Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transpl Int ; 37: 12787, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38845758

RESUMO

Organ quality can be assessed prior to transplantation, during normothermic machine perfusion (NMP) of the liver. Evaluation of mitochondrial function by high-resolution respirometry (HRR) may serve as a viability assessment concept in this setting. Freshly collected tissue is considered as optimal sample for HRR, but due to technical and personnel requirements, more flexible and schedulable measurements are needed. However, the impact of cold storage following NMP before processing biopsy samples for mitochondrial analysis remains unknown. We aimed at establishing an appropriate storage protocol of liver biopsies for HRR. Wedge biopsies of 5 human livers during NMP were obtained and assessed by HRR. Analysis was performed after 0, 4, 8, and 12 h of hypothermic storage (HTS) in HTK organ preservation solution at 4°C. With HTS up to 4 h, mitochondrial performance did not decrease in HTS samples compared with 0 h (OXPHOS, 44.62 [34.75-60.15] pmol·s-1·mg wet mass-1 vs. 43.73 [40.69-57.71], median [IQR], p > 0.999). However, at HTS beyond 4 h, mitochondrial respiration decreased. We conclude that HTS can be safely applied for extending the biopsy measurement window for up to 4 h to determine organ quality, but also that human liver respiration degrades beyond 4 h HTS following NMP.


Assuntos
Transplante de Fígado , Fígado , Preservação de Órgãos , Perfusão , Humanos , Preservação de Órgãos/métodos , Fígado/patologia , Biópsia , Masculino , Pessoa de Meia-Idade , Feminino , Mitocôndrias Hepáticas/metabolismo , Soluções para Preservação de Órgãos , Idoso , Respiração Celular , Adulto
2.
J Vis Exp ; (206)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682942

RESUMO

Mitochondria serve many important functions, including cellular respiration, ATP production, controlling apoptosis, and acting as a central hub of metabolic pathways. Therefore, experimentally assessing mitochondrial functionality can provide insight into variations among different populations or disease states. Additionally, it is valuable to assess whether isolated mitochondria are healthy enough to proceed with experiments. One characteristic often used to compare mitochondrial function in different samples is the rate of oxygen consumption. Oxygen consumption and subsequent calculation of the respiratory control ratio in either intact cells or mitochondria isolated from tissue can serve all three purposes. Using mitochondria isolated from the livers of brush lizards in conjunction with a phosphorescent probe that is sensitive to the fluctuations in oxygen concentration of a solution, we measured oxygen consumption using a fluorescent plate reader. This method is not only quick and efficient but also can be conducted with a small amount of mitochondria and without the need for specialized equipment. The step-by-step protocol described here increases the accessibility of mitochondrial functional assessment to researchers.


Assuntos
Consumo de Oxigênio , Animais , Consumo de Oxigênio/fisiologia , Lagartos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Corantes Fluorescentes/química , Mitocôndrias/metabolismo
3.
Cell Metab ; 35(8): 1356-1372.e5, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37473754

RESUMO

Liver mitochondria undergo architectural remodeling that maintains energy homeostasis in response to feeding and fasting. However, the specific components and molecular mechanisms driving these changes and their impact on energy metabolism remain unclear. Through comparative mouse proteomics, we found that fasting induces strain-specific mitochondrial cristae formation in the liver by upregulating MIC19, a subunit of the MICOS complex. Enforced MIC19 expression in the liver promotes cristae formation, mitochondrial respiration, and fatty acid oxidation while suppressing gluconeogenesis. Mice overexpressing hepatic MIC19 show resistance to diet-induced obesity and improved glucose homeostasis. Interestingly, MIC19 overexpressing mice exhibit elevated energy expenditure and increased pedestrian locomotion. Metabolite profiling revealed that uracil accumulates in the livers of these mice due to increased uridine phosphorylase UPP2 activity. Furthermore, uracil-supplemented diet increases locomotion in wild-type mice. Thus, MIC19-induced mitochondrial cristae formation in the liver increases uracil as a signal to promote locomotion, with protective effects against diet-induced obesity.


Assuntos
Metabolismo Energético , Fígado , Caminhada , Mitocôndrias Hepáticas/metabolismo , Fígado/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Animais , Camundongos , Dieta Hiperlipídica , Aumento de Peso , Uracila/metabolismo
4.
Methods Mol Biol ; 2363: 51-62, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34545485

RESUMO

The integrity of isolated mitochondria can be estimated functionally using enzymatic activities or the permeability of mitochondrial membranes to molecules of different sizes. Thus, the permeability of the outer membrane to the protein cytochrome c, the permeability of the inner membrane to protons, and the permeability of the inner membrane to NAD+, NADH and organic acids using soluble matrix dehydrogenases as markers have all been used. These assays all have limitations to how the data can be converted into a measure of integrity, are differently sensitive to artifacts and require widely variable amounts of material. Therefore, each method has a restricted utility for estimating integrity, depending on the type of mitochondria analysed. Here, we review the advantages and disadvantages of different integrity assays and present protocols for integrity assays that require relatively small amounts of mitochondria. They are based on the permeability of the outer membrane to cytochrome c, and the inner membrane to protons or NAD(H). The latter has the advantage of utilizing a membrane-bound activity (complex I) and the pore-forming peptide alamethicin to gain access to the matrix space. These methods together provide a toolbox for the determination of functionality and quality of isolated mitochondria.


Assuntos
Mitocôndrias , Citocromos c/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/metabolismo , NAD/metabolismo , Prótons
5.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299321

RESUMO

The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of ß-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. "Dynamic" liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.


Assuntos
Testes Respiratórios/métodos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Biomarcadores/metabolismo , Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Fígado/fisiopatologia , Cirrose Hepática/metabolismo , Testes de Função Hepática , Neoplasias Hepáticas/metabolismo , Mitocôndrias/patologia , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/metabolismo
6.
Methods Mol Biol ; 2240: 231-241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33423237

RESUMO

Mitochondria are the center for all metabolic pathways within the eukaryotic cell. Being responsible for the production of over 95% of the cell's requirement of adenosine triphosphate any effect on the function of mitochondria is sure to cause disruption of cellular activity and even viability. As such, it comes as no surprise that many diseases have mitochondrial dysfunction at their core. Understanding mitochondrial function and capacity in the context of a study is key for perceiving and explaining the behavior of said disease or toxic effect. Here, we describe a wide array of simple and yet elegant assays that can be easily implemented to ascertain the function of mitochondria and thus greatly improve the understanding of how a certain disease or compound causes its effects on the cellular function.


Assuntos
Bioensaio , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Testes de Toxicidade , Animais , Cálcio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Dilatação Mitocondrial/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos
7.
Chem Res Toxicol ; 32(8): 1528-1544, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31271030

RESUMO

Human hepatocellular carcinoma cells, HepG2, are often used for drug mediated mitochondrial toxicity assessments. Glucose in HepG2 culture media is replaced by galactose to reveal drug-induced mitochondrial toxicity as a marked shift of drug IC50 values for the reduction of cellular ATP. It has been postulated that galactose sensitizes HepG2 mitochondria by the additional ATP consumption demand in the Leloir pathway. However, our NMR metabolomics analysis of HepG2 cells and culture media showed very limited galactose metabolism. To clarify the role of galactose in HepG2 cellular metabolism, U-13C6-galactose or U-13C6-glucose was added to HepG2 culture media to help specifically track the metabolism of those two sugars. Conversion to U-13C3-lactate was hardly detected when HepG2 cells were incubated with U-13C6-galactose, while an abundance of U-13C3-lactate was produced when HepG2 cells were incubated with U-13C6-glucose. In the absence of glucose, HepG2 cells increased glutamine consumption as a bioenergetics source. The requirement of additional glutamine almost matched the amount of glucose needed to maintain a similar level of cellular ATP in HepG2 cells. This improved understanding of galactose and glutamine metabolism in HepG2 cells helped optimize the ATP-based mitochondrial toxicity assay. The modified assay showed 96% sensitivity and 97% specificity in correctly discriminating compounds known to cause mitochondrial toxicity from those with prior evidence of not being mitochondrial toxicants. The greatest significance of the modified assay was its improved sensitivity in detecting the inhibition of mitochondrial fatty acid ß-oxidation (FAO) when glutamine was withheld. Use of this improved assay for an empirical prediction of the likely contribution of mitochondrial toxicity to human DILI (drug induced liver injury) was attempted. According to testing of 65 DILI positive compounds representing numerous mechanisms of DILI together with 55 DILI negative compounds, the overall prediction of mitochondrial mechanism-related DILI showed 25% sensitivity and 95% specificity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Mitocôndrias Hepáticas/metabolismo , Amiodarona/farmacologia , Benzobromarona/farmacologia , Células Hep G2 , Humanos , Metabolômica , Mitocôndrias Hepáticas/efeitos dos fármacos , Piperazinas/farmacologia , Triazóis/farmacologia , Troglitazona/farmacologia , Células Tumorais Cultivadas
8.
Methods Mol Biol ; 1916: 289-295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30535705

RESUMO

The identification of biomarkers for toxicity is becoming increasingly important for drug discovery and development. This chapter describes the preparation and utilization of primary rat hepatocytes as a cellular model of steatosis. A protocol is presented for dosing the cells with the steatosis-inducing compound amiodarone, along with the conduction of assays for measuring lipid accumulation and mitochondrial function. A differential solubility extraction procedure is also presented, which can be used for proteomic profiling analysis.


Assuntos
Perfilação da Expressão Gênica/métodos , Hepatócitos/efeitos dos fármacos , Proteômica/métodos , Amiodarona/farmacologia , Animais , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/patologia , Humanos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Ratos
9.
Hepatology ; 69(4): 1535-1548, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30506571

RESUMO

Endocannabinoids promote energy conservation in obesity, whereas cannabinoid-1 receptor (CB1 R) blockade reverses body weight gain and insulin resistance and increases energy expenditure. Here we investigated the molecular mechanisms of the catabolic effects of CB1 R blockade in the liver. Exposure of primary mouse hepatocytes and HepG2 cells to the CB1 R agonist arachidonyl-2'-chloroethylamide inhibited the expression of Sirtuin-1 (Sirt1) and Rictor, a component of mechanistic target of rapamycin complex 2 (mTORC2) and suppressed insulin-induced Akt phosphorylation at serine 473. These effects were reversed by peripheral CB1 R antagonist JD5037 in control hepatocytes but not in hepatocytes deficient in Sirt1 and/or Rictor, indicating that these two proteins are required for the CB1 R-mediated inhibition of insulin signaling. Feeding C57BL/6J mice a high-fat diet (HFD) inhibited hepatic Sirt1/mTORC2/Akt signaling, and the inhibition was reversed by rimonabant or JD5037 in wild-type but not liver-specific Sirt1-/- (Sirt1-LKO) mice, to levels observed in hepatocyte-specific CB1 R-/- mice. A similar attenuation of hyperglycemia and hyperinsulinemia in wild-type mice with obesity but not in Sirt1-LKO mice could be attributed to insufficient reversal of HFD-induced mitochondrial reactive oxygen species generation in peripheral tissues in the latter. In contrast, JD5037 treatment was equally effective in HFD-fed wild-type and Sirt1-LKO mice in reducing hepatic steatosis, increasing fatty acid ß-oxidation, and activating 5'adenosine monophosphate-activated protein kinase (AMPK) through liver kinase B1 (LKB1), resulting in a similar increase in total energy expenditure in the two strains. Conclusion: Peripheral CB1 R blockade in mice with obesity improves glycemic control through the hepatic Sirt1/mTORC2/Akt pathway, whereas it increases fatty acid oxidation through LKB1/AMPK signaling.


Assuntos
Resistência à Insulina , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Sirtuína 1/metabolismo , Sulfonamidas/farmacologia , Adenilato Quinase/metabolismo , Animais , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
10.
Nat Commun ; 8(1): 798, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986525

RESUMO

Hepatic mitochondria play a central role in the regulation of intermediary metabolism and maintenance of normoglycemia, and there is great interest in assessing rates of hepatic mitochondrial citrate synthase flux (V CS) and pyruvate carboxylase flux (V PC) in vivo. Here, we show that a positional isotopomer NMR tracer analysis (PINTA) method can be used to non-invasively assess rates of V CS and V PC fluxes using a combined NMR/gas chromatography-mass spectrometry analysis of plasma following infusion of [3-13C]lactate and glucose tracer. PINTA measures V CS and V PC fluxes over a wide range of physiological conditions with minimal pyruvate cycling and detects increased hepatic V CS following treatment with a liver-targeted mitochondrial uncoupler. Finally, validation studies in humans demonstrate that the V PC/V CS ratio measured by PINTA is similar to that determined by in vivo NMR spectroscopy. This method will provide investigators with a relatively simple tool to non-invasively examine the role of altered hepatic mitochondrial metabolism.Liver mitochondrial metabolism plays an important role for glucose and lipid homeostasis and its alterations contribute to metabolic disorders, including fatty liver and diabetes. Here Perry et al. develop a method for the measurement of hepatic fluxes by using lactate and glucose tracers in combination with NMR spectroscopy.


Assuntos
Citrato (si)-Sintase/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Piruvato Carboxilase/metabolismo , Acetatos , Animais , Isótopos de Carbono , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Gasosa-Espectrometria de Massas , Ácido Glutâmico , Humanos , Ácido Láctico , Espectroscopia de Ressonância Magnética , Masculino , Ácido Pirúvico/metabolismo , Ratos
11.
Cell Metab ; 24(1): 167-71, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27411016

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and there is great interest in understanding the potential role of alterations in mitochondrial metabolism in its pathogenesis. To address this question, we assessed rates of hepatic mitochondrial oxidation in subjects with and without NAFLD by monitoring the rate of (13)C labeling in hepatic [5-(13)C]glutamate and [1-(13)C]glutamate by (13)C MRS during an infusion of [1-(13)C]acetate. We found that rates of hepatic mitochondrial oxidation were similar between NAFLD and control subjects. We also assessed rates of hepatic pyruvate cycling during an infusion of [3-(13)C]lactate by monitoring the (13)C label in hepatic [2-(13)C]alanine and [2-(13)C]glutamate and found that this flux was also similar between groups and more than 10-fold lower than previously reported. Contrary to previous studies, we show that hepatic mitochondrial oxidation and pyruvate cycling are not altered in NAFLD and do not account for the hepatic fat accumulation.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Pirúvico/metabolismo , Adulto , Antropometria , Carbono/metabolismo , Estudos de Casos e Controles , Ácido Glutâmico/metabolismo , Humanos , Masculino , Oxirredução , Fatores de Tempo
12.
PLoS One ; 11(5): e0155393, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27171376

RESUMO

In the present study, the free radical scavenging activities (against 1,1-diphenyl-2-pierylhydrazy (DPPH), 2,2'-Azinobis-(3-ethylbenzthiazoline-6- sulphonate) (ABTS+), Hydrogen peroxide (H2O2)) of dimethylglycine sodium salt (DMG-Na) were measured and compared with those of Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid), a commonly used antioxidant. The radical scavenging activities of DMG-Na were found to be the highest at 40 mg/ml. In Experiment 2, gastric intubation in mice with 12 mg DMG-Na/0.3 ml sterile saline solution significantly increased (P < 0.05) the body weight (BW) (28 d), organ proportion (liver and spleen), and antioxidant capacity in serum and the liver (Superoxide dismutase (SOD), Hydrogen peroxidase (CAT), Glutathione peroxidase (GPx), and Total antioxidant capacity (T-AOC)), and significantly decreased (P < 0.05) the activities of serum Glutamic-pyruvic transaminase (ALT) and Glutamic oxalacetic transaminase (AST) and Methane Dicarboxylic Aldehyde (MDA) contents in the serum and liver. Specifically, the effect of 12 mg DMG-Na/0.3 ml sterile saline solution, which showed the highest antioxidant capacity, was further studied using a mice model. In Experiment 3, the mice CL (CON+ lipopolysaccharide (LPS)) group showed a significant decrease (P < 0.05) in the serum ALT and AST content; hepatic mitochondrial antioxidant capacity (Manganese Superoxide dismutase (MnSOD), Glutathione reductase (GR), GPx, Glutathione (GSH)); MDA and Protein carbonyl (PC) content; Reactive oxygen species (ROS) level, Mitochondrial membrane potential (MMP) level, and expression of liver antioxidant genes (Nuclear factor erythroid 2-related factor 2 (Nrf2), Heme oxygenase 1 (HO-1), Manganese superoxide dismutase (MnSOD), Glutathione peroxidase 1 (Gpx1), Sirtuin 1 (Sirt1)) relative to the mice CS (CON+ sterile saline) group. The DL (DMG+LPS) group showed a significant decrease (P < 0.05) in serum ALT and AST content, ROS level, and expression of liver antioxidant gene MnSOD, Gpx1, Sirt1 and a significant increase (P < 0.05) in the hepatic mitochondrial antioxidant capacity (MnSOD, GSH, GPx, GR) and MMP level relative to the CL group. These results indicate that DMG-Na could protect against the LPS-induced oxidative stress by enhancing the free radical scavenging capacity, and increasing the activity of antioxidant defense system.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Sarcosina/análogos & derivados , Alanina Transaminase/sangue , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/sangue , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sarcosina/química , Sarcosina/farmacologia
13.
Toxicol Appl Pharmacol ; 302: 23-30, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27095095

RESUMO

Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and in hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Respiração Celular , Células Cultivadas , Galactose/farmacologia , Hepatócitos/efeitos dos fármacos , L-Lactato Desidrogenase/metabolismo , Masculino , Oxigênio/farmacologia , Consumo de Oxigênio , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Rotenona , Transferrina
14.
Curr Protoc Toxicol ; 60: 25.3.1-19, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24865647

RESUMO

Fatty acid beta oxidation is a major pathway of energy metabolism and occurs primarily in mitochondria. Drug-induced modulation of this pathway can cause adverse effects such as liver injury, or be beneficial for treating heart failure, type 2 diabetes, and obesity. Hence, in vitro assays that are able to identify compounds that affect fatty acid oxidation are of value for toxicity assessments, as well as for efficacy assessments. Here, we describe two high-throughput assays, one for assessing fatty acid oxidation in cells and the other for assessing fatty acid oxidation in isolated rat liver mitochondria. Both assays measure fatty acid-driven oxygen consumption and can be used for rapid and robust screening of compounds that modulate fatty acid oxidation.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , Oxirredução , Ratos
15.
Nat Med ; 20(1): 98-102, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24317120

RESUMO

Despite the central role of the liver in the regulation of glucose and lipid metabolism, there are currently no methods to directly assess hepatic oxidative metabolism in humans in vivo. By using a new (13)C-labeling strategy in combination with (13)C magnetic resonance spectroscopy, we show that rates of mitochondrial oxidation and anaplerosis in human liver can be directly determined noninvasively. Using this approach, we found the mean rates of hepatic tricarboxylic acid (TCA) cycle flux (VTCA) and anaplerotic flux (VANA) to be 0.43 ± 0.04 µmol g(-1) min(-1) and 0.60 ± 0.11 µmol g(-1) min(-1), respectively, in twelve healthy, lean individuals. We also found the VANA/VTCA ratio to be 1.39 ± 0.22, which is severalfold lower than recently published estimates using an indirect approach. This method will be useful for understanding the pathogenesis of nonalcoholic fatty liver disease and type 2 diabetes, as well as for assessing the effectiveness of new therapies targeting these pathways in humans.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Redes e Vias Metabólicas/fisiologia , Mitocôndrias Hepáticas/metabolismo , Radioisótopos de Carbono , Ciclo do Ácido Cítrico/fisiologia , Simulação por Computador , Diabetes Mellitus Tipo 2/fisiopatologia , Fígado Gorduroso/fisiopatologia , Humanos , Método de Monte Carlo , Hepatopatia Gordurosa não Alcoólica , Oxirredução , Coloração e Rotulagem/métodos
16.
Asian J Surg ; 35(1): 9-15, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22726558

RESUMO

BACKGROUND/OBJECTIVE: Hepatocyte transplantation is a promising alternative to liver transplantation in children with liver metabolic disorders and acute liver failure. Currently, it is difficult to assess rapidly hepatocyte function before transplantation. The aim of this study was to investigate whether the uptake and release of indocyanine green (ICG) by hepatocytes could be used. METHODS: Human hepatocytes (10(6) cells) isolated from unused donor livers were incubated at 37°C for 30 minutes with ICG (0-2mg/mL) in both cell suspension and on collagen-coated culture plates. Cells were then incubated in medium without ICG for 3 hours with supernatants collected at 1, 2 and 3 hours for measurement of ICG release. Cell viability was determined by trypan blue exclusion, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (mitochondrial dehydrogenase activity) and sulforhodamine B (SRB) assay (cell attachment). HepG2 cells were also used. RESULTS: ICG was taken up and secreted by hepatocytes with the release reaching a plateau level soon after 1 hour. Concentrations of ICG > 1.0mg/mL had toxic effects on hepatocytes. Hepatocytes incubated with 1.0mg/mL ICG had higher mitochondrial dehydrogenase activity compared to 0.5mg/mL ICG or control cells (0.025 ± 0.0004 OD unit vs. 0.019 ± 0.0008 OD unit or 0.020 ± 0.002 OD unit, p<0.05). Incubation of HepG2 cells with ICG reduced albumin production (98.9 ± 0.02 ng/mL, 66.6 ± 0.05 ng/mL and 39.1 ± 0.4 ng/mL for control cells, and 0.5mg/mL and 1.0mg/mL ICG, respectively), and decreased [(3)H]-thymidine incorporation in a dose-dependent manner. Addition of taurine (20mM) to plated hepatocytes gave greater release of ICG and hepatocyte attachment compared to controls, at all ICG concentrations (SRB 1.360 ± 0.083 optical density units vs. 0.908 ± 0.159 optical density units, p=0.011 at 1.0mg/mL). CONCLUSION: With further refinement, ICG could be used to develop a rapid assay for assessment of the function of isolated human hepatocytes.


Assuntos
Corantes , Hepatócitos/transplante , Verde de Indocianina , Adulto , Idoso , Albuminas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Corantes/farmacocinética , Corantes/farmacologia , DNA/metabolismo , Feminino , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Verde de Indocianina/farmacocinética , Verde de Indocianina/farmacologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias Hepáticas/metabolismo
17.
Food Chem Toxicol ; 49(11): 2968-74, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21802472

RESUMO

The lichen metabolite usnic acid (UA) has been promoted as a dietary supplement for weight loss, although cases of hepatotoxicity have been reported. Here we evaluated UA-associated hepatotoxicity in vitro using isolated rat hepatocytes. We measured cell viability and ATP content to evaluate UA induced cytotoxicity and applied (13)C isotopomer distribution measuring techniques to gain a better understanding of glucose metabolism during cytotoxicity. The cells were exposed to 0, 1, 5 or 10 µM UA concentrations for 2, 6 or 24h. Aliquots of media were collected at the end of these time periods and the (13)C mass isotopomer distribution determined for CO(2), lactate, glucose and glutamate. The 1 µM UA exposure did not appear to cause significant change in cell viability compared to controls. However, the 5 and 10 µM UA concentrations significantly reduced cell viability as exposure time increased. Similar results were obtained for ATP depletion experiments. The 1 and 5 µM UA doses suggest increased oxidative phosphorylation. Conversely, oxidative phosphorylation and gluconeogenesis were dramatically inhibited by 10 µM UA. Augmented oxidative phosphorylation at the lower UA concentrations may be an adaptive response by the cells to compensate for diminished mitochondrial function.


Assuntos
Benzofuranos/toxicidade , Carbono/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Hepatócitos/efeitos dos fármacos , Ácido Láctico/metabolismo , Animais , Isótopos de Carbono , Sobrevivência Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Glucose/química , Líquens/química , Líquens/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Toxicol In Vitro ; 25(3): 664-70, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21232593

RESUMO

The major toxicological concern associated with nanomaterials is the fact that some manufactured nanomaterials are redox active, and some particles transport across cell membranes, especially into mitochondria. Thus, evaluation of their toxicity upon acute exposure is essential. In this work, we evaluated the toxicity of silver nanoparticles (40 and 80 nm) and their effects in rat liver mitochondria bioenergetics. Wistar rat liver mitochondria demonstrate alterations in respiration and membrane potential capacities in the presence of either 40 or 80 nm silver nanoparticles. Our data demonstrated a statistically significant decrease in mitochondrial membrane potential, ADP-induced depolarization, and respiratory control ratio (RCR) upon exposure to silver nanoparticles. Our results show that silver nanoparticles cause impairment of mitochondrial function, due mainly to alterations of mitochondrial membrane permeability. This results in an uncoupling effect on the oxidative phosphorylation system. Thus, mitochondrial toxicity may have a central role in the toxicity resulting from exposure to silver nanoparticles.


Assuntos
Nanopartículas Metálicas/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Compostos de Prata/toxicidade , Animais , Cálcio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Mitocôndrias Hepáticas/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Wistar , Testes de Toxicidade Aguda
19.
Curr Protoc Toxicol ; Chapter 14: Unit14.8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-23045017

RESUMO

Mitochondrial dysfunction from toxicants is recognized as a causative factor in the development of numerous liver diseases including steatohepatitis, cirrhosis, and cancer. Toxicant-mediated damage to mitochondria result in depressed ATP production, inability to maintain proper cellular calcium homeostasis, and increased reactive oxygen species production. These disruptions contribute to hepatocellular death and lead to liver pathology. Herein, we describe a series of basic and advanced methodologies that can be incorporated into research projects aimed to understand the role of mitochondrial dysfunction in toxicant-induced hepatotoxicity. Protocols are provided for isolation of liver mitochondria, assessment of respiratory function, measurement of mitochondrial calcium uptake, and reactive oxygen species production, as well as characterization of the mitochondrial protein thiol proteome using 2D gel electrophoresis. Data obtained from these methods can be integrated into a logical and mechanistic framework to advance understanding of the role of mitochondrial dysfunction in the pathogenesis of toxicant-induced liver diseases.


Assuntos
Bioensaio/métodos , Doença Hepática Induzida por Substâncias e Drogas , Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas Mitocondriais/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteômica/métodos , Compostos de Sulfidrila/metabolismo
20.
Toxicol In Vitro ; 23(8): 1585-90, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19607910

RESUMO

Metolachlor is one of the most intensively used chloroacetamide herbicides. However, its effects on the environment and on non-target animals and humans as well as its interference at a cell/molecular level have not yet been fully elucidated. The aim of this study was: firstly, to evaluate the potential toxicity of metolachlor at a cell/subcellular level by using two in vitro biological model systems (a strain of Bacillus stearothermophilus and rat liver mitochondria); secondly, to evaluate the relative sensibility of these models to xenobiotics to reinforce their suitability for pollutant toxicity assessment. Our results show that metolachlor inhibits growth and impairs the respiratory activity of B.stearothermophilus at concentrations two to three orders of magnitude higher than those at which bacterial cells are affected by other pesticides. Also at concentrations significantly higher than those of other pesticides, metolachlor depressed the respiratory control ratio, membrane potential and respiration of rat liver mitochondria when malate/glutamate or succinate were used as respiratory substrates. Moreover, metolachlor impaired the respiratory activity of rat liver mitochondria in the same concentration range at which it inhibited bacterial respiratory system (0.4-5.0 micromol/mg of protein). In conclusion, the high concentration range at which metolachlor induces toxicity in vitro suggests that this compound is safer than other pesticides previously studied in our laboratory, using the same model systems. The good parallelism between metolachlor effects on both models and the toxicity data described in the literature, together with results obtained in our laboratory with other compounds, indicate the suitability of these systems to assess toxicity in vitro.


Assuntos
Acetamidas/toxicidade , Geobacillus stearothermophilus/efeitos dos fármacos , Herbicidas/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Geobacillus stearothermophilus/crescimento & desenvolvimento , Geobacillus stearothermophilus/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA