 1500 and 3000 ppm fluxapyroxad for 1, 3, 7 and 14 days resulted in a dose-dependent increases in relative weight at 1500 and 3000 ppm from day 3 onwards in both sexes, with an increase in relative liver weight being also observed in male rats given 250 ppm fluxapyroxad for 14 days. Examination of liver sections revealed a centrilobular hepatocyte hypertrophy in some fluxapyroxad treated male and female rats. Hepatocyte replicative DNA synthesis (RDS) was significantly increased in male rats given 1500 and 3000 ppm fluxapyroxad for 3 and 7 days and in female rats given 50-3000 ppm fluxapyroxad for 7 days and 250-3000 ppm fluxapyroxad for 3 and 14 days; the maximal increases in RDS in both sexes being observed after 7 days treatment. The treatment of male and female Wistar rats with 250-3000 ppm fluxapyroxad for 14 days resulted in significant increases in hepatic microsomal total cytochrome P450 (CYP) content and CYP2B subfamily-dependent enzyme activities. Male Wistar rat hepatocytes were treated with control medium and medium containing 1-100 µM fluxapyroxad or 500 µM sodium phenobarbital (NaPB) for 4 days. Treatment with fluxapyroxad and NaPB increased CYP2B and CYP3A enzyme activities and mRNA levels but had little effect on markers of CYP1A and CYP4A subfamily enzymes and of the peroxisomal fatty acid ß-oxidation cycle. Hepatocyte RDS was significantly increased by treatment with fluxapyroxad, NaPB and 25 ng/ml epidermal growth factor (EGF). The treatment of hepatocytes from two male human donors with 1-100 µM fluxapyroxad or 500 µM NaPB for 4 days resulted in some increases in CYP2B and CYP3A enzyme activities and CYP mRNA levels but had no effect on hepatocyte RDS, whereas treatment with EGF resulted in significant increase in RDS in both human hepatocyte preparations. Hepatocytes from male Sprague-Dawley wild type (WT) and constitutive androstane receptor (CAR) knockout (CAR KO) rats were treated with control medium and medium containing 1-16 µM fluxapyroxad or 500 µM NaPB for 4 days. While both fluxapyroxad and NaPB increased CYP2B enzyme activities and mRNA levels in WT hepatocytes, only minor effects were observed in CAR KO rat hepatocytes. Treatment with both fluxapyroxad and NaPB only increased RDS in WT and not in CAR KO rat hepatocytes, whereas treatment with EGF increased RDS in both WT and CAR KO rat hepatocytes. In conclusion, a series of in vivo and in vitro investigative studies have demonstrated that fluxapyroxad is a CAR activator in rat liver, with similar properties to the prototypical CAR activator phenobarbital. A robust MOA for fluxapyroxad-induced rat liver tumour formation has been established. Based on the lack of effect of fluxapyroxad on RDS in human hepatocytes, it is considered that the MOA for fluxapyroxad-induced liver tumour formation is qualitatively not plausible for humans.


Assuntos
Receptor Constitutivo de Androstano , Fungicidas Industriais , Hepatócitos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares , Animais , Masculino , Feminino , Ratos , Fungicidas Industriais/toxicidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Humanos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Relação Dose-Resposta a Droga , Tamanho do Órgão/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Replicação do DNA/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA