Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Math Biosci ; 372: 109189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580079

RESUMO

The mosquito-borne disease (malaria) imposes significant challenges on human health, healthcare systems, and economic growth/productivity in many countries. This study develops and analyzes a model to understand the interplay between malaria dynamics, economic growth, and transient events. It uncovers varied effects of malaria and economic parameters on model outcomes, highlighting the interdependence of the reproduction number (R0) on both malaria and economic factors, and a reciprocal relationship where malaria diminishes economic productivity, while higher economic output is associated with reduced malaria prevalence. This emphasizes the intricate interplay between malaria dynamics and socio-economic factors. The study offers insights into malaria control and underscores the significance of optimizing external aid allocation, especially favoring an even distribution strategy, with the most significant reduction observed in an equal monthly distribution strategy compared to longer distribution intervals. Furthermore, the study shows that controlling malaria in high mosquito biting areas with limited aid, low technology, inadequate treatment, or low economic investment is challenging. The model exhibits a backward bifurcation implying that sustainability of control and mitigation measures is essential even when R0 is slightly less than one. Additionally, there is a parameter regime for which long transients are feasible. Long transients are critical for predicting the behavior of dynamic systems and identifying factors influencing transitions; they reveal reservoirs of infection, vital for disease control. Policy recommendations for effective malaria control from the study include prioritizing sustained control measures, optimizing external aid allocation, and reducing mosquito biting.


Assuntos
Desenvolvimento Econômico , Malária , Malária/economia , Malária/prevenção & controle , Malária/parasitologia , Malária/epidemiologia , Humanos , Desenvolvimento Econômico/estatística & dados numéricos , Número Básico de Reprodução/estatística & dados numéricos , Animais , Mosquitos Vetores/parasitologia , Mosquitos Vetores/crescimento & desenvolvimento
2.
J Vector Borne Dis ; 61(1): 101-106, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648411

RESUMO

BACKGROUND OBJECTIVES: Dengue is a major vector-borne disease having public health importance. It is caused by Dengue Virus (DENV) and is transmitted by mosquitoes of Aedes species. With the unavailability of a vaccine, vector control remains the only preventive measure for dengue. Studies have already been conducted to establish the presence of dengue vectors in the north-eastern states of India. However, limited studies have been conducted in Tripura state. In the present study we aimed to identify the preferred breeding habitats of dengue vectors in the state. METHODS: Clinical case data of dengue since the last five years was studied and the areas with the highest case numbers were identified. Entomological investigation was carried out in areas reporting the highest number of cases. Larvae were collected from the breeding habitats using standard protocol followed by morphological and molecular identification. Further, House index (HI), Container index (CI) and Pupal index (PI) were determined. The positive pools were then processed for incrimination for the presence of dengue virus. Calculation of entomological indices was done. RESULTS: Of the total 815 containers searched, 36.80% containers were positive for mosquito larvae. Among the immature mosquito collection, 836 adults emerged and were identified as Aedes albopictus using standard taxonomic keys followed by molecular methods. HI, CI and PI, varied from 15.38% to 100%, 21% to 31.04 %, and 2.93% to 110.53% respectively. However, none of the pools was positive for dengue virus. INTERPRETATION CONCLUSION: The present study identified Ae. albopictus as a potential vector of dengue in Tripura. The study gave important insights on the preferred larval habitats and provides information on the indication of displacement of Ae. albopictus from rural to urban and semi-urban areas. However, longitudinal studies for longer time frame are necessary for any conclusive remarks.


Assuntos
Aedes , Vírus da Dengue , Dengue , Ecossistema , Larva , Mosquitos Vetores , Pupa , Animais , Índia , Larva/virologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mosquitos Vetores/virologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/crescimento & desenvolvimento , Aedes/virologia , Aedes/fisiologia , Aedes/crescimento & desenvolvimento , Pupa/virologia , Pupa/crescimento & desenvolvimento , Dengue/transmissão , Humanos , Feminino
3.
Malar J ; 20(1): 268, 2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120608

RESUMO

BACKGROUND: House improvement (HI) to prevent mosquito house entry, and larval source management (LSM) targeting aquatic mosquito stages to prevent development into adult forms, are promising complementary interventions to current malaria vector control strategies. Lack of evidence on costs and cost-effectiveness of community-led implementation of HI and LSM has hindered wide-scale adoption. This study presents an incremental cost analysis of community-led implementation of HI and LSM, in a cluster-randomized, factorial design trial, in addition to standard national malaria control interventions in a rural area (25,000 people), in southern Malawi. METHODS: In the trial, LSM comprised draining, filling, and Bacillus thuringiensis israelensis-based larviciding, while house improvement (henceforth HI) involved closing of eaves and gaps on walls, screening windows/ventilation spaces with wire mesh, and doorway modifications. Communities implemented all interventions. Costs were estimated retrospectively using the 'ingredients approach', combining 'bottom-up' and 'top-down approaches', from the societal perspective. To estimate the cost of independently implementing each intervention arm, resources shared between trial arms (e.g. overheads) were allocated to each consuming arm using proxies developed based on share of resource input quantities consumed. Incremental implementation costs (in 2017 US$) are presented for HI-only, LSM-only and HI + LSM arms. In sensitivity analyses, the effect of varying costs of important inputs on estimated costs was explored. RESULTS: The total economic programme costs of community-led HI and LSM implementation was $626,152. Incremental economic implementation costs of HI, LSM and HI + LSM were estimated as $27.04, $25.06 and $33.44, per person per year, respectively. Project staff, transport and labour costs, but not larvicide or screening material, were the major cost drivers across all interventions. Costs were sensitive to changes in staff costs and population covered. CONCLUSIONS: In the trial, the incremental economic costs of community-led HI and LSM implementation were high compared to previous house improvement and LSM studies. Several factors, including intervention design, year-round LSM implementation and low human population density could explain the high costs. The factorial trial design necessitated use of proxies to allocate costs shared between trial arms, which limits generalizability where different designs are used. Nevertheless, costs may inform planners of similar intervention packages where cost-effectiveness is known. Trial registration Not applicable. The original trial was registered with The Pan African Clinical Trials Registry on 3 March 2016, trial number PACTR201604001501493.


Assuntos
Anopheles , Participação da Comunidade/economia , Controle de Mosquitos/economia , Mosquitos Vetores , Animais , Anopheles/crescimento & desenvolvimento , Análise por Conglomerados , Participação da Comunidade/estatística & dados numéricos , Custos e Análise de Custo , Larva/crescimento & desenvolvimento , Malaui , Mosquitos Vetores/crescimento & desenvolvimento , Estudos Retrospectivos
4.
Math Biosci ; 331: 108516, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253746

RESUMO

Seasonal changes in temperature, humidity, and rainfall affect vector survival and emergence of mosquitoes and thus impact the dynamics of vector-borne disease outbreaks. Recent studies of deterministic and stochastic epidemic models with periodic environments have shown that the average basic reproduction number is not sufficient to predict an outbreak. We extend these studies to time-nonhomogeneous stochastic dengue models with demographic variability wherein the adult vectors emerge from the larval stage vary periodically. The combined effects of variability and periodicity provide a better understanding of the risk of dengue outbreaks. A multitype branching process approximation of the stochastic dengue model near the disease-free periodic solution is used to calculate the probability of a disease outbreak. The approximation follows from the solution of a system of differential equations derived from the backward Kolmogorov differential equation. This approximation shows that the risk of a disease outbreak is also periodic and depends on the particular time and the number of the initial infected individuals. Numerical examples are explored to demonstrate that the estimates of the probability of an outbreak from that of branching process approximations agree well with that of the continuous-time Markov chain. In addition, we propose a simple stochastic model to account for the effects of environmental variability on the emergence of adult vectors from the larval stage.


Assuntos
Dengue/epidemiologia , Dengue/transmissão , Surtos de Doenças , Modelos Biológicos , Mosquitos Vetores/virologia , Aedes/crescimento & desenvolvimento , Aedes/virologia , Animais , Número Básico de Reprodução/estatística & dados numéricos , Simulação por Computador , Demografia , Dengue/virologia , Vírus da Dengue/patogenicidade , Meio Ambiente , Interações entre Hospedeiro e Microrganismos , Humanos , Cadeias de Markov , Conceitos Matemáticos , Mosquitos Vetores/crescimento & desenvolvimento , Estações do Ano , Processos Estocásticos
5.
PLoS One ; 15(10): e0240363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33085720

RESUMO

INTRODUCTION: A number of studies have been conducted on the relationship between the distribution of mosquito abundance and meteorological variables. However, few studies have specifically provided specific ranges of temperatures for estimating the maximum abundance of mosquitoes as an empirical basis for climatic dynamics for estimating mosquito-borne infectious disease risks. METHODS: Adult mosquitoes were collected for three consecutive nights/week using Mosquito Magnet® Independence® model traps during 2018 and 2019 at US Army Garrison (USAG) Humphreys, Pyeongtaek, Gyeonggi Province, Republic of Korea (ROK). An estimate of daily mean temperatures (provided by the Korea Meteorological Administration) were distributed at the maximum abundance for selected species of mosquitoes using daily mosquito collection data after controlling for mosquito ecological cycles and environmental factors. RESULTS: Using the Monte-Carlo simulation, the overall mosquito population abundance peaked at 22.7°C (2.5th-97.5th: 21.7°C-23.8°C). Aedes albopictus, vector of Zika, chikungunya, dengue fever and other viruses, abundance peaked at 24.6°C (2.5th-97.5th, 22.3°C-25.6°C), while Japanese encephalitis virus (JEV) vectors, e.g., Culex tritaeniorhynchus and Culex pipiens, peaked at 24.3°C (2.5th-97.5th: 21.9°C-26.3°C) and 22.6°C (2.5th-97.5th: 21.9°C-25.2°C), respectively. Members of the Anopheles Hyrcanus Group, some of which are vivax malaria vectors in the ROK, abundance peaked at 22.4°C (2.5th-97.5th: 21.5°C-23.8°C). CONCLUSION: The empirical mean temperature ranges for maximum abundance were determined for each mosquito species collected at USAG Humphreys. These data contributed to the identification of relative mosquito abundance patterns for estimating mosquito-borne disease risks and developing and implementing disease prevention practices.


Assuntos
Aedes/crescimento & desenvolvimento , Anopheles/crescimento & desenvolvimento , Culex/crescimento & desenvolvimento , Mosquitos Vetores/classificação , Animais , Clima , Controle de Insetos , Método de Monte Carlo , Mosquitos Vetores/crescimento & desenvolvimento , Dinâmica Populacional , República da Coreia , Temperatura
6.
Malar J ; 19(1): 195, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487233

RESUMO

BACKGROUND: To further reduce malaria, larval source management (LSM) is proposed as a complementary strategy to the existing strategies. LSM has potential to control insecticide resistant, outdoor biting and outdoor resting vectors. Concerns about costs and operational feasibility of implementation of LSM at large scale are among the reasons the strategy is not utilized in many African countries. Involving communities in LSM could increase intervention coverage, reduce costs of implementation and improve sustainability of operations. Community acceptance and participation in community-led LSM depends on a number of factors. These factors were explored under the Majete Malaria Project in Chikwawa district, southern Malawi. METHODS: Separate focus group discussions (FGDs) were conducted with members from the general community (n = 3); health animators (HAs) (n = 3); and LSM committee members (n = 3). In-depth interviews (IDIs) were conducted with community members. Framework analysis was employed to determine the factors contributing to community acceptance and participation in the locally-driven intervention. RESULTS: Nine FGDs and 24 IDIs were held, involving 87 members of the community. Widespread knowledge of malaria as a health problem, its mode of transmission, mosquito larval habitats and mosquito control was recorded. High awareness of an association between creation of larval habitats and malaria transmission was reported. Perception of LSM as a tool for malaria control was high. The use of a microbial larvicide as a form of LSM was perceived as both safe and effective. However, actual participation in LSM by the different interviewee groups varied. Labour-intensiveness and time requirements of the LSM activities, lack of financial incentives, and concern about health risks when wading in water bodies contributed to lower participation. CONCLUSION: Community involvement in LSM increased local awareness of malaria as a health problem, its risk factors and control strategies. However, community participation varied among the respondent groups, with labour and time demands of the activities, and lack of incentives, contributing to reduced participation. Innovative tools that can reduce the labour and time demands could improve community participation in the activities. Further studies are required to investigate the forms and modes of delivery of incentives in operational community-driven LSM interventions.


Assuntos
Anopheles , Participação da Comunidade/psicologia , Conhecimentos, Atitudes e Prática em Saúde , Malária/psicologia , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores , Animais , Anopheles/crescimento & desenvolvimento , Grupos Focais , Larva/crescimento & desenvolvimento , Malária/prevenção & controle , Malaui , Mosquitos Vetores/crescimento & desenvolvimento
7.
PLoS Negl Trop Dis ; 14(3): e0008118, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32119666

RESUMO

BACKGROUND: Dengue is a mosquito-borne viral disease and its transmission is closely linked to climate. We aimed to review available information on the projection of dengue in the future under climate change scenarios. METHODS: Using five databases (PubMed, ProQuest, ScienceDirect, Scopus and Web of Science), a systematic review was conducted to retrieve all articles from database inception to 30th June 2019 which projected the future of dengue under climate change scenarios. In this review, "the future of dengue" refers to disease burden of dengue, epidemic potential of dengue cases, geographical distribution of dengue cases, and population exposed to climatically suitable areas of dengue. RESULTS: Sixteen studies fulfilled the inclusion criteria, and five of them projected a global dengue future. Most studies reported an increase in disease burden, a wider spatial distribution of dengue cases or more people exposed to climatically suitable areas of dengue as climate change proceeds. The years 1961-1990 and 2050 were the most commonly used baseline and projection periods, respectively. Multiple climate change scenarios introduced by the Intergovernmental Panel on Climate Change (IPCC), including B1, A1B, and A2, as well as Representative Concentration Pathway 2.6 (RCP2.6), RCP4.5, RCP6.0 and RCP8.5, were most widely employed. Instead of projecting the future number of dengue cases, there is a growing consensus on using "population exposed to climatically suitable areas for dengue" or "epidemic potential of dengue cases" as the outcome variable. Future studies exploring non-climatic drivers which determine the presence/absence of dengue vectors, and identifying the pivotal factors triggering the transmission of dengue in those climatically suitable areas would help yield a more accurate projection for dengue in the future. CONCLUSIONS: Projecting the future of dengue requires a systematic consideration of assumptions and uncertainties, which will facilitate the development of tailored climate change adaptation strategies to manage dengue.


Assuntos
Mudança Climática , Dengue/epidemiologia , Dengue/transmissão , Transmissão de Doença Infecciosa , Exposição Ambiental , Mosquitos Vetores/crescimento & desenvolvimento , Efeitos Psicossociais da Doença , Humanos , Incidência , Mosquitos Vetores/efeitos da radiação , Prevalência , Topografia Médica
8.
J R Soc Interface ; 16(156): 20190270, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31362626

RESUMO

Vector ecology is integral to understanding the transmission of vector-borne diseases, with processes such as reproduction and competition pivotal in determining vector presence and abundance. The arbovirus vectors Aedes aegypti and Aedes albopictus compete as larvae, but this mechanism is insufficient to explain patterns of coexistence and exclusion. Inviable interspecies matings-known as reproductive interference-is another candidate mechanism. Here, we analyse mathematical models of mosquito population dynamics and epidemiology which include two Aedes-specific features of reproductive interference. First, as these mosquitoes use hosts to find mates, reproductive interference will only occur if the same host is visited. Host choice will, in turn, be determined by behavioural responses to host availability. Second, females can become sterilized after mis-mating with heterospecifics. We find that a species with an affinity for a shared host will suffer more from reproductive interference than a less selective competitor. Costs from reproductive interference can be 'traded-off' against costs from larval competition, leading to competitive outcomes that are difficult to predict from empirical evidence. Sterilizations of a self-limiting species can counterintuitively lead to higher densities than a competitor suffering less sterilization. We identify that behavioural responses and reproductive interference mediate a concomitant relationship between vector ecological dynamics and epidemiology. Competitors with opposite behavioural responses can maintain disease where human hosts are rare, due to vector coexistence facilitated by a reduced cost from reproductive interference. Our work elucidates the relative roles of the competitive mechanisms governing Aedes populations and the associated epidemiological consequences.


Assuntos
Aedes/crescimento & desenvolvimento , Doenças Transmissíveis , Modelos Biológicos , Modelos Econômicos , Mosquitos Vetores/crescimento & desenvolvimento , Controle de Pragas/economia , Animais , Doenças Transmissíveis/economia , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Feminino , Masculino , Dinâmica Populacional , Reprodução
9.
PLoS Negl Trop Dis ; 13(8): e0007686, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31442223

RESUMO

Urbanization is one of the major drivers of dengue epidemics globally. In Kenya, an intriguing pattern of urban dengue virus epidemics has been documented in which recurrent epidemics are reported from the coastal city of Mombasa, whereas no outbreaks occur in the two major inland cities of Kisumu and Nairobi. In an attempt to understand the entomological risk factors underlying the observed urban dengue epidemic pattern in Kenya, we evaluated vector density, human feeding patterns, vector genetics, and prevailing environmental temperature to establish how these may interact with one another to shape the disease transmission pattern. We determined that (i) Nairobi and Kisumu had lower vector density and human blood indices, respectively, than Mombasa, (ii) vector competence for dengue-2 virus was comparable among Ae. aegypti populations from the three cities, with no discernible association between susceptibility and vector cytochrome c oxidase subunit 1 gene variation, and (iii) vector competence was temperature-dependent. Our study suggests that lower temperature and Ae. aegypti vector density in Nairobi may be responsible for the absence of dengue outbreaks in the capital city, whereas differences in feeding behavior, but not vector competence, temperature, or vector density, contribute in part to the observed recurrent dengue epidemics in coastal Mombasa compared to Kisumu.


Assuntos
Aedes/crescimento & desenvolvimento , Aedes/virologia , Vírus da Dengue/isolamento & purificação , Dengue/epidemiologia , Densidade Demográfica , Temperatura , Animais , Cidades/epidemiologia , Dengue/transmissão , Transmissão de Doença Infecciosa , Feminino , Humanos , Quênia/epidemiologia , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/virologia , Medição de Risco
10.
Malar J ; 18(1): 51, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30795766

RESUMO

BACKGROUND: Entomological monitoring is important for public health because it provides data on the distribution, abundance and host-seeking behaviour of disease vectors. Various methods for sampling mosquitoes exist, most of which are biased towards, or specifically target, certain portions of a mosquito population. This study assessed the Suna trap, an odour-baited trap for sampling host-seeking mosquitoes both indoors and outdoors. METHODS: Two separate field experiments were conducted in villages in southern Malawi. The efficiency of the Suna trap in sampling mosquitoes was compared to that of the human landing catch (HLC) indoors and outdoors and the Centers for Disease, Control and Prevention Light Trap (CDC-LT) indoors. Potential competition between two Suna traps during simultaneous use of the traps indoors and outdoors was assessed by comparing mosquito catch sizes across three treatments: one trap indoors only; one trap outdoors only; and one trap indoors and one trap outdoors used simultaneously at the same house. RESULTS: The efficiency of the Suna trap in sampling female anophelines was similar to that of HLC indoors (P = 0.271) and HLC outdoors (P = 0.125), but lower than that of CDC-LT indoors (P = 0.001). Anopheline catch sizes in the Suna trap used alone indoors were similar to indoor Suna trap catch sizes when another Suna trap was simultaneously present outdoors (P = 0.891). Similarly, catch sizes of female anophelines with the Suna trap outdoors were similar to those that were caught outdoors when another Suna trap was simultaneously present indoors (P = 0.731). CONCLUSIONS: The efficiency of the Suna trap in sampling mosquitoes was equivalent to that of the HLC. Whereas the CDC-LT was more efficient in collecting female anophelines indoors, the use of this trap outdoors is limited given the requirement of setting it next to an occupied bed net. As demonstrated in this research, outdoor collections are also essential because they provide data on the relative contribution of outdoor biting to malaria transmission. Therefore, the Suna trap could serve as an alternative to the HLC and the CDC-LT, because it does not require the use of humans as natural baits, allows standardised sampling conditions across sampling points, and can be used outdoors. Furthermore, using two Suna traps simultaneously indoors and outdoors does not interfere with the sampling efficiency of either trap, which would save a considerable amount of time, energy, and resources compared to setting the traps indoors and then outdoors in two consecutive nights.


Assuntos
Anopheles/efeitos dos fármacos , Fatores Quimiotáticos/farmacologia , Culex/efeitos dos fármacos , Entomologia/métodos , Mosquitos Vetores/efeitos dos fármacos , Animais , Anopheles/crescimento & desenvolvimento , Culex/crescimento & desenvolvimento , Feminino , Malaui , Masculino , Mosquitos Vetores/crescimento & desenvolvimento
11.
Exp Parasitol ; 197: 76-84, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30414843

RESUMO

The prevalence of mosquito vector borne diseases and the resistance of mosquitoes to conventional pesticides have been of important public concern to the mosquito endemic countries. Present study was conducted to identify the native bio-larvicidal potential of the entomopathogenic nematodes; Steinernema siamkayai (KPR-4) Heterohabditis indica (KPR-8), Steinernema glaseri and Steinernema abbasi. The isolated nematodes were subsequently cultured and evaluated their larvicidal potential against the larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. Among the tested four different nematode species, the S. abassi exerted the highest mortality against A. aegypti (97.33%), the H. indica (KPR-8) against A. stephensi (97.33%) and the S. siamkayai (KPR-4) against C. quinquefasciatus (98.67%). The maximal mosquito-larvicidal property of EPNs was found with the LC50 and LC90 values (IJs/larvae): S. abbasi = 12.47 & 54.35 on A. aegypti; H. indica KPR-8 = 19.88 & 66.81 on A. stephensi and S. siamkayai KPR-4 = 16.69 & 58.97 on C. quinquefasciatus, respectively. The presently generated data on the molecular and larvicidal characteristics of the entomopathogenic nematodes form an important baseline data that upon further research would lead to the development of eco-friendly mosquito-control agent.


Assuntos
Culicidae/parasitologia , Mosquitos Vetores/parasitologia , Rabditídios/fisiologia , Aedes/crescimento & desenvolvimento , Aedes/parasitologia , Análise de Variância , Animais , Anopheles/crescimento & desenvolvimento , Anopheles/parasitologia , Sequência de Bases , Culex/crescimento & desenvolvimento , Culex/parasitologia , Culicidae/crescimento & desenvolvimento , DNA de Helmintos/química , DNA Ribossômico/química , Índia , Larva , Controle de Mosquitos/economia , Controle de Mosquitos/métodos , Mosquitos Vetores/crescimento & desenvolvimento , Controle Biológico de Vetores , Filogenia , Rabditídios/classificação , Rabditídios/genética , Rabditídios/isolamento & purificação , Solo/parasitologia , Strongyloidea/classificação , Strongyloidea/genética , Strongyloidea/isolamento & purificação , Strongyloidea/fisiologia
12.
Biomedica ; 38(0): 95-105, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184370

RESUMO

INTRODUCTION: Aedes (Stegomyia) aegypti is the vector for dengue, chikungunya, and Zika arboviruses. Bti-CECIF is a bioinsecticide designed and developed in the form of a solid tablet for the control of this vector. It contains Bacillus thuringiensis var. israelensis (Bti) serotype H-14. OBJECTIVE: To evaluate under semi-field and field conditions the efficacy and residual activity of Bti-CECIF tablets on Aedes aegypti larvae in two Colombian municipalities. MATERIALS AND METHODS: We tested under semi-field conditions in plastic tanks (Rotoplast™) four different Bti doses (0.13, 0.40, 0.66 and 0.93 mg/L) in the municipality of Apartadó, department of Antioquia, to assess Bti-CECIF efficacy (percentage of reduction of larval density) and the residual activity in water tanks containing A. aegypti third-instar larvae. The efficacy and residuality of the most lethal dose were subsequently evaluated under field conditions in cement tanks in the municipality of San Carlos, department of Córdoba. RESULTS: Under semi-field conditions, the highest tested dose exhibited the greatest residual activity (15 days) after which larval mortality was 80%. Under field conditions, the highest tested Bti-CECIF doses showed 100% mortality and exhibited a residual activity of seven days in 90% of the tanks. CONCLUSION: Bti-CECIF tablets effectively controlled A. aegypti larvae under field conditions for up to seven days post-treatment.


Assuntos
Aedes/microbiologia , Bacillus thuringiensis/fisiologia , Controle de Mosquitos , Mosquitos Vetores/microbiologia , Controle Biológico de Vetores , Aedes/crescimento & desenvolvimento , Animais , Colômbia , Larva/microbiologia , Mosquitos Vetores/crescimento & desenvolvimento , Comprimidos
13.
PLoS One ; 13(3): e0194664, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29554153

RESUMO

Members of the Aedes genus of mosquitoes are widely recognized as vectors of viral diseases. Ae.albopictus is its most invasive species, and are known to carry viruses such as Dengue, Chikugunya and Zika. Its emerging importance puts Ae.albopictus on the forefront of genetic interaction and evolution studies. However, a panel of suitable reference genes specific for this insect is as of now undescribed. Nine reference genes, namely ACT, eEF1-γ, eIF2α, PP2A, RPL32, RPS17, PGK1, ILK and STK were evaluated. Expression patterns of the candidate reference genes were observed in a total of seventeen sample types, separated by stage of development and age. Gene stability was inferred from obtained quantification data through three widely cited evaluation algorithms i.e. BestKeeper, geNorm, and NormFinder. No single gene showed a satisfactory degree of stability throughout all developmental stages. Therefore, we propose combinations of PGK and ILK for early embryos; RPL32 and RPS17 for late embryos, all four larval instars, and pupae samples; eEF1-γ with STK for adult males; eEF1-γ with RPS17 for non-blood fed females; and eEF1-γ with eIF2α for both blood-fed females and cell culture. The results from this study should be able to provide a more informed selection of normalizing genes during qPCR in Ae.albopictus.


Assuntos
Aedes/genética , Genes Essenciais , Genes de Insetos , Estágios do Ciclo de Vida/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Aedes/embriologia , Aedes/crescimento & desenvolvimento , Aedes/virologia , Animais , Vírus Chikungunya/genética , Vírus da Dengue/genética , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Mosquitos Vetores/embriologia , Mosquitos Vetores/genética , Mosquitos Vetores/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Padrões de Referência , Zika virus/genética
14.
PLoS Negl Trop Dis ; 11(8): e0005858, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28817563

RESUMO

Dengue (DEN) and yellow fever (YF) are re-emerging in East Africa, with contributing drivers to this trend being unplanned urbanization and increasingly adaptable anthropophilic Aedes (Stegomyia) vectors. Entomological risk assessment of these diseases remains scarce for much of East Africa and Kenya even in the dengue fever-prone urban coastal areas. Focusing on major cities of Kenya, we compared DEN and YF risk in Kilifi County (DEN-outbreak-prone), and Kisumu and Nairobi Counties (no documented DEN outbreaks). We surveyed water-holding containers for mosquito immature (larvae/pupae) indoors and outdoors from selected houses during the long rains, short rains and dry seasons (100 houses/season) in each County from October 2014-June 2016. House index (HI), Breteau index (BI) and Container index (CI) estimates based on Aedes (Stegomyia) immature infestations were compared by city and season. Aedes aegypti and Aedes bromeliae were the main Stegomyia species with significantly more positive houses outdoors (212) than indoors (88) (n = 900) (χ2 = 60.52, P < 0.0001). Overall, Ae. aegypti estimates of HI (17.3 vs 11.3) and BI (81.6 vs 87.7) were higher in Kilifi and Kisumu, respectively, than in Nairobi (HI, 0.3; BI,13). However, CI was highest in Kisumu (33.1), followed by Kilifi (15.1) then Nairobi (5.1). Aedes bromeliae indices were highest in Kilifi, followed by Kisumu, then Nairobi with HI (4.3, 0.3, 0); BI (21.3, 7, 0.7) and CI (3.3, 3.3, 0.3), at the respective sites. HI and BI for both species were highest in the long rains, compared to the short rains and dry seasons. We found strong positive correlations between the BI and CI, and BI and HI for Ae. aegypti, with the most productive container types being jerricans, drums, used/discarded containers and tyres. On the basis of established vector index thresholds, our findings suggest low-to-medium risk levels for urban YF and high DEN risk for Kilifi and Kisumu, whereas for Nairobi YF risk was low while DEN risk levels were low-to-medium. The study provides a baseline for future vector studies needed to further characterise the observed differential risk patterns by vector potential evaluation. Identified productive containers should be made the focus of community-based targeted vector control programs.


Assuntos
Aedes/crescimento & desenvolvimento , Dengue/epidemiologia , Dengue/transmissão , Mosquitos Vetores/crescimento & desenvolvimento , Febre Amarela/epidemiologia , Febre Amarela/transmissão , Animais , Cidades/epidemiologia , Quênia/epidemiologia , Medição de Risco
15.
PLoS Negl Trop Dis ; 11(7): e0005802, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28742854

RESUMO

BACKGROUND: One major consequence of economic development in South-East Asia has been a rapid expansion of rubber plantations, in which outbreaks of dengue and malaria have occurred. Here we explored the difference in risk of exposure to potential dengue, Japanese encephalitis (JE), and malaria vectors between rubber workers and those engaged in traditional forest activities in northern Laos PDR. METHODOLOGY/PRINCIPAL FINDINGS: Adult mosquitoes were collected for nine months in secondary forests, mature and immature rubber plantations, and villages. Human behavior data were collected using rapid participatory rural appraisals and surveys. Exposure risk was assessed by combining vector and human behavior and calculating the basic reproduction number (R0) in different typologies. Compared to those that stayed in the village, the risk of dengue vector exposure was higher for those that visited the secondary forests during the day (odds ratio (OR) 36.0), for those living and working in rubber plantations (OR 16.2) and for those that tapped rubber (OR 3.2). Exposure to JE vectors was also higher in the forest (OR 1.4) and, similar when working (OR 1.0) and living in the plantations (OR 0.8). Exposure to malaria vectors was greater in the forest (OR 1.3), similar when working in the plantations (OR 0.9) and lower when living in the plantations (OR 0.6). R0 for dengue was >2.8 for all habitats surveyed, except villages where R0≤0.06. The main malaria vector in all habitats was Anopheles maculatus s.l. in the rainy season and An. minimus s.l. in the dry season. CONCLUSIONS/SIGNIFICANCE: The highest risk of exposure to vector mosquitoes occurred when people visit natural forests. However, since rubber workers spend long periods in the rubber plantations, their risk of exposure is increased greatly compared to those who temporarily enter natural forests or remain in the village. This study highlights the necessity of broadening mosquito control to include rubber plantations.


Assuntos
Exposição Ambiental , Mosquitos Vetores/crescimento & desenvolvimento , Exposição Ocupacional , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Número Básico de Reprodução , Criança , Pré-Escolar , Dengue/epidemiologia , Dengue/transmissão , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/transmissão , Feminino , Humanos , Lactente , Laos , Malária/epidemiologia , Malária/transmissão , Masculino , Pessoa de Meia-Idade , Medição de Risco , População Rural , Adulto Jovem
16.
Epidemiol Infect ; 145(3): 451-461, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27873572

RESUMO

Dengue fever (DF) is the most prevalent and rapidly spreading mosquito-borne disease globally. Control of DF is limited by barriers to vector control and integrated management approaches. This study aimed to explore the potential risk factors for autochthonous DF transmission and to estimate the threshold effects of high-order interactions among risk factors. A time-series regression tree model was applied to estimate the hierarchical relationship between reported autochthonous DF cases and the potential risk factors including the timeliness of DF surveillance systems (median time interval between symptom onset date and diagnosis date, MTIOD), mosquito density, imported cases and meteorological factors in Zhongshan, China from 2001 to 2013. We found that MTIOD was the most influential factor in autochthonous DF transmission. Monthly autochthonous DF incidence rate increased by 36·02-fold [relative risk (RR) 36·02, 95% confidence interval (CI) 25·26-46·78, compared to the average DF incidence rate during the study period] when the 2-month lagged moving average of MTIOD was >4·15 days and the 3-month lagged moving average of the mean Breteau Index (BI) was ⩾16·57. If the 2-month lagged moving average MTIOD was between 1·11 and 4·15 days and the monthly maximum diurnal temperature range at a lag of 1 month was <9·6 °C, the monthly mean autochthonous DF incidence rate increased by 14·67-fold (RR 14·67, 95% CI 8·84-20·51, compared to the average DF incidence rate during the study period). This study demonstrates that the timeliness of DF surveillance systems, mosquito density and diurnal temperature range play critical roles in the autochthonous DF transmission in Zhongshan. Better assessment and prediction of the risk of DF transmission is beneficial for establishing scientific strategies for DF early warning surveillance and control.


Assuntos
Dengue/epidemiologia , Mosquitos Vetores/crescimento & desenvolvimento , Tempo (Meteorologia) , Animais , China/epidemiologia , Humanos , Incidência , Modelos Estatísticos , Medição de Risco , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA