Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 630
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14712, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926453

RESUMO

Human health is becoming concerned about exposure to endocrine disrupting chemicals (EDCs) emanating from plastic, such as phthalates, which are industrially employed as plasticizers in the manufacturing of plastic products. Due to some toxicity concerns, di(2-ethylhexyl) phthalate (DEHP) was replaced by diisononyl phthalate (DiNP). Recent data, however, highlights the potential of DiNP to interfere with the endocrine system and influence allergic responses. Asthma affects brain function through hypoxia, systemic inflammation, oxidative stress, and sleep disturbances and its effective management is crucial for maintaining respiratory and brain health. Therefore, in DiNP-induced asthmatic mice, this study investigated possible crosstalk between the lungs and the brain inducing perturbations in neural mitochondrial antioxidant status, inflammation biomarkers, energy metabolizing enzymes, and apoptotic indicators. To achieve this, twelve (n = 12, 20-30 g) male BALB/c mice were divided into two (2) experimental groups, each with five (6) mice. Mice in group II were subjected to 50 mg/kg body weight (BW) DiNP (Intraperitoneal and intranasal), while group I served as the control group for 24 days. The effects of DiNP on neural energy metabolizing enzymes (Hexokinase, Aldolase, NADase, Lactate dehydrogenase, Complex I, II, II & IV), biomarkers of inflammation (Nitric oxide, Myeloperoxidase), oxidative stress (malondialdehyde), antioxidants (catalase, glutathione-S-transferase, and reduced glutathione), oncogenic and apoptotic factors (p53, K-ras, Bcl, etc.), and brain histopathology were investigated. DiNP-induced asthmatic mice have significantly (p < 0.05) altered neural energy metabolizing capacities due to disruption of activities of enzymes of glycolytic and oxidative phosphorylation. Other responses include significant inflammation, oxidative distress, decreased antioxidant status, altered oncogenic-apoptotic factors level and neural degeneration (as shown in hematoxylin and eosin-stained brain sections) relative to control. Current findings suggest that neural histoarchitecture, energy metabolizing potentials, inflammation, oncogenic and apoptotic factors, and mitochondrial antioxidant status may be impaired and altered in DiNP-induced asthmatic mice suggesting a pivotal crosstalk between the two intricate organs (lungs and brain).


Assuntos
Apoptose , Asma , Pulmão , Camundongos Endogâmicos BALB C , Mitocôndrias , Estresse Oxidativo , Ácidos Ftálicos , Animais , Apoptose/efeitos dos fármacos , Asma/metabolismo , Asma/induzido quimicamente , Asma/patologia , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Masculino , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos
2.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731532

RESUMO

A series of flavanols were synthesized to assess their biological activity against human non-small cell lung cancer cells (A549). Among the sixteen synthesized compounds, it was observed that compounds 6k (3.14 ± 0.29 µM) and 6l (0.46 ± 0.02 µM) exhibited higher potency compared to 5-fluorouracil (5-Fu, 4.98 ± 0.41 µM), a clinical anticancer drug which was used as a positive control. Moreover, compound 6l (4'-bromoflavonol) markedly induced apoptosis of A549 cells through the mitochondrial- and caspase-3-dependent pathways. Consequently, compound 6l might be developed as a candidate for treating or preventing lung cancer.


Assuntos
Antineoplásicos , Apoptose , Flavonóis , Humanos , Flavonóis/farmacologia , Flavonóis/síntese química , Flavonóis/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Células A549 , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Fluoruracila/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral
3.
Cell Death Differ ; 31(6): 711-721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582955

RESUMO

BAX and BAK are pro-apoptotic members of the BCL2 family that are required to permeabilize the mitochondrial outer membrane. The proteins can adopt a non-activated monomeric conformation, or an activated conformation in which the exposed BH3 domain facilitates binding either to a prosurvival protein or to another activated BAK or BAX protein to promote pore formation. Certain cancer cells are proposed to have high levels of activated BAK sequestered by MCL1 or BCLXL, thus priming these cells to undergo apoptosis in response to BH3 mimetic compounds that target MCL1 or BCLXL. Here we report the first antibody, 14G6, that is specific for the non-activated BAK conformer. A crystal structure of 14G6 Fab bound to BAK revealed a binding site encompassing both the α1 helix and α5-α6 hinge regions of BAK, two sites involved in the unfolding of BAK during its activation. In mitochondrial experiments, 14G6 inhibited BAK unfolding triggered by three diverse BAK activators, supporting crucial roles for both α1 dissociation and separation of the core (α2-α5) and latch (α6-α9) regions in BAK activation. 14G6 bound the majority of BAK in several leukaemia cell lines, and binding decreased following treatment with BH3 mimetics, indicating only minor levels of constitutively activated BAK in those cells. In summary, 14G6 provides a new means of assessing BAK status in response to anti-cancer treatments.


Assuntos
Proteína Killer-Antagonista Homóloga a bcl-2 , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores
4.
J Vis Exp ; (206)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682942

RESUMO

Mitochondria serve many important functions, including cellular respiration, ATP production, controlling apoptosis, and acting as a central hub of metabolic pathways. Therefore, experimentally assessing mitochondrial functionality can provide insight into variations among different populations or disease states. Additionally, it is valuable to assess whether isolated mitochondria are healthy enough to proceed with experiments. One characteristic often used to compare mitochondrial function in different samples is the rate of oxygen consumption. Oxygen consumption and subsequent calculation of the respiratory control ratio in either intact cells or mitochondria isolated from tissue can serve all three purposes. Using mitochondria isolated from the livers of brush lizards in conjunction with a phosphorescent probe that is sensitive to the fluctuations in oxygen concentration of a solution, we measured oxygen consumption using a fluorescent plate reader. This method is not only quick and efficient but also can be conducted with a small amount of mitochondria and without the need for specialized equipment. The step-by-step protocol described here increases the accessibility of mitochondrial functional assessment to researchers.


Assuntos
Consumo de Oxigênio , Animais , Consumo de Oxigênio/fisiologia , Lagartos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Corantes Fluorescentes/química , Mitocôndrias/metabolismo
5.
BMC Plant Biol ; 24(1): 255, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594641

RESUMO

BACKGROUND: Orchidaceae is one of the largest groups of angiosperms, and most species have high economic value and scientific research value due to their ornamental and medicinal properties. In China, Chinese Cymbidium is a popular ornamental orchid with high economic value and a long history. However, to date, no detailed information on the mitochondrial genome of any species of Chinese Cymbidium has been published. RESULTS: Here, we present the complete assembly and annotation of the mitochondrial genome of Cymbidium ensifolium (L.) Sw. The mitogenome of C. ensifolium was 560,647 bp in length and consisted of 19 circular subgenomes ranging in size from 21,995 bp to 48,212 bp. The genome encoded 35 protein-coding genes, 36 tRNAs, 3 rRNAs, and 3405 ORFs. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 915 dispersed repeats, 162 simple repeats, 45 tandem repeats, and 530 RNA editing sites. Analysis of codon usage showed a preference for codons ending in A/T. Interorganellar DNA transfer was identified in 13 of the 19 chromosomes, with plastid-derived DNA fragments representing 6.81% of the C. ensifolium mitochondrial genome. The homologous fragments of the mitochondrial genome and nuclear genome were also analysed. Comparative analysis showed that the GC content was conserved, but the size, structure, and gene content of the mitogenomes varied greatly among plants with multichromosomal mitogenome structure. Phylogenetic analysis based on the mitogenomes reflected the evolutionary and taxonomic statuses of C. ensifolium. Interestingly, compared with the mitogenomes of Cymbidium lancifolium Hook. and Cymbidium macrorhizon Lindl., the mitogenome of C. ensifolium lost 8 ribosomal protein-coding genes. CONCLUSION: In this study, we assembled and annotated the mitogenome of C. ensifolium and compared it with the mitogenomes of other Liliidae and plants with multichromosomal mitogenome structures. Our findings enrich the mitochondrial genome database of orchid plants and reveal the rapid structural evolution of Cymbidium mitochondrial genomes, highlighting the potential for mitochondrial genes to help decipher plant evolutionary history.


Assuntos
Genoma Mitocondrial , Orchidaceae , Genoma Mitocondrial/genética , Filogenia , Mitocôndrias/genética , DNA , Orchidaceae/genética
6.
J Evol Biol ; 37(4): 442-450, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38456649

RESUMO

Organismal health and survival depend on the ability to mount an effective immune response against infection. Yet immune defence may be energy-demanding, resulting in fitness costs if investment in immune function deprives other physiological processes of resources. While evidence of costly immunity resulting in reduced longevity and reproduction is common, the role of energy-producing mitochondria on the magnitude of these costs is unknown. Here we employed Drosophila melanogaster cybrid lines, where several mitochondrial genotypes (mitotypes) were introgressed onto a single nuclear genetic background, to explicitly test the role of mitochondrial variation on the costs of immune stimulation. We exposed female flies carrying one of nine distinct mitotypes to either a benign, heat-killed bacterial pathogen (stimulating immune deployment while avoiding pathology) or a sterile control and measured lifespan, fecundity, and locomotor activity. We observed mitotype-specific costs of immune stimulation and identified a positive genetic correlation between life span and the proportion of time cybrids spent moving while alive. Our results suggest that costs of immunity are highly variable depending on the mitochondrial genome, adding to a growing body of work highlighting the important role of mitochondrial variation in host-pathogen interactions.


Assuntos
Drosophila melanogaster , Mitocôndrias , Animais , Feminino , Drosophila melanogaster/fisiologia , Mitocôndrias/genética , Longevidade/genética , Genótipo , Fertilidade/genética
7.
Environ Toxicol Chem ; 43(5): 976-987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488751

RESUMO

There is a growing concern that chronic exposure to fungicides contributes to negative effects on honey bee development, life span, and behavior. Field and caged-bee studies have helped to characterize the adverse outcomes (AOs) of environmentally relevant exposures, but linking AOs to molecular/cellular mechanisms of toxicity would benefit from the use of readily controllable, simplified host platforms like cell lines. Our objective was to develop and optimize an in vitro-based mitochondrial toxicity assay suite using the honey bee as a model pollinator, and the electron transport chain (ETC) modulators boscalid and pyraclostrobin as model fungicides. We measured the effects of short (~30 min) and extended exposures (16-24 h) to boscalid and pyraclostrobin on AmE-711 honey bee cell viability and mitochondrial function. Short exposure to pyraclostrobin did not affect cell viability, but extended exposure reduced viability in a concentration-dependent manner (median lethal concentration = 4175 µg/L; ppb). Mitochondrial membrane potential (MMP) was affected by pyraclostrobin in both short (median effect concentration [EC50] = 515 µg/L) and extended exposure (EC50 = 982 µg/L) scenarios. Short exposure to 10 and 1000 µg/L pyraclostrobin resulted in a rapid decrease in the oxygen consumption rate (OCR), approximately 24% reduction by 10 µg/L relative to the baseline OCR, and 64% by 1000 µg/L. Extended exposure to 1000 µg/L pyraclostrobin reduced all respiratory parameters (e.g., spare capacity, coupling efficiency), whereas 1- and 10-µg/L treatments had no significant effects. The viability of AmE-711 cells, as well as the MMP and cellular respiration were unaffected by short and extended exposures to boscalid. The present study demonstrates that the AmE-711-based assessment of viability, MMP, and ETC functionality can provide a time- and cost-effective platform for mitochondrial toxicity screening relevant to bees. Environ Toxicol Chem 2024;43:976-987. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Compostos de Bifenilo , Sobrevivência Celular , Fungicidas Industriais , Mitocôndrias , Niacinamida , Niacinamida/análogos & derivados , Estrobilurinas , Animais , Estrobilurinas/toxicidade , Abelhas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Niacinamida/farmacologia , Niacinamida/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos
8.
Genes (Basel) ; 15(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38397184

RESUMO

Mitochondrial (mt) DNA plays an important role in the fields of forensic and clinical genetics, molecular anthropology, and population genetics, with mixture interpretation being of particular interest in medical and forensic genetics. The high copy number, haploid state (only a single haplotype contributed per individual), high mutation rate, and well-known phylogeny of mtDNA, makes it an attractive marker for mixture deconvolution in damaged and low quantity samples of all types. Given the desire to deconvolute mtDNA mixtures, the goals of this study were to (1) create a new software, MixtureAceMT™, to deconvolute mtDNA mixtures by assessing and combining two existing software tools, MixtureAce™ and Mixemt, (2) create a dataset of in-silico MPS mixtures from whole mitogenome haplotypes representing a diverse set of population groups, and consisting of two and three contributors at different dilution ratios, and (3) since amplicon targeted sequencing is desirable, and is a commonly used approach in forensic laboratories, create biological mixture data associated with two amplification kits: PowerSeq™ Whole Genome Mito (Promega™, Madison, WI, USA) and Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific by AB™, Waltham, MA, USA) to further validate the software for use in forensic laboratories. MixtureAceMT™ provides a user-friendly interface while reducing confounding features such as NUMTs and noise, reducing traditionally prohibitive processing times. The new software was able to detect the correct contributing haplogroups and closely estimate contributor proportions in sequencing data generated from small amplicons for mixtures with minor contributions of ≥5%. A challenge of mixture deconvolution using small amplicon sequencing is the potential generation of spurious haplogroups resulting from private mutations that differ from Phylotree. MixtureAceMT™ was able to resolve these additional haplogroups by including known haplotype/s in the evaluation. In addition, for some samples, the inclusion of known haplotypes was also able to resolve trace contributors (minor contribution 1-2%), which remain challenging to resolve even with deep sequencing.


Assuntos
DNA Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA , Mitocôndrias/genética , Haplótipos
9.
Philos Trans R Soc Lond B Biol Sci ; 379(1896): 20220483, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38186271

RESUMO

A fundamental issue in the metabolic field is whether it is possible to understand underlying mechanisms that characterize individual variation. Whole-animal performance relies on mitochondrial function as it produces energy for cellular processes. However, our lack of longitudinal measures to evaluate how mitochondrial function can change within and among individuals and with environmental context makes it difficult to assess individual variation in mitochondrial traits. The aims of this study were to test the repeatability of muscle mitochondrial metabolism by performing two biopsies of red muscle, and to evaluate the effects of biopsies on whole-animal performance in goldfish Carassius auratus. Our results show that basal mitochondrial respiration and net phosphorylation efficiency are repeatable at 14-day intervals. We also show that swimming performance (optimal cost of transport and critical swimming speed) was repeatable in biopsied fish, whereas the repeatability of individual oxygen consumption (standard and maximal metabolic rates) seemed unstable over time. However, we noted that the means of individual and mitochondrial traits did not change over time in biopsied fish. This study shows that muscle biopsies allow the measurement of mitochondrial metabolism without sacrificing animals and that two muscle biopsies 14 days apart affect the intraspecific variation in fish performance without affecting average performance of individuals. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.


Assuntos
Evolução Biológica , Natação , Animais , Mitocôndrias , Músculos , Consumo de Oxigênio
10.
mSphere ; 9(1): e0055823, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38193679

RESUMO

Nuclear-encoded mitochondrial proteins are correctly translocated to their proper sub-mitochondrial destination using location-specific mitochondrial targeting signals and via multi-protein import machineries (translocases) in the outer and inner mitochondrial membranes (TOM and TIMs, respectively). However, targeting signals of multi-pass Tims are less defined. Here, we report the characterization of the targeting signals of Trypanosoma brucei Tim17 (TbTim17), an essential component of the most divergent TIM complex. TbTim17 possesses a characteristic secondary structure including four predicted transmembrane (TM) domains in the center with hydrophilic N- and C-termini. After examining mitochondrial localization of various deletion and site-directed mutants of TbTim17 in T. brucei using subcellular fractionation and confocal microscopy, we located at least two internal targeting signals (ITS): (i) within TM1 (31-50 AAs) and (ii) TM4 + loop 3 (120-136 AAs). Both signals are required for proper targeting and integration of TbTim17 in the membrane. Furthermore, a positively charged residue (K122) is critical for mitochondrial localization of TbTim17. This is the first report of characterizing the ITS for a multipass inner membrane protein in a divergent eukaryote, like T. brucei.IMPORTANCEAfrican trypanosomiasis (AT) is a deadly disease in human and domestic animals, caused by the parasitic protozoan Trypanosoma brucei. Therefore, AT is not only a concern for human health but also for economic development in the vast area of sub-Saharan Africa. T. brucei possesses a single mitochondrion per cell that imports hundreds of nuclear-encoded mitochondrial proteins for its functions. T. brucei Tim17 (TbTim17), an essential component of the TbTIM17 complex, is a nuclear-encoded protein; thus, it is necessary to be imported from the cytosol to form the TbTIM17 complex. Here, we demonstrated that the internal targeting signals within the transmembrane 1 (TM1) and TM4 with loop 3, and residue K122 are required collectively for import and integration of TbTim17 in the T. brucei mitochondrion. This information could be utilized to block TbTim17 function and parasite growth.


Assuntos
Trypanosoma brucei brucei , Animais , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Transporte Proteico , Proteínas Mitocondriais/genética
11.
Brain ; 147(1): 267-280, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38059801

RESUMO

The heterogenous aetiology of Parkinson's disease is increasingly recognized; both mitochondrial and lysosomal dysfunction have been implicated. Powerful, clinically applicable tools are required to enable mechanistic stratification for future precision medicine approaches. The aim of this study was to characterize bioenergetic dysfunction in Parkinson's disease by applying a multimodal approach, combining standardized clinical assessment with midbrain and putaminal 31-phosphorus magnetic resonance spectroscopy (31P-MRS) and deep phenotyping of mitochondrial and lysosomal function in peripheral tissue in patients with recent-onset Parkinson's disease and control subjects. Sixty participants (35 patients with Parkinson's disease and 25 healthy controls) underwent 31P-MRS for quantification of energy-rich metabolites [ATP, inorganic phosphate (Pi) and phosphocreatine] in putamen and midbrain. In parallel, skin biopsies were obtained from all research participants to establish fibroblast cell lines for subsequent quantification of total intracellular ATP and mitochondrial membrane potential (MMP) as well as mitochondrial and lysosomal morphology, using high content live cell imaging. Lower MMP correlated with higher intracellular ATP (r = -0.55, P = 0.0016), higher mitochondrial counts (r = -0.72, P < 0.0001) and higher lysosomal counts (r = -0.62, P = 0.0002) in Parkinson's disease patient-derived fibroblasts only, consistent with impaired mitophagy and mitochondrial uncoupling. 31P-MRS-derived posterior putaminal Pi/ATP ratio variance was considerably greater in Parkinson's disease than in healthy controls (F-tests, P = 0.0036). Furthermore, elevated 31P-MRS-derived putaminal, but not midbrain Pi/ATP ratios (indicative of impaired oxidative phosphorylation) correlated with both greater mitochondrial (r = 0.37, P = 0.0319) and lysosomal counts (r = 0.48, P = 0.0044) as well as lower MMP in both short (r = -0.52, P = 0.0016) and long (r = -0.47, P = 0.0052) mitochondria in Parkinson's disease. Higher 31P-MRS midbrain phosphocreatine correlated with greater risk of rapid disease progression (r = 0.47, P = 0.0384). Our data suggest that impaired oxidative phosphorylation in the striatal dopaminergic nerve terminals exceeds mitochondrial dysfunction in the midbrain of patients with early Parkinson's disease. Our data further support the hypothesis of a prominent link between impaired mitophagy and impaired striatal energy homeostasis as a key event in early Parkinson's disease.


Assuntos
Doença de Parkinson , Humanos , Fosfocreatina/metabolismo , Mitocôndrias/metabolismo , Corpo Estriado/metabolismo , Trifosfato de Adenosina/metabolismo
12.
Mitochondrion ; 74: 101823, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040171

RESUMO

Mitochondrial DNA is a widely tested genetic marker in various fields of research and diagnostics. Nonetheless, there is still little understanding on its abundance and quality within different tissues. Aiming to obtain deeper knowledge about the content and quality of mtDNA, we investigated nine tissues including blood, bone, brain, hair (root and shaft), cardiac muscle, liver, lung, skeletal muscle, and buccal mucosa of 32 deceased individuals using two real-time quantitative PCR-based assays with differently sized mtDNA and nDNA targets. The results revealed that the quantity of nDNA is a weak surrogate to estimate mtDNA quantities among tissues of an individual, as well as tissues across individuals. Especially hair showed extreme variation, depicting a range of multiple magnitudes of mtDNA molecules per hair fragment. Furthermore, degradation can lead to fewer fragments being available for PCR. The results call for parallel determination of the quantity and quality of mtDNA prior to downstream genotyping assays.


Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial , Humanos , DNA Mitocondrial/análise , Mitocôndrias/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Músculo Esquelético/química
13.
J Agric Food Chem ; 71(50): 20325-20335, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38052101

RESUMO

Atrazine (ATZ) is a highly persistent herbicide that harms organism health. Lycopene (LYC) is an antioxidant found in plants and fruits. The aim of this study is to investigate the mechanisms of atrazine-induced mitochondrial damage and lycopene antagonism in the liver. The mice were divided into seven groups by randomization: blank control (Con group), vehicle control (Vcon group), 5 mg/kg lycopene (LYC group), 50 mg/kg atrazine (ATZ1 group), ATZ1+LYC group, 200 mg/kg atrazine (ATZ2 group), and ATZ2+LYC group. The present study performed a holistic assessment based on mitochondria to show that ATZ causes the excessive fission of mitochondria and disrupts mitochondrial biogenesis. However, the LYC supplementation reverses these changes. ATZ causes increased mitophagy and exacerbates the production of oxidized mitochondrial DNA (Ox-mtDNA) and mitochondrial stress. This study reveals that LYC could act as an antioxidant to repair Ox-mtDNA and restore the disordered mitochondrial function caused by ATZ.


Assuntos
Atrazina , Camundongos , Animais , Licopeno/metabolismo , Atrazina/toxicidade , Atrazina/metabolismo , Antioxidantes/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Hepatócitos , Estresse Oxidativo
14.
Scand J Clin Lab Invest ; 83(7): 501-508, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37942740

RESUMO

Subclinical hypothyroidism's clinical implications on pregnancy are controversial. Consequently, thyrotropin (TSH) cutoff-values for pregnancy are continuously a subject for debate. In subclinical hypothyroidism, altered levels of thyroid hormones may affect mitochondrial function.Objectives were i) to analyze thyroid hormone levels in offspring of women with and without subclinical hypothyroidism ii) to analyze mitochondrial "robustness" in terms of MTG/TMRM ratio in pregnant women and their offspring in relation to thyroid function and iii) to perform differentiate analyses on different TSH thresholds to determine the importance of cutoff-values to results.Pregnant women were included by blood collections prior to a planned cesarean section, and cord samples were collected after delivery. Thyroid status (analyzed by Siemens Healthcare Diagnostics by an electrochemical luminescent immunoassay based on LOCI-technology) grouped the women and their offspring in euthyroid or subclinical hypothyroid, with groups established from previous recommended third-trimester cutoff-value (TSH > 3.0 mIU/L) and the recently recommended cutoff-value in Denmark (TSH > 3.7 mIU/L). Flow cytometric measurements of mitochondrial function in mononuclear blood cells with the fluorophores TetraMethylRhodamine Methyl Ester (TMRM) and Mitotracker Green (MTG) were used to evaluate mitochondrial robustness as the MTG/TMRM ratio.No significant differences in mitochondrial robustness between euthyroid and subclinical hypothyroid cohorts were observed, irrespective of TSH-cutoff applied. Maternal and cord MTG/TMRM ratios were positively correlated. Cord-TSH was elevated in subclinical hypothyroid offspring, independent of TSH cutoff applied. Cord-TSH was associated with maternal TSH-level, maternal smoking and cord arterial-pH.


Assuntos
Cesárea , Hipotireoidismo , Feminino , Gravidez , Humanos , Tireotropina , Hormônios Tireóideos , Mitocôndrias , Testes de Função Tireóidea , Tiroxina
15.
J Mol Neurosci ; 73(11-12): 912-920, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845428

RESUMO

Parkinson's disease (PD) is speculated with genetic and environmental factors. At molecular level, the mitochondrial impact is stated to be one of the causative reasons for PD. In this study, we investigated the mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels along with mitochondrial tRNA alterations among three age categories of PD. By determining the genetic and organellar functionality using molecular techniques, the ROS levels were reported to be high with decreased MMP and ATP in the late-onset age group than in other two age categories. Likewise, the tRNA significancy in tRNAThr and tRNAGln was noticed with C4335T and G15927A mutations in late-onset and early-onset PD groups respectively. Therefore, from the findings, ageing has shown a disruption in tRNA metabolism leading to critical functioning of ATP synthesis and MMP, causing oxidative stress in PD patients. These physiological outcomes show that ageing has a keen role in the divergence of mitochondrial function, thereby proving a correlation with ageing and maintenance of mitochondrial homeostasis in PD.


Assuntos
Doença de Parkinson , RNA de Transferência de Treonina , Humanos , RNA de Transferência de Treonina/genética , RNA de Transferência de Treonina/metabolismo , RNA de Transferência de Glutamina/genética , RNA de Transferência de Glutamina/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Índia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
16.
Int J Mol Sci ; 24(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834272

RESUMO

Mitochondria are responsible for ATP synthesis through oxidative phosphorylation in cells. However, there are limited data on the influence of mitochondrial mass (MM) in the adequate assessment of cellular stress assay (CSA) results in human peripheral blood mononuclear cells (PBMCs). Therefore, the aim of this study was to determine MM in PBMCS and assess its influence on the results of CSA measurements. Blood samples were collected and sent to the laboratory for MM and CSA measurements during different seasons of the year. The mitochondrial mass was determined based on the mtDNA:nDNA ratio in PBMCs using quantitative real-time PCR (qRT-PCR). CSA was measured using Seahorse technology. The MM was significantly lower during summer and autumn compared to winter and spring (p < 0.0001). On the contrary, we found that the maximal respiration per mitochondrion (MP) was significantly higher in summer and autumn compared to winter and spring (p < 0.0001). The estimated effect of MM on mitochondrial performance was -0.002 pmol/min/mitochondrion (p < 0.0001) and a correlation coefficient (r) of -0.612. Similarly, MM was negatively correlated with maximal respiration (r = -0.12) and spare capacity (in % r = -0.05, in pmol/min r = -0.11). In conclusion, this study reveals that MM changes significantly with seasons and is negatively correlated with CSA parameters and MP. Our findings indicate that the mitochondrial mass is a key parameter for determination of mitochondrial fitness. Therefore, we recommend the determination of MM during the measurement of CSA parameters for the correct interpretation and assessment of mitochondrial function.


Assuntos
Respiração Celular , Leucócitos Mononucleares , Humanos , Leucócitos Mononucleares/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo
17.
Invest Ophthalmol Vis Sci ; 64(11): 33, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642632

RESUMO

Purpose: To develop and optimize a method to monitor real-time mitochondrial function by measuring the oxygen consumption rate (OCR) in murine corneal biopsy punches with a Seahorse extracellular flux analyzer. Methods: Murine corneal biopsies were obtained using a biopsy punch immediately after euthanasia. The corneal metabolic profile was assessed using a Seahorse XFe96 pro analyzer, and mitochondrial respiration was analyzed with specific settings. Results: Real-time adenosine triphosphate rate assay showed that mitochondrial oxidative phosphorylation is a major source of adenosine triphosphate production in ex vivo live murine corneal biopsies. Euthanasia methods (carbon dioxide asphyxiation vs. overdosing on anesthetic drugs) did not affect corneal OCR values. Mouse corneal biopsy punches in 1.5-mm diameter generated higher and more reproducible OCR values than those in 1.0-mm diameter. The biopsy punches from the central and off-central cornea did not show significant differences in OCR values. There was no difference in OCR reading by the tissue orientations (the epithelium side up vs. the endothelium side up). No significant differences were found in corneal OCR levels between sexes, strains (C57BL/6J vs. BALB/cJ), or ages (4, 8, and 32 weeks). Using this method, we showed that the wound healing process in the mouse cornea affected mitochondrial activity. Conclusions: The present study validated a new strategy to measure real-time mitochondrial function in fresh mouse corneal tissues. This procedure should be helpful for studies of the ex vivo live corneal metabolism in response to genetic manipulations, disease conditions, or pharmacological treatments in mouse models.


Assuntos
Córnea , Respiração , Animais , Camundongos , Camundongos Endogâmicos C57BL , Biópsia , Trifosfato de Adenosina , Mitocôndrias
18.
Methods Mol Biol ; 2664: 283-308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37423995

RESUMO

Proper kidney function depends highly on mitochondria homeostasis. This organelle is the primary source of ATP production in the kidney and regulates other cellular processes such as redox and calcium homeostasis. Although the mitochondria's primary recognized function is cellular energy production, through the function of the Krebs cycle, electron transport system (ETS), as well as oxygen and electrochemical gradient consumption, this function is interconnected with multiple signaling and metabolic pathways, making bioenergetics a central hub in renal metabolism. Furthermore, mitochondrial biogenesis, dynamics, and mass are also strongly related to bioenergetics. This central role is not surprising given that mitochondrial impairment, including functional and structural alterations, has been recently reported in several kidney diseases. Here, we describe assessment of mitochondrial mass, structure, and bioenergetics in kidney tissue and renal-derived cell lines. These methods allow investigation of mitochondrial alterations in kidney tissue and renal cells under different experimental conditions.


Assuntos
Metabolismo Energético , Mitocôndrias , Mitocôndrias/metabolismo , Rim/metabolismo , Técnicas Histológicas , Microscopia Eletrônica de Transmissão
19.
Magn Reson Med ; 90(6): 2432-2442, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37427535

RESUMO

PURPOSE: [13 C]Bicarbonate formation from hyperpolarized [1-13 C]pyruvate via pyruvate dehydrogenase, a key regulatory enzyme, represents the cerebral oxidation of pyruvate and the integrity of mitochondrial function. The present study is to characterize the chronology of cerebral mitochondrial metabolism during secondary injury associated with acute traumatic brain injury (TBI) by longitudinally monitoring [13 C]bicarbonate production from hyperpolarized [1-13 C]pyruvate in rodents. METHODS: Male Wistar rats were randomly assigned to undergo a controlled-cortical impact (CCI, n = 31) or sham surgery (n = 22). Seventeen of the CCI and 9 of the sham rats longitudinally underwent a 1 H/13 C-integrated MR protocol that includes a bolus injection of hyperpolarized [1-13 C]pyruvate at 0 (2 h), 1, 2, 5, and 10 days post-surgery. Separate CCI and sham rats were used for histological validation and enzyme assays. RESULTS: In addition to elevated lactate, we observed significantly reduced bicarbonate production in the injured site. Unlike the immediate appearance of hyperintensity on T2 -weighted MRI, the contrast of bicarbonate signals between the injured region and the contralateral brain peaked at 24 h post-injury, then fully recovered to the normal level at day 10. A subset of TBI rats demonstrated markedly increased bicarbonate in normal-appearing contralateral brain regions post-injury. CONCLUSION: This study demonstrates that aberrant mitochondrial metabolism occurring in acute TBI can be monitored by detecting [13 C]bicarbonate production from hyperpolarized [1-13 C]pyruvate, suggesting that [13 C]bicarbonate is a sensitive in-vivo biomarker of the secondary injury processes.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Ratos , Masculino , Animais , Ácido Pirúvico/metabolismo , Bicarbonatos/metabolismo , Ratos Wistar , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Mitocôndrias/metabolismo , Isótopos de Carbono
20.
J Assist Reprod Genet ; 40(9): 2197-2209, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37462790

RESUMO

PURPOSE: Although a variety of analytical methods have been developed to detect mitochondrial DNA (mtDNA) heteroplasmy, there are special requirements of mtDNA heteroplasmy quantification for women carrying mtDNA mutations receiving the preimplantation genetic diagnosis (PGD) and prenatal diagnosis (PD) in clinic. These special requirements include various sample types, large sample number, long-term follow-up, and the need for detection of single-cell from biopsied embryos. Therefore, developing an economical, accurate, high-sensitive, and single-cell analytical method for mtDNA heteroplasmy is necessary. METHODS: In this study, we developed the Sanger sequencing combined droplet digital polymerase chain reaction (ddPCR) method for mtDNA quantification and compared the results to next-generation sequencing (NGS). A total of seventeen families with twelve mtDNA mutations were recruited in this study. RESULTS: The results showed that both Sanger sequencing and ddPCR could be used to analyze the mtDNA heteroplasmy in single-cell samples. There was no statistically significant difference in heteroplasmy levels in common samples with high heteroplasmy (≥ 5%), low heteroplasmy (< 5%), and single-cell samples, either between Sanger sequencing and NGS methods, or between ddPCR and NGS methods (P > 0.05). However, Sanger sequencing was unable to detect extremely low heteroplasmy accurately. But even in samples with extremely low heteroplasmy (0.40% and 0.92%), ddPCR was always able to quantify them. Compared to NGS, Sanger sequencing combined ddPCR analytical methods greatly reduced the cost of sequencing. CONCLUSIONS: In conclusion, this study successfully established an economical, accurate, sensitive, single-cell analytical method based on the Sanger sequencing combined ddPCR methods for mtDNA heteroplasmy quantification in a clinical setting.


Assuntos
DNA Mitocondrial , Diagnóstico Pré-Implantação , Feminino , Humanos , Gravidez , DNA Mitocondrial/genética , Mitocôndrias/genética , Mutação/genética , Reação em Cadeia da Polimerase , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA