Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 121017, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718602

RESUMO

Energy transition currently brings focus on fuel cell micro-combined heat and power (mCHP) systems for residential uses. The two main technologies already commercialized are the Proton Exchange Membrane Fuel Cells (PEMFCs) and Solid Oxide Fuel Cells (SOFCs). The pollutant emissions of one system of each technology have been tested with a portable probe both in laboratory and field-test configurations. In this paper, the nitrogen oxides (NOx), sulphur dioxide (SO2), and carbon monoxide (CO) emission levels are compared to other combustion technologies such as a recent Euro 6 diesel automotive vehicle, a classical gas condensing boiler, and a gas absorption heat pump. At last, a method of converting the concentration of pollutants (in ppm) measured by the sensors into pollutant intensity per unit of energy (in mg/kWh) is documented and reported. This allows for comparing the pollutant emissions levels with relevant literature, especially other studies conducted with other measuring sensors. Both tested residential fuel cell technologies fed by natural gas can be considered clean regarding SO2 and NOx emissions. The CO emissions can be considered quite low for the tested SOFC and even nil for the tested PEMFC. The biggest issue of natural gas fuel cell technologies still lies in the carbon dioxide (CO2) emissions associated with the fossil fuel they consume. The gas absorption heat pump however shows worse NOx and CO levels than the classical gas condensing boiler. At last, this study illustrates that the high level of hybridization between a fuel cell and a gas boiler may be responsible for unexpected ON/OFF cycling behaviours and therefore prevent both sub-systems from operating as optimally and reliably as they would have as standalone units.


Assuntos
Poluentes Atmosféricos , Óxidos de Nitrogênio , Poluentes Atmosféricos/análise , Óxidos de Nitrogênio/análise , Monóxido de Carbono/análise , Dióxido de Enxofre/análise , Benchmarking , Emissões de Veículos/análise , Monitoramento Ambiental/métodos
2.
Environ Sci Pollut Res Int ; 31(6): 9811-9830, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198083

RESUMO

The number of cars is increasing every year and the environmental aspects of transport are becoming a hot topic. The spatial and temporal patterns of motor vehicle carbon monoxide (CO) emissions are still unclear due to the unbalanced economic development and heterogeneous geographic conditions of China. With the objective of realizing a reduction in motor vehicle CO emissions, his study explores the transport carbon emission reduction pathways of China from motor vehicle CO emission. Firstly, the entropy method is adopted to comprehensively evaluate the CO emissions from motor vehicles in each province; secondly, the development of a Geographically and Temporally Weighted Regression (GTWR) model facilitates the examination of the spatiotemporal dynamics pertaining to the influencing factors of motor vehicle CO emissions within each province.; finally, the characteristics of motor vehicle CO emissions in ETS pilot areas and non-ETS pilot areas are compared. The results show that: (1) After the completion of the six ETS pilot areas in 2011, the CO emission from motor vehicles is reduced by 18% compared with 2010.(2)The entropy method shows that the largest CO emissions from motor vehicles are from Beijing, Shanghai, Guangdong and other provinces with high economic levels.(3) The results of the GTWR model show that the positive effects of economic level, population size, road mileage intensity and motor vehicle intensity on motor vehicle CO emissions are decreasing year by year. The negative effect of metro line intensity on CO emission decreases year by year. This study can help decision makers to identify the high emission areas, understand the influencing factors, and formulate emission reduction measures to achieve the purpose of carbon emission reduction in transport.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Emissões de Veículos/análise , Monóxido de Carbono/análise , Poluentes Atmosféricos/análise , China , Veículos Automotores
3.
Lancet Planet Health ; 7(11): e900-e911, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37940210

RESUMO

BACKGROUND: High-level exposure to indoor air pollutants (IAPs) and their corresponding adverse health effects have become a public concern in China in the past 10 years. However, neither national nor provincial level burden of disease attributable to multiple IAPs has been reported for China. This is the first study to estimate and rank the annual burden of disease and the financial costs attributable to targeted residential IAPs at the national and provincial level in China from 2000 to 2017. METHODS: We first did a systematic review and meta-analysis of 117 articles from 37 231 articles identified in major databases, and obtained exposure-response relationships for the candidate IAPs. The exposure levels to these IAPs were then collected by another systematic review of 1864 articles selected from 52 351 articles. After the systematic review, ten IAPs with significant and robust exposure-response relationships and sufficient exposure data were finally targeted: PM2·5, nitrogen dioxide, sulphur dioxide, ozone, carbon monoxide, radon, formaldehyde, benzene, toluene, and p-dichlorobenzene. The annual exposure levels in residences were then evaluated in all 31 provinces in mainland China continuously from 2000 to 2017, using the spatiotemporal Gaussian process regression model to analyse indoor originating IAPs, and the infiltration factor method to analyse outdoor originating IAPs. The disability-adjusted life-years (DALYs) attributable to the targeted IAPs were estimated at both national and provincial levels in China, using the population attributable fraction method. Financial costs were estimated by an adapted human capital approach. FINDINGS: From 2000 to 2017, annual DALYs attributable to the ten IAPs in mainland China decreased from 4620 (95% CI 4070-5040) to 3700 (3210-4090) per 100 000. Nevertheless, in 2017, IAPs still ranked third among all risk factors, and their DALYs and financial costs accounted for 14·1% (95% CI 12·3-15·6) of total DALYs and 3·45% (3·01-3·82) of the gross domestic product. Specifically, the rank of ten targeted IAPs in order of their contribution to DALYs in 2017 was PM2·5, carbon monoxide, radon, benzene, nitrogen dioxide, ozone, sulphur dioxide, formaldehyde, toluene, and p-dichlorobenzene. The DALYs attributable to IAPs were 9·50% higher than those attributable to outdoor air pollution in 2017. For the leading IAP, PM2·5, the DALYs attributable to indoor origins are 18·3% higher than those of outdoor origins. INTERPRETATION: DALYs attributed to IAPs in China have decreased by 20·0% over the past two decades. Even so, they are still much higher than those in the USA and European countries. This study can provide a basis for determining which IAPs to target in various indoor air quality standards and for estimating the health and economic benefits of various indoor air quality control approaches, which will help to reduce the adverse health effects of IAPs in China. FUNDING: The National Key Research and Development Program of China and the National Natural Science Foundation of China.


Assuntos
Poluentes Atmosféricos , Ozônio , Radônio , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Monóxido de Carbono/análise , Dióxido de Enxofre/análise , Benzeno/efeitos adversos , Benzeno/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Formaldeído/análise , Efeitos Psicossociais da Doença , Material Particulado/análise , Radônio/análise , Ozônio/análise , Tolueno/análise
4.
Environ Sci Pollut Res Int ; 30(49): 108051-108066, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37747609

RESUMO

The excessive utilization of fossil fuels has worsened global warming and exacerbated the levels of air pollution in the environment, forcing us to consider alternative fuels for compression ignition engines. The current research aims to explore the possibilities of renewable fuels outperforming diesel fuel in terms of combustion, performance, and emission characteristics. Biodiesel is an environmentally friendly and renewable alternative fuel. The major drawback of biodiesel is the significant rise in nitrogen oxide (NOx) emissions. The main novelty and objective of this research is to investigate the performance and emission characteristics of variable compression ratio diesel engine using DPA antioxidant additive. For this investigation, diesel, Jatropha biodiesel (B30) and 100 ppm of phenolic antioxidant diphenylamine (DPA) blended with B30 have been used as fuel named B30+DPA100. From experimental outcomes, the inclusion of diphenylamine to B30 blend resulted in brake-specific fuel consumption (BSFC) and exhaust gas temperature (EGT) being reduced by 8.86% and 4.12%, respectively, compared to B30. Simultaneously, there was a 1.11% increase in brake thermal efficiency (BTHE). The B30+DPA100 fuel blend demonstrates effective control over NOx and other emissions. The emissions of NOx, carbon monoxide (CO), hydrocarbon (HC), and smoke from the B30+DPA100 blend have shown a reduction of 6.8%, 5.34%, 7.86%, and 15.67%, respectively, when compared to diesel. However, there has been an increase in carbon dioxide (CO2) by 7.8%. One notable advantage of the B30+DPA100 blend is the significant decrease in NOx emissions. Additionally, the cylinder pressure for B30+DPA100 has been lowered by 4.93% compared to B30. On the other hand, the net heat release rate (NHR) has experienced a 1.72% increase. The particle size of different elements present in the crankcase oil has been calculated by Zetasizer Nano. The analysis revealed varying particle sizes for different elements in the crankcase oil: aluminum (2.724 µm), chromium (2.78 µm), iron (2.423 µm), and lead (2.587 µm).


Assuntos
Biocombustíveis , Jatropha , Biocombustíveis/análise , Antioxidantes , Difenilamina , Óxidos de Nitrogênio/análise , Óxido Nítrico , Gasolina/análise , Emissões de Veículos/análise , Monóxido de Carbono/análise
5.
Environ Sci Pollut Res Int ; 30(45): 100873-100891, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37642912

RESUMO

In the recent past, forest fires have increased due to the changing climate pattern. It is necessary to analyse and quantify various gaseous emissions so as to mitigate their harmful effects on air pollution. Satellite remote sensing data provides an opportunity to study the greenhouse gases in the atmosphere. The multispectral sensor of the Tropospheric Monitoring Instrument (Sentinel-5) is capable of recording the reflectance of wavelengths vital for measuring the atmospheric concentrations of methane, formaldehyde, aerosol, carbon monoxide, etc., at a spatial resolution of 0.01°. The present study utilized the Google Earth Engine (GEE) platform to study the emissions caused by forest fires in four districts of Uttarakhand State of India, which witnessed unprecedented fires in April-May 2021. All the datasets were ingested in GEE, which has the capability to analyse large datasets without the need to download them. The pre-fire period chosen was September 2020; the fire period was February-May 2021, and the post-fire period was June 2021. The variables chosen were aerosol absorbing index (AAI), carbon monoxide (CO) and nitrogen dioxide (NO2). The climate parameter temperature (Moderate Resolution Imaging Spectroradiometer Land Surface Temperature) and precipitation (from Climate Hazards Group InfraRed Precipitation (CHIRPS) Pentad) were also studied for the period mentioned. The results indicate a different trend for emissions in each district. For AAI, maximum emissions were noted in district Nainital followed by Almora, Tehri Garhwal and Garhwal. For CO emissions, the most affected district was Almora followed by Nainital, Garhwal and Tehri Garhwal. For NO2 emissions, the most affected district was Garhwal, followed by Nainital, Tehri Garhwal and Almora. Delta Normalized Burn Ratio was computed from Sentinel data (difference of pre-fire and post-fire images) to assess the burnt area severity. The Delta Normalized Burn Ratio values observed that the district with the most burnt area is Garhwal, followed by Nainital, Almora and Tehri Garhwal. The elevated temperatures and scanty rainfall patterns regulated the intensity and duration of forest fire. Monitoring the gaseous emissions as a consequence of forest fire in the GEE platform is much easier and more convenient at a regional level. Such data is much needed for mitigation measures to be implemented in time.


Assuntos
Monóxido de Carbono , Incêndios Florestais , Monóxido de Carbono/análise , Dióxido de Nitrogênio/análise , Ferramenta de Busca , Gases/análise , Aerossóis
6.
J Environ Manage ; 345: 118828, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595458

RESUMO

Utilizing agriculture co-products and agricultural residues directly leads to Energy, Economic, and Environmental sustainability. Sugar production industries produce a considerable amount of sugarcane bagasse (SB) as a co-product, whereas SB is used in paper-mill sectors, which have a large amount of waste as sugarcane bagasse pith (SBP). In this view, the novelty of the present study aims to ensure the economic viability of the SBP briquette production plant, after that, briquette-based producer gas (PG) generation and application to compression ignition (CI) engine for diesel substitution. The economic analysis includes the Net Present Value (NPV) and Profitability Index (PI) for the feasibility check. And gasifier-engine analysis includes the effect of gasification equivalence ratio (GER), engine compression ratio (CR), and load on engine brake thermal efficiency (BTE), diesel saving, Sound, Exhaust gas temperature (EGT), and emissions (CO, HC, CO2, NOx). Further, operating variables were optimized with the desirability approach of Response surface methodology (RSM). In the result, NPV and PI values were found to be Rs 49,64,379.5 (≈0.06 million USD) and 1.98, respectively. However, the economic feasibility of the plant is sensitive to capital cost, briquette market price, and discount percentages. Regarding gasifier-engine performance, the maximum diesel substitution was found to be 66.15% at dual fuel (DF) mode engine run. RSM-based optimization result showed the optimum operating setting of 0.10 GER, 16 CR, and 9.93 kg load at 1500 rpm with a composite desirability of 0.798. Accordingly, at optimal input parameters, the magnitudes of engine performance as BTE, Sound, CO, HC, CO2, and NOx were found to be 27.18%, 91.21 db, 0.10%vol., 53.19 ppm, 2.33%vol., and 8.43 ppm respectively. Thus, the higher value of the economic index and substantial amount of diesel fuel saving through the gasifier-engine system ensures the economic feasibility of briquetting and power generation technology.


Assuntos
Celulose , Saccharum , Dióxido de Carbono/análise , Biocombustíveis , Monóxido de Carbono/análise , Gasolina , Emissões de Veículos
7.
Environ Sci Pollut Res Int ; 30(23): 64006-64024, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060406

RESUMO

Waste management and mitigation is the primary necessity across the globe. The daily use of plastic materials in different forms emergence the plastic pollutions, and it has been significantly increased during the COVID-19 pandemic. Thus, mitigation of waste plastics generation is one of the major challenges in the present situation. The present study addressed the conversion of waste plastics into value-added products such as liquid hydrocarbon fuels and their application in reducing greenhouse gas emissions. A comprehensive investigation has been performed on engine performance and combustion characteristics at various compression ratios and PO blending. The effect of liquid fuel blending with commercial diesel was investigated at three different compression ratios (15.1, 16.2, and 16.7) under various BMEP conditions. The results revealed that blending of liquid fuel produced from waste plastic can improve the BTE significantly, and the highest 35.77% of BTE was observed for 10% blending at 15.1 CR. While the lowest BSFC of 5.77 × 10-5 kg/kW-s was estimated for 20% PO blending at 16.7 CR under optimum BMEP (4.0 bar) conditions. The investigation of combustion parameters such as cylinder pressure, net heat release rate, rate of pressure rise, and cumulative heat release showed that it increases with the compression ratio from 15.1 to 16.7. At the same time, the emissions of CO, CO2, and unburnt hydrocarbon was decreased significantly. The economic analysis for the present lab-scale study estimated that approximately ₹12.17 ($0.15) profit per liter is possible in the 1st year, while the significant profit starts from the 2nd year onward, which is in the range of ₹59.78-₹84.48 ($0.75-$1.07) when the PO is blended with CD within the permissible limits as per the norms.


Assuntos
COVID-19 , Gasolina , Humanos , Pandemias , Emissões de Veículos , Biocombustíveis , Monóxido de Carbono/análise , Hidrocarbonetos , Plásticos
8.
Environ Sci Pollut Res Int ; 30(22): 61177-61189, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35420342

RESUMO

The increasing demand for energy consumption because of the growing population and environmental concerns has motivated the researchers to ponder about alternative fuel that could replace diesel fuel. A new fuel should be cheaply available, clean, efficient, and environmentally friendly. In this paper, the engine operated with neat punnai oil blends with diesel was investigated at various engine load conditions, keeping neat punnai oil and diesel as base fuels. The performance indicators such as brake specific energy consumption (BSEC), brake thermal efficiency (BTE), and exhaust gas temperature (EGT); emission indicators such as carbon monoxide (CO), oxides of nitrogen (NOx), and smoke opacity; and combustion parameters like cylinder pressure and heat release rate were examined. The brake thermal efficiency of diesel is 29.2%, whereas it was lower for neat punnai oil and its blends at peak load conditions. Concerning the environmental aspect, oxides of nitrogen emission showed a decreasing trend with higher smoke emissions for Punnai oil blends. Detailed combustion analysis showed that on smaller concentrations of punnai oil in the fuel blend, the duration of combustion has improved significantly. However, for efficiency and emissions, the P20 (20% punnai oil and 80% diesel) blend performs similar to that of diesel compared to all other blending combinations. When compared with diesel, the P20 blend shows an improvement in BSEC by 26.37%. It also performs closer in HC emission, a marginal increase in smoke opacity of 4% with reduced NOx and CO2 emission of 7.9% and 4.65% respectively. Power loss was noticed when neat punnai oil and higher blends were used due to the high density and low calorific value of punnai oil blends which leads to injecting more fuel for the same pump stroke.


Assuntos
Gasolina , Óxidos de Nitrogênio , Óxidos de Nitrogênio/análise , Gasolina/análise , Emissões de Veículos/análise , Fumaça/análise , Monóxido de Carbono/análise , Biocombustíveis/análise
9.
Environ Res ; 216(Pt 1): 114516, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36220442

RESUMO

Previous researches have reported the association between air pollution and various diseases. However, few researches have investigated whether air pollutants are associated with the economic loss resulting from patients' hospitalization, especially the economic loss of hospitalization due to acute cardiovascular events. The purpose of our research was to explore the association between the levels of carbon monoxide (CO), taken as an index of pollution, and the hospitalization costs of myocardial infarction (MI), and the potential effect modification by the ABO blood group. A total of 3237 MI inpatients were included in this study. A multiple linear regression model was used to evaluate the association between ambient CO levels and hospitalization costs of MI patients. Moreover, we performed stratified analyses by age, gender, body mass index (BMI), season, hypertension, and ABO blood types. There was a positive association between the levels of CO in the air and the costs of hospitalization caused by MI. Furthermore, such association was stronger in males, BMI ≥25, <65 years, with hypertension, and non-O blood group. Interestingly, we found the association was particularly significant in patients with blood group B. Overall, our study first found that ambient CO levels could have an impact on the hospitalization costs for MI patients, and those with blood group B can be more sensitive.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hipertensão , Infarto do Miocárdio , Masculino , Humanos , Monóxido de Carbono/análise , Sistema ABO de Grupos Sanguíneos/análise , Poluição do Ar/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Hospitalização , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/induzido quimicamente , Hipertensão/induzido quimicamente
10.
J Environ Sci (China) ; 124: 513-521, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182160

RESUMO

Over the past decade, the emission standards and fuel standards in Beijing have been upgraded twice, and the vehicle structure has been improved by accelerating the elimination of 2.95 million old vehicles. Through the formulation and implementation of these policies, the emissions of carbon monoxide (CO), volatile organic compounds (VOCs), nitrogen oxides (NOx), and fine particulate matter (PM2.5) in 2019 were 147.9, 25.3, 43.4, and 0.91 kton in Beijing, respectively. The emission factor method was adopted to better understand the emissions characteristics of primary air pollutants from combustion engine vehicles and to improve pollution control. In combination with the air quality improvement goals and the status of social and economic development during the 14th Five-Year Plan period in Beijing, different vehicle pollution control scenarios were established, and emissions reductions were projected. The results show that the emissions of four air pollutants (CO, VOCs, NOx, and PM2.5) from vehicles in Beijing decreased by an average of 68% in 2019, compared to their levels in 2009. The contribution of NOx emissions from diesel vehicles increased from 35% in 2009 to 56% in 2019, which indicated that clean and energy-saving diesel vehicle fleets should be further improved. Electric vehicle adoption could be an important measure to reduce pollutant emissions. With the further upgrading of vehicle structure and the adoption of electric vehicles, it is expected that the total emissions of the four vehicle pollutants can be reduced by 20%-41% by the end of the 14th Five-Year Plan period.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pequim , Monóxido de Carbono/análise , China , Monitoramento Ambiental , Óxidos de Nitrogênio/análise , Material Particulado/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
11.
Sci Rep ; 12(1): 16940, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209226

RESUMO

Charcoal is a popular form of biofuel embraced for domestic and industrial purposes. However, the use of Charcoal has some associated challenges, such as the required charcoal pot and setting it into the fire at first by using Charcoal-Ignition-Aiders (CIA) (e.g. discarded paper, nylon, rubber, plastics, petrol, the residue of processed palm oil, maise cob, wood, and kerosene). Coupled with the chemical properties of Charcoal, the resulting gases from CIA are capable of polluting the environment with perceived Adverse-Health-Implications (AHI) on the ecosystem. Therefore, this study conducted a safety assessment of charcoal biofuel usage and the effects of common CIA on combustion indices. This study followed standard methods and the use of peculiar equipment. This study established that Charcoal is commonly used in the studied area because it is cheap, readily available and requires less technical know-how. Considering the combustion indices, using paper as a CIA generated the lowest carbon monoxide (CO) value, 28.1 ppm, with 3,434.54 ppm volatile organic compound, VOC. Compared with the ACGIH standard permissible exposure level of ≤ 30 ppm, the paper gave a lesser CO value of 28.10 ppm among all the CIA. At the same time, all the CIA recorded higher VOC compared with EPA standard permissible exposure level of ≤ 15 ppm. ANOVA analysis conducted on the socio-demographic profile of the respondents, cooking attributes of the respondents, and use of charcoal pot types by the respondents in Zone 1, Zone 2, and Zone 3 gave p-values of 0.032, 0.028, and 0.039, respectively. These imply significant differences within the zones in each of the indices. The average energy content reported for charcoals sourced from oak trees, afara, obeche, mahogany, and iroko woods is 3,2149 kJ/kg compared to the lower ones. Therefore, this study recommended using these charcoals alongside discarded paper as CIA because they are a better combination to reduce AHI.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Biocombustíveis/análise , Monóxido de Carbono/análise , Carvão Vegetal/química , Ecossistema , Gases/análise , Querosene/análise , Nylons/análise , Óleo de Palmeira , Borracha , Compostos Orgânicos Voláteis/análise
12.
Chemosphere ; 307(Pt 1): 135750, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35870607

RESUMO

Trackless rubber-tyred vehicles are among the most widely used underground auxiliary transportation equipment in major coal mines at present. The migration of exhaust gas that threaten human health varies with the working conditions of trackless rubber-tyred vehicles. In order to better evaluate the health risks faced by underground personnel in the process of exhaust emission from underground diesel vehicles, in this paper, the migration of carbon monoxide (CO) and particulate matter (PM) emitted by trackless rubber-tyred vehicle under three working conditions was analyzed by using the method of CFD (Computational Fluid Dynamics) numerical simulation and field measurement. It can be concluded that the concentrations of CO and PM changed with the change of airflow field under different working conditions, and their distribution tended to be consistent on the whole. Although the migration of CO and PM were different under different working conditions, CO with high concentration (C ≥ 44.74 ppm) and PM with high concentration (C ≥ 89.47 mg/m³) were mainly distributed in the area near the exhaust pipe of trackless rubber-tyred vehicle. Therefore, the drivers of trackless rubber-tyred vehicle and underground personnel need to comprehensively consider the risk factors under different working conditions when carrying out personal protection.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Monóxido de Carbono/análise , Carvão Mineral , Monitoramento Ambiental/métodos , Humanos , Material Particulado/análise , Medição de Risco , Borracha , Emissões de Veículos/análise
13.
Environ Sci Pollut Res Int ; 29(54): 81703-81712, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35739449

RESUMO

Civil aviation is an important source of air pollutants, but this field has received insufficient attention in China. Based on the standard emissions model of the International Civil Aviation Organization (ICAO) and actual flight information from 241 airports, this study estimated a comprehensive emissions inventory for 2010-2020 by considering the impacts of mixing layer height. The results showed that annual pollutant emissions rapidly trended upward along with population and economic growth; however, the emissions decreased owing to the impacts of the COVID-19 pandemic. In 2020, the emissions of carbon monoxide (CO), nitrogen oxides (NOX), particulate matter (PM), methane (CH4), nitrous oxide (N2O), carbon dioxide (CO2), and water vapor (H2O) were 34.34, 65.73, 0.10, 0.34, 0.40, 14,706.26, and 5733.11 Gg, respectively. The emissions of total volatile organic compounds (VOCs) from China's civil airports in 2020 were estimated at 17.20 Gg; the major components were formic acid (1.70 Gg), acetic acid (1.62 Gg), 1-butylene (1.03 Gg), acetone (0.96 Gg), and acetaldehyde (0.93 Gg). The distribution of pollutant emissions was consistent with the level of economic development, mainly in Beijing, Guangzhou, and Shanghai. In addition, we estimated future pollution trends for the aviation industry under four scenarios. Under the comprehensive scenario, which considered the impacts of economic growth, passenger turnover, cargo turnover, COVID-19, and technological efficiency, the levels of typical pollutants were expected to increase by nearly 1.51-fold from 2010 to 2035.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Gases de Efeito Estufa , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Aeroportos , Poluição do Ar/análise , Dióxido de Carbono/análise , Compostos Orgânicos Voláteis/análise , Monóxido de Carbono/análise , Óxido Nitroso , Acetona , Vapor , Pandemias , Monitoramento Ambiental/métodos , China , Material Particulado/análise , Metano/análise , Acetaldeído
14.
Environ Res ; 210: 112945, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35202627

RESUMO

Ambient carbon monoxide (CO) is associated with bronchitis morbidity, but there is no evidence concerning its correlation with hospitalization costs for bronchitis patients. This study aimed to investigate the relationship between short-term ambient CO exposure and hospitalization costs for bronchitis patients in Chongqing, China. Baseline data for 3162 hospitalized bronchitis patients from November 2013 to December 2019 were collected. Multiple linear regression analysis was used to determine the association, delayed and cumulative, between short-term CO exposure and hospitalization costs. Additionally, subgroup analyses were performed by gender, age, season, and comorbidity. Positive association between CO and hospitalization costs for bronchitis patients was observed. The strongest association was observed at lag 015 days, with per 1 mg/m3 increase of CO concentrations corresponded to 5834.40 Chinese Yuan (CNY) (95% CI: 2318.71, 9350.08; P < 0.001) (845.97 US dollars) increment in hospitalization costs. Stratified analysis results showed that the association was more obvious among those males, elderly, with comorbidities, and in warm seasons. More importantly, there was strongest correlation between CO and bronchitis patients with coronary heart disease. In summary, short-term exposure to ambient CO, even lower than Chinese and WHO standards, can be associated with increased hospitalization costs for bronchitis. Controlling CO exposure can be helpful to reduce medical burden associated with bronchitis patients. The results also suggest that when setting air quality standards and formulating preventive measures, susceptible subpopulations ought to be considered.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Bronquite , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Bronquite/epidemiologia , Monóxido de Carbono/análise , China/epidemiologia , Exposição Ambiental/análise , Hospitalização , Hospitais , Humanos , Masculino , Material Particulado/análise
15.
Environ Sci Pollut Res Int ; 29(1): 119-132, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33876367

RESUMO

Optimization of fuel injection strategies can maximize the utilization of ternary fuel by addressing the issues concerning fuel consumption, engine performance, and exhaust gas emission. In the midst of the pervasiveness of plant-based biofuel, this paper focused on maximizing the mahua oil biodiesel usage in a diesel engine having a common rail direct injection (CRDI) system without any engine modifications. The crude oil extracted from the seeds of Madhuca longifolia is known in India as mahua butter and has shown impressive fuel properties such as lower viscosity, flashpoint, boiling point, and comparable calorific value to diesel. 1-Pentanol, which has a chain of five carbons and can easily be blended with both diesel and biodiesel, is a promising type of alcohol for the future. In this study, the influence of fuel injection pressure with ternary fuel (diesel + mahua methyl ester + pentanol) on engine characteristics of CRDI diesel engine was analyzed. The fuel injection pressure is varied from 20 to 50 MPa so that ternary fuel can be properly utilized. The high injection pressure of 50 MPa has better combustion characteristics and higher brake thermal efficiency (4.39%) value than other injection pressure values. A better mixture is formed due to well-atomized spray, and as a result, the levels of CO (22.24%), HC (9.49%), and smoke (7.5%) fall with the increase in injection pressure. The usage of ternary fuel raised the NOx emission (12.46%) value and specific fuel consumption (SFC) with a decrease in the BTE (brake thermal efficiency) which attributes to its properties and combustion characteristics.


Assuntos
Gasolina , Pentanóis , Biocombustíveis , Monóxido de Carbono/análise , Ésteres , Emissões de Veículos
16.
Sci Total Environ ; 802: 149750, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454158

RESUMO

The continuous growing demand for fossil fuel puts an enormous pressure on finding a better replacement. This research paper explores the detailed information on the improved production, emission and performance characteristics of the distinct bio-oil derived from the micro algae of Schizochytrium. The algae were grown in the artificial seawater with enough nitrogen supply at the required standard conditions. The lipid growth and production of the bio-oil were monitored closely and measured. Different fuel blends were used at different concentrations as B0 (100% Diesel), B10 (10% schizochytrium biofuel +90% diesel), B20 (20% schizochytrium biofuel +80% diesel) and B30 (30% schizochytrium biofuel +70% diesel). A small single cylinder, four stroke diesel engine was used to conduct the tests. All tests were conducted at different speed conditions of 1200 rpm to 2100 rpm in six intervals. The performance qualities of bio-oil such as CO, NOX, and smoke and CO2 emission along with the performance qualities of brake thermal efficiency and brake specific fuel consumption. Form the results, the Schizochytrium microalgae bio-oil as the bio fuel for diesel engines in the moderate level showed the improved performance by increasing the BTE and reducing the harmful gas emissions except NOX. However, the emission level of NOX was slightly higher than the diesel emitted value. The difference between them was negligible.


Assuntos
Biocombustíveis , Gasolina , Monóxido de Carbono/análise , Transferência de Energia , Óxidos de Nitrogênio/análise , Emissões de Veículos
17.
Sci Total Environ ; 813: 152418, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34923011

RESUMO

The need for an alternative fuel has been growing swiftly owing to the extravagant use of fossil fuels as a sole energy source for all purposes. This paper investigates the performance, emission and noise characteristics of cellulosic biofuel. A series of tests were conducted in a single cylinder, four stroke DI engine to determine the performance measuring factors such as brake thermal efficiency (BTE), brake power (BP), brake specific fuel consumption (BSFC) and emission factors such as CO emission, NO emission, CO2 emission and smoke and then, the HC emission rates were also measured. All tests were carried out at different load conditions of 25%, 50%, 75% and 100% with the constant speed of 1500 rpm. The fuel blends taken for the tests were diesel, E5, E10, E15 and E20. The E20 comparatively showed lower performance than all other fuel blends. However, when considering CO and smoke emission, the E20 fuel blends produced better reduced emission. The lower-level ethanol diesel blend showed better BT as well as BTE and BSFC. From the above findings, it is clear and evident that cellulosic biodiesel blends can be an optimal solution to meet the ongoing energy demands.


Assuntos
Biocombustíveis , Gasolina , Monóxido de Carbono/análise , Etanol , Emissões de Veículos
18.
Sensors (Basel) ; 21(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205429

RESUMO

We designed and built a network of monitors for ambient air pollution equipped with low-cost gas sensors to be used to supplement regulatory agency monitoring for exposure assessment within a large epidemiological study. This paper describes the development of a series of hourly and daily field calibration models for Alphasense sensors for carbon monoxide (CO; CO-B4), nitric oxide (NO; NO-B4), nitrogen dioxide (NO2; NO2-B43F), and oxidizing gases (OX-B431)-which refers to ozone (O3) and NO2. The monitor network was deployed in the Puget Sound region of Washington, USA, from May 2017 to March 2019. Monitors were rotated throughout the region, including at two Puget Sound Clean Air Agency monitoring sites for calibration purposes, and over 100 residences, including the homes of epidemiological study participants, with the goal of improving long-term pollutant exposure predictions at participant locations. Calibration models improved when accounting for individual sensor performance, ambient temperature and humidity, and concentrations of co-pollutants as measured by other low-cost sensors in the monitors. Predictions from the final daily models for CO and NO performed the best considering agreement with regulatory monitors in cross-validated root-mean-square error (RMSE) and R2 measures (CO: RMSE = 18 ppb, R2 = 0.97; NO: RMSE = 2 ppb, R2 = 0.97). Performance measures for NO2 and O3 were somewhat lower (NO2: RMSE = 3 ppb, R2 = 0.79; O3: RMSE = 4 ppb, R2 = 0.81). These high levels of calibration performance add confidence that low-cost sensor measurements collected at the homes of epidemiological study participants can be integrated into spatiotemporal models of pollutant concentrations, improving exposure assessment for epidemiological inference.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Calibragem , Monóxido de Carbono/análise , Monitoramento Ambiental , Estudos Epidemiológicos , Humanos , Óxido Nítrico/análise , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise
19.
Undersea Hyperb Med ; 48(1): 89-96, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33648038

RESUMO

The New York Bridge and Tunnel Commission began planning for a tunnel beneath the lower Hudson river to connect Manhattan to New Jersey in 1919. At 8,300 feet, it would be the longest tunnel for passenger vehicles in the world. A team of engineers and physiologists at the Yale University Bureau of Mines Experiment Station was tasked with calculating the ventilation requirements that would provide safety from exposure to automobile exhaust carbon monoxide (CO) while balancing the cost of providing ventilation. As the level of ambient CO which was comfortably tolerated was not precisely defined, they performed human exposures breathing from 100 to 1,000 ppm CO, first on themselves and subsequently on Yale medical students. Their findings continue to provide a basis for carbon monoxide alarm requirements a century later.


Assuntos
Intoxicação por Monóxido de Carbono/prevenção & controle , Arquitetura de Instituições de Saúde/história , Instalações de Transporte/história , Emissões de Veículos/intoxicação , Monóxido de Carbono/análise , Intoxicação por Monóxido de Carbono/história , Carboxihemoglobina/análise , História do Século XX , Humanos , New Jersey , Cidade de Nova Iorque , Valores de Referência , Rios , Ventilação/economia , Ventilação/métodos
20.
Drug Alcohol Depend ; 221: 108641, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33652379

RESUMO

BACKGROUND: Compared to white smokers, Black smokers are at disproportionately higher risk for smoking-related disease, despite consuming fewer cigarettes per day (CPD). To examine racial disparities in biobehavioral influences on smoking and disease risk, we analyzed the relationship between self-reported tobacco dependence and intensity of tobacco smoke exposure per cigarette, on the one hand, and intensity of nicotine intake per cigarette, on the other. METHODS: In 270 Black and 516 white smokers, smoke exposure was measured by expired carbon monoxide (CO), and nicotine intake was measured by plasma cotinine (COT) and cotinine+3'-hydroxycotinine ([COT + 3HC]). Using linear regression analyses, we analyzed how the Fagerström Test for Cigarette Dependence (FTCD) predicted intensity of smoke exposure per cigarette (CO/CPD) and intensity of nicotine intake per cigarette (COT/CPD; [COT + 3HC]/CPD), and how race moderated these relations. RESULTS: Overall, Black smokers consumed fewer CPD than white smokers and had higher levels of CO/CPD, COT/CPD, and [COT + 3HC]/CPD. These elevations were most pronounced at lower levels of dependence: amongst Black smokers, FTCD negatively predicted intensity of smoke exposure as measured by CO/CPD (B = -0.12, 95% CI = -0.18, -0.05, p = 0.0003) and intensity of nicotine intake as measured by [COT + 3HC]/CPD (B = -1.31, 95% CI = -2.15, -0.46, p = 0.002). CONCLUSIONS: Low-dependence Black smokers had higher intensities of both smoke exposure and nicotine intake per cigarette compared to similarly dependent white smokers, suggesting that measures of dependence, exposure, and intake underestimate incremental risk of each cigarette to Black smokers.


Assuntos
Negro ou Afro-Americano , Monóxido de Carbono/análise , Fumar Cigarros/sangue , Nicotina/análise , Poluição por Fumaça de Tabaco/análise , População Branca , Adulto , Negro ou Afro-Americano/etnologia , Fumar Cigarros/etnologia , Cotinina/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nicotina/administração & dosagem , Fatores Raciais/tendências , Tabagismo/sangue , Tabagismo/diagnóstico , Tabagismo/etnologia , População Branca/etnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA