Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Chem ; 110: 108068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669847

RESUMO

Protein variant libraries produced by site-directed mutagenesis are a useful tool utilized by protein engineers to explore variants with potentially improved properties, such as activity and stability. These libraries are commonly built by selecting residue positions and alternative beneficial mutations for each position. All possible combinations are then constructed and screened, by incorporating degenerate codons at mutation sites. These degenerate codons often encode additional unwanted amino acids or even STOP codons. Our study aims to take advantage of annealing based recombination of oligonucleotides during synthesis and utilize multiple degenerate codons per mutation site to produce targeted protein libraries devoid of unwanted variants. Toward this goal we created an algorithm to calculate the minimum number of degenerate codons necessary to specify any given amino acid set, and a dynamic programming method that uses this algorithm to optimally partition a DNA target sequence with degeneracies into overlapping oligonucleotides, such that the total cost of synthesis of the target mutant protein library is minimized. Computational experiments show that, for a modest increase in DNA synthesis costs, beneficial variant yields in produced mutant libraries are increased by orders of magnitude, an effect particularly pronounced in large combinatorial libraries.


Assuntos
Mutação , Algoritmos , Proteínas/genética , Proteínas/química , Mutagênese Sítio-Dirigida , Biblioteca de Peptídeos , DNA/genética , DNA/química , Oligonucleotídeos/química , Oligonucleotídeos/genética
2.
Biotechniques ; 73(5): 239-245, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36398840

RESUMO

Despite the development of various methods and commercial kits, site-directed mutagenesis of large plasmids remains a challenge in many laboratories. A site-directed mutagenesis method was developed for large plasmids by directly transforming two overlapping PCR fragments into Escherichia coli. This method successfully generated mutations for plasmids of 8.3 kb and 11.0 kb with high efficiencies. The method only requires Q5 DNA polymerase and DpnI, which greatly reduces costs. The procedure is simple, including PCR reaction, DpnI treatment and transformation. This simple, efficient and economical site-directed mutagenesis method for large plasmids is likely to be widely applied in the future.


Assuntos
DNA Polimerase Dirigida por DNA , Escherichia coli , Plasmídeos/genética , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase/métodos , Escherichia coli/genética
3.
World J Microbiol Biotechnol ; 38(1): 17, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34897561

RESUMO

Serratiopeptidase is a bacterial protease that has been used medicinally in variety of applications. Though, some drawbacks like sensitivity to environmental conditions and low penetration into cells limited its usage as a potent pharmaceutical agent. This study aimed to produce four novel truncated serratiopeptidase analogs with different lengths and possessing one disulfide bridge, in order to enhance protease activity and thermal stability of this enzyme. Mutagenesis and truncation were performed using specific primers by conventional and overlap PCR. The recombinant proteins were expressed in E. coli cells then purified and their protease activity and stability were checked at different pH and temperatures in comparison to the native form of the enzyme, Serra473. Enzyme activity assay showed that T306 [12-302 ss] was not further active which could be due to the large truncation. However, T344 [8-339 ss], T380 [8-339 ss] and T380 [12-302 ss] proteins showed higher proteolytic activity comparing to Serra473. These analogs were active at temperatures of 25-90 °C and pH 6-9.5. Interestingly, remaining enzyme activity of T344 [8-339 ss], T380 [8-339 ss] and T380 [12-302 ss] forms at 90 °C calculated as 87, 83 and 86 percent, respectively, comparing to the activity at room temperature. However, residual activity at the same conditions was 50% for the full length enzyme. Formation of disulfide bond in engineered serratiopeptidases could be the main reason for higher thermal stability compared to Serra473. Thermostability of T344 [8-339 ss], as the most thermostable designed serratiopeptidase, was additionally confirmed using differential scanning calorimetry.


Assuntos
Estabilidade Enzimática , Escherichia coli/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Engenharia Genética , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Mutagênese Sítio-Dirigida , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
4.
Carcinogenesis ; 42(12): 1428-1438, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34849607

RESUMO

Serine/Threonine Kinase 11 (STK11) encodes an important tumor suppressor that is frequently mutated in lung adenocarcinoma. Clinical studies have shown that mutations in STK11 resulting in loss of function correlate with resistance to anti-PD-1 monoclonal antibody therapy in KRAS-driven non-small cell lung cancer (NSCLC), but the molecular mechanisms responsible remain unclear. Despite this uncertainty, STK11 functional status is emerging as a reliable biomarker for predicting non-response to anti-PD-1 therapy in NSCLC patients. The clinical utility of this biomarker ultimately depends upon accurate classification of STK11 variants. For nonsense variants occurring early in the STK11 coding region, this assessment is straightforward. However, rigorously demonstrating the functional impact of missense variants remains an unmet challenge. Here we present data characterizing four STK11 splice-site variants by analyzing tumor mRNA, and 28 STK11 missense variants using an in vitro kinase assay combined with a cell-based p53-dependent luciferase reporter assay. The variants we report were identified in primary human NSCLC biopsies in collaboration with the University of Vermont Genomic Medicine group. Additionally, we compare our experimental results with data from 22 in silico predictive algorithms. Our work highlights the power, utility and necessity of functional variant assessment and will aid STK11 variant curation, provide a platform to assess novel STK11 variants and help guide anti-PD-1 therapy utilization in KRAS-driven NSCLCs.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Processamento Alternativo , Biomarcadores Tumorais , Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Análise Mutacional de DNA , Suscetibilidade a Doenças , Edição de Genes , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidade , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Fosforilação , Prognóstico , Sítios de Splice de RNA
5.
Nat Commun ; 12(1): 4721, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354057

RESUMO

G protein-coupled receptors (GPCRs) are the most common proteins targeted by approved drugs. A complete mechanistic elucidation of large-scale conformational transitions underlying the activation mechanisms of GPCRs is of critical importance for therapeutic drug development. Here, we apply a combined computational and experimental framework integrating extensive molecular dynamics simulations, Markov state models, site-directed mutagenesis, and conformational biosensors to investigate the conformational landscape of the angiotensin II (AngII) type 1 receptor (AT1 receptor) - a prototypical class A GPCR-activation. Our findings suggest a synergistic transition mechanism for AT1 receptor activation. A key intermediate state is identified in the activation pathway, which possesses a cryptic binding site within the intracellular region of the receptor. Mutation of this cryptic site prevents activation of the downstream G protein signaling and ß-arrestin-mediated pathways by the endogenous AngII octapeptide agonist, suggesting an allosteric regulatory mechanism. Together, these findings provide a deeper understanding of AT1 receptor activation at an atomic level and suggest avenues for the design of allosteric AT1 receptor modulators with a broad range of applications in GPCR biology, biophysics, and medicinal chemistry.


Assuntos
Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/metabolismo , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação/genética , Desenho de Fármacos , Humanos , Cadeias de Markov , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Receptor Tipo 1 de Angiotensina/genética , Transdução de Sinais , beta-Arrestinas/metabolismo
6.
Int J Biol Macromol ; 184: 92-100, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34116094

RESUMO

Feruloyl esterase is an indispensable biocatalyst in food processing, pesticide and pharmaceutical industries, catalyzing the cleavage of the ester bond cross-linked between the polysaccharide side chain of hemicellulose and ferulic acid in plant cell walls. LP_0796 from Lactobacillus plantarum was identified as a feruloyl esterase that may have potential applications in the food industry, but the lack of the substrate recognition and catalytic mechanisms limits its application. Here, LP_0796 showed the highest activity towards methyl caffeate at pH 6.6 and 40 °C. The crystal structure of LP_0796 was determined at 2.5 Å resolution and featured a catalytic triad Asp195-containing loop facing the opposite direction, thus forming a wider substrate binding pocket. Molecular docking simulation and site-directed mutagenesis studies further demonstrated that in addition to the catalytic triad (Ser94, Asp195, His225), Arg125 and Val128 played essential roles in the function of the active site. Our data also showed that Asp mutation of Ala23 and Ile198 increased the catalytic efficiency to 4- and 5-fold, respectively. Collectively, this work provided a better understanding of the substrate recognition and catalytic mechanisms of LP_0796 and may facilitate the future protein design of this important feruloyl esterase.


Assuntos
Ácidos Cafeicos/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Lactobacillus plantarum/enzimologia , Mutagênese Sítio-Dirigida/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico , Cristalografia por Raios X , Indústria Farmacêutica , Manipulação de Alimentos , Temperatura Alta , Concentração de Íons de Hidrogênio , Lactobacillus plantarum/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Especificidade por Substrato
7.
Environ Microbiol ; 23(10): 5769-5783, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33830605

RESUMO

Carboxamide fungicides target succinate dehydrogenase (SDH). Recently published monitoring studies have shown that Corynespora cassiicola isolates are resistant to one or several SDH inhibitors (SDHIs) with amino acid substitutions in the SDH B and D subunits. We confirmed, by site-directed mutagenesis of the sdhB and sdhD genes, that each of the mutations identified in the field strains of C. cassiicola conferred resistance to boscalid and, in some cases, cross-resistance to other SDHIs (fluopyram, carboxin and penthiopyrad). Analyses of the enzyme activity and sdhB and sdhD gene expression show that modifications (SdhB_H278Y and SdhD_H105R) that result in a decline in SDH enzyme activity may be complemented by gene overexpression. The SdhB_H278Y, SdhB_I280V and SdhD_H105R mutants suffered large fitness penalties based on their biological properties, including conidia production and germination, mycelial growth, pathogenicity or survival abilities under environment stress. However, fitness cost was not found in the SdhB_H278R, SdhD_D95E and SdhD_G109V mutants. In the evaluation of resistance to boscalid in 2018 and 2019, the frequency of the SdhD_D95E and SdhD_G109V genotypes in the Liaoning and Shandong provinces changed dramatically compared with 2005-2017, from low resistance frequency (0.53% for D95E and 2.53% for G109V) to dominant resistance frequency (17.28% for D95E and 15.38% for G109V). Considering both the fitness and increased frequency of these genotypes, we may infer that the SdhD_D95E and SdhD_G109V mutants will be the dominant resistance mutants in field.


Assuntos
Farmacorresistência Fúngica , Succinato Desidrogenase , Ascomicetos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Mutagênese Sítio-Dirigida , Doenças das Plantas , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
8.
Infect Genet Evol ; 85: 104507, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858233

RESUMO

The COVID-19 pandemic highlighted healthcare disparities in multiple countries. As such morbidity and mortality vary significantly around the globe between populations and ethnic groups. Underlying medical conditions and environmental factors contribute higher incidence in some populations and a genetic predisposition may play a role for severe cases with respiratory failure. Here we investigated whether genetic variation in the key genes for viral entry to host cells-ACE2 and TMPRSS2-and sensing of viral genomic RNAs (i.e., TLR3/7/8) could explain the variation in incidence across diverse ethnic groups. Overall, these genes are under strong selection pressure and have very few nonsynonymous variants in all populations. Genetic determinant for the binding affinity between SARS-CoV-2 and ACE2 does not show significant difference between populations. Non-genetic factors are likely to contribute differential population characteristics affected by COVID-19. Nonetheless, a systematic mutagenesis study on the receptor binding domain of ACE2 is required to understand the difference in host-viral interaction across populations.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Receptores Toll-Like/genética , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , Humanos , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Seleção Genética , Serina Endopeptidases/metabolismo , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/química , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/química , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismo , Receptores Toll-Like/química , Receptores Toll-Like/metabolismo , Internalização do Vírus
9.
Nat Commun ; 11(1): 1231, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144241

RESUMO

We use a hybrid fluorescence spectroscopic toolkit to monitor T4 Lysozyme (T4L) in action by unraveling the kinetic and dynamic interplay of the conformational states. In particular, by combining single-molecule and ensemble multiparameter fluorescence detection, EPR spectroscopy, mutagenesis, and FRET-positioning and screening, and other biochemical and biophysical tools, we characterize three short-lived conformational states over the ns-ms timescale. The use of 33 FRET-derived distance sets, to screen available T4L structures, reveal that T4L in solution mainly adopts the known open and closed states in exchange at 4 µs. A newly found minor state, undisclosed by, at present, more than 500 crystal structures of T4L and sampled at 230 µs, may be actively involved in the product release step in catalysis. The presented fluorescence spectroscopic toolkit will likely accelerate the development of dynamic structural biology by identifying transient conformational states that are highly abundant in biology and critical in enzymatic reactions.


Assuntos
Muramidase/metabolismo , Proteínas Virais/metabolismo , Bacteriófago T4/enzimologia , Bacteriófago T4/genética , Biocatálise , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Método de Monte Carlo , Muramidase/química , Muramidase/genética , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Virais/química , Proteínas Virais/genética
10.
Elife ; 82019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31084716

RESUMO

Kinesin force generation involves ATP-induced docking of the neck linker (NL) along the motor core. However, the roles of the proposed steps of NL docking, cover-neck bundle (CNB) and asparagine latch (N-latch) formation, during force generation are unclear. Furthermore, the necessity of NL docking for transport of membrane-bound cargo in cells has not been tested. We generated kinesin-1 motors impaired in CNB and/or N-latch formation based on molecular dynamics simulations. The mutant motors displayed reduced force output and inability to stall in optical trap assays but exhibited increased speeds, run lengths, and landing rates under unloaded conditions. NL docking thus enhances force production but at a cost to speed and processivity. In cells, teams of mutant motors were hindered in their ability to drive transport of Golgi elements (high-load cargo) but not peroxisomes (low-load cargo). These results demonstrate that the NL serves as a mechanical element for kinesin-1 transport under physiological conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cinesinas/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica
11.
J Cell Sci ; 132(5)2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683799

RESUMO

Transcription factor mobility is a determining factor in the regulation of gene expression. Here, we have studied the intranuclear dynamics of the glucocorticoid receptor (GR) by using fluorescence recovery after photobleaching and single-molecule microscopy. First, we have described the dynamic states in which the GR occurs. Second, we have analyzed the transitions between these states by using a continuous-time Markov chain model and functionally investigated these states by making specific mutations in the DNA-binding domain. This analysis revealed that the GR diffuses freely through the nucleus and, once it leaves this free diffusion state, most often enters a repetitive switching mode. In this mode it alternates between slow diffusion as a result of brief nonspecific DNA-binding events, and a state of stable binding to specific DNA target sites. This repetitive switching mechanism results in a compact search strategy that facilitates finding of DNA target sites by the GR.This article has an associated First Person interview with the first author of the paper.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Receptores de Glucocorticoides/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação/genética , Células COS , Chlorocebus aethiops , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Cadeias de Markov , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos/genética , Receptores de Glucocorticoides/genética
12.
Nucleic Acids Res ; 47(3): e15, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30462336

RESUMO

The assembly of DNA fragments with homologous arms is becoming popular in routine cloning. For an in vitro assembly reaction, a DNA polymerase is often used either alone for its 3'-5' exonuclease activity or together with a 5'-3' exonuclease for its DNA polymerase activity. Here, we present a 'T5 exonuclease DNA assembly' (TEDA) method that only uses a 5'-3' exonuclease. DNA fragments with short homologous ends were treated by T5 exonuclease and then transformed into Escherichia coli to produce clone colonies. The cloning efficiency was similar to that of the commercial In-Fusion method employing a proprietary DNA polymerase, but higher than that of the Gibson method utilizing T5 exonuclease, Phusion DNA polymerase, and DNA ligase. It also assembled multiple DNA fragments and did simultaneous site-directed mutagenesis at multiple sites. The reaction mixture was simple, and each reaction used 0.04 U of T5 exonuclease that cost 0.25 US cents. The simplicity, cost effectiveness, and cloning efficiency should promote its routine use, especially for labs with a budget constraint. TEDA may trigger further development of DNA assembly methods that employ single exonucleases.


Assuntos
Clonagem Molecular/métodos , Exodesoxirribonucleases , Mutagênese Sítio-Dirigida/métodos , Escherichia coli/genética , Vetores Genéticos , Polietilenoglicóis , Trometamina
13.
Mol Pharm ; 15(12): 5697-5710, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30395473

RESUMO

Monoclonal antibodies (mAbs) are complex molecular structures. They are often prone to development challenges particularly at high concentrations due to undesired solution properties such as reversible self-association, high viscosity, and liquid-liquid phase separation. In addition to formulation optimization, applying protein engineering can provide an alternative mitigation strategy. Protein engineering during the discovery phase can provide great benefits to optimize molecular properties, resulting in improved developability profiles. Here, we present a case study utilizing complementary analytical and predictive in silico methods. We have systematically identified and reengineered problematic residues responsible for the self-association of a model mAb, driven by a complex combination of hydrophobic and electrostatic interactions. Noteworthy findings include a more dominant contribution of hydrophobic interactions to self-association and potential feasibility of mutations in the CDR regions to mitigate self-association. The engineered mutation panel enabled us to assess potential correlations among commonly utilized developability screening assays, including affinity capture self-interaction nanospectroscopy (AC-SINS), dynamic light scattering (DLS), and apparent solubility by PEG-precipitation. In addition, we evaluated the correlations between experimental measurements and computational predictions. CamSol, an in silico computational tool that accounts for complex molecular interactions and neighboring hotspots, was found to be an effective screening tool. Our work led to reengineered mAb variants, better suited for high-concentration liquid formulation development. The engineered mAbs exhibited enhanced in vitro and simulated in vivo solubility and reduced self-association propensity, while maintaining binding affinity and thermal stability.


Assuntos
Anticorpos Monoclonais/genética , Desenvolvimento de Medicamentos , Mutagênese Sítio-Dirigida , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Disponibilidade Biológica , Química Farmacêutica , Clonagem Molecular , Simulação por Computador , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Modelos Biológicos , Modelos Químicos , Mutação , Solubilidade , Eletricidade Estática , Viscosidade
14.
PLoS Comput Biol ; 14(11): e1006503, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30388104

RESUMO

Multiscale modeling provides a very powerful means of studying complex biological systems. An important component of this strategy involves coarse-grained (CG) simplifications of regions of the system, which allow effective exploration of complex systems. Here we studied aspects of CG modeling of the human zinc transporter ZnT2. Zinc is an essential trace element with 10% of the proteins in the human proteome capable of zinc binding. Thus, zinc deficiency or impairment of zinc homeostasis disrupt key cellular functions. Mammalian zinc transport proceeds via two transporter families: ZnT and ZIP; however, little is known about the zinc permeation pathway through these transporters. As a step towards this end, we herein undertook comprehensive computational analyses employing multiscale techniques, focusing on the human zinc transporter ZnT2 and its bacterial homologue, YiiP. Energy calculations revealed a favorable pathway for zinc translocation via alternating access. We then identified key residues presumably involved in the passage of zinc ions through ZnT2 and YiiP, and functionally validated their role in zinc transport using site-directed mutagenesis of ZnT2 residues. Finally, we use a CG Monte Carlo simulation approach to sample the transition between the inward-facing and the outward-facing states. We present our structural models of the inward- and outward-facing conformations of ZnT2 as a blueprint prototype of the transporter conformations, including the putative permeation pathway and participating residues. The insights gained from this study may facilitate the delineation of the pathways of other zinc transporters, laying the foundations for the molecular basis underlying ion permeation. This may possibly facilitate the development of therapeutic interventions in pathological states associated with zinc deficiency and other disorders based on loss-of-function mutations in solute carriers.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Modelos Teóricos , Zinco/metabolismo , Proteínas de Transporte de Cátions/genética , Biologia Computacional/métodos , Deficiências Nutricionais/metabolismo , Deficiências Nutricionais/terapia , Homeostase , Humanos , Método de Monte Carlo , Mutagênese Sítio-Dirigida , Permeabilidade , Zinco/deficiência
15.
Parasit Vectors ; 11(1): 540, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301454

RESUMO

BACKGROUND: Single nucleotide polymorphisms (SNPs) in codons 167, 198 and 200 of the beta-tubulin isotype 1 gene are associated with benzimidazoles resistance in many helminths. Codon 167 mutation has never been described in hookworms; however, polymorphisms in codons 198 and 200 have been described for Ancylostoma caninum and Necator americanus. These mutations have never been investigated in Ancylostoma braziliense; therefore, it is not known if they are present in this species and whether they are correlated with treatment resistance. The RFLP-PCR technique has been used to analyze these polymorphisms in some nematodes, but depending on the species, these alterations do not create or eliminate any restriction enzyme cleavage site, making it impossible to use this technique. Here, we describe the standardization and application of a modified RFLP-PCR technique for detecting polymorphisms in individual A. braziliense worms recovered from naturally infected dogs in two Brazilian states. RESULTS: The molecular techniques used were sensitive, specific, and easy to apply. To our knowledge, we report for the first time the presence of a polymorphism at codon 198 of the beta-tubulin gene of A. braziliense (1/81; 95% CI: 0-3.69%). CONCLUSIONS: It is not known whether the presence of the mutation in codon 198 of the beta-tubulin gene of A. braziliense has importance for this parasite. However, based on studies of other helminths, it is possible that this polymorphism is directly related to the resistance to benzimidazoles. This may be a major concern, since this nematode has considerable relevance as a parasite of canids and felids and as one of the agents of cutaneous larva migrans in humans. Standardized methodologies will be useful for screening for polymorphisms in the beta-tubulin gene of canine hookworms in a broader population. The method could also be adapted for the analysis of other SNPs in other nematode species.


Assuntos
Ancylostoma/genética , Resistência a Múltiplos Medicamentos/genética , Mutação , Reação em Cadeia da Polimerase/normas , Polimorfismo de Fragmento de Restrição/genética , Polimorfismo de Nucleotídeo Único/genética , Ancylostoma/efeitos dos fármacos , Animais , Benzimidazóis/farmacologia , Códon , Doenças do Cão/parasitologia , Cães/parasitologia , Feminino , Técnicas de Genotipagem/métodos , Masculino , Mutagênese Sítio-Dirigida/métodos , Mutagênese Sítio-Dirigida/normas , Reação em Cadeia da Polimerase/economia , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Tubulina (Proteína)/genética
16.
Exp Hematol ; 64: 12-32, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29807062

RESUMO

The ß-hemoglobinopathies, transfusion-dependent ß-thalassemia and sickle cell disease, are the most prevalent inherited disorders worldwide and affect millions of people. Many of these patients have a shortened life expectancy and suffer from severe morbidity despite supportive therapies, which impose an enormous financial burden to societies. The only available curative therapy is allogeneic hematopoietic stem cell transplantation, although most patients do not have an HLA-matched sibling donor, and those who do still risk life-threatening complications. Therefore, gene therapy by one-time ex vivo modification of hematopoietic stem cells followed by autologous engraftment is an attractive new therapeutic modality. The first proof-of-principle of conversion to transfusion independence by means of a lentiviral vector expressing a marked and anti-sickling ßT87Q-globin gene variant was reported a decade ago in a patient with transfusion-dependent ß-thalassemia. In follow-up multicenter Phase II trials with an essentially identical vector (termed LentiGlobin BB305) and protocol, 12 of the 13 patients with a non-ß0/ß0 genotype, representing more than half of all transfusion-dependent ß-thalassemia cases worldwide, stopped red blood cell transfusions with total hemoglobin levels in blood approaching normal values. Correction of biological markers of dyserythropoiesis was achieved in evaluated patients. In nine patients with ß0/ß0 transfusion-dependent ß-thalassemia or equivalent severity (ßIVS1-110), median annualized transfusion volume decreased by 73% and red blood cell transfusions were stopped in three patients. Proof-of-principle of therapeutic efficacy in the first patient with sickle cell disease was also reported with LentiGlobin BB305. Encouraging results were presented in children with transfusion-dependent ß-thalassemia in another trial with the GLOBE lentiviral vector and several other gene therapy trials are currently open for both transfusion-dependent ß-thalassemia and sickle cell disease. Phase III trials are now under way and should help to determine benefit/risk/cost ratios to move gene therapy toward clinical practice.


Assuntos
Vetores Genéticos/uso terapêutico , Hemoglobinopatias/terapia , Lentivirus/genética , Anemia Falciforme/terapia , Transfusão de Sangue , Ensaios Clínicos como Assunto , Países em Desenvolvimento , Edição de Genes , Vetores Genéticos/genética , Carga Global da Doença , Transplante de Células-Tronco Hematopoéticas , Hemoglobinopatias/epidemiologia , Hemoglobinopatias/genética , Humanos , Sobrecarga de Ferro/etiologia , Sobrecarga de Ferro/prevenção & controle , Mutagênese Sítio-Dirigida , Prevalência , Proteínas Recombinantes/genética , Condicionamento Pré-Transplante/métodos , Globinas beta/genética , Talassemia beta/terapia
17.
J Chem Theory Comput ; 14(6): 3279-3288, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29708338

RESUMO

The generation of a complete ensemble of geometrical configurations is required to obtain reliable estimations of absolute binding free energies by alchemical free energy methods. Molecular dynamics (MD) is the most popular sampling method, but the representation of large biomolecular systems may be incomplete owing to energetic barriers that impede efficient sampling of the configurational space. Monte Carlo (MC) methods can possibly overcome this issue by adapting the attempted movement sizes to facilitate transitions between alternative local-energy minima. In this study, we present an MC statistical mechanics algorithm to explore the protein-ligand conformational space with emphasis on the motions of the protein backbone and side chains. The parameters for each MC move type were optimized to better reproduce conformational distributions of 18 dipeptides and the well-studied T4-lysozyme L99A protein. Next, the performance of the improved MC algorithms was evaluated by computing absolute free energies of binding for L99A lysozyme with benzene and seven analogs. Results for benzene with L99A lysozyme from MD and the optimized MC protocol were found to agree within 0.6 kcal/mol, while a mean unsigned error of 1.2 kcal/mol between MC results and experiment was obtained for the seven benzene analogs. Significant advantages in computation speed are also reported with MC over MD for similar extents of configurational sampling.


Assuntos
Dipeptídeos/metabolismo , Método de Monte Carlo , Muramidase/metabolismo , Bacteriófago T4/enzimologia , Dipeptídeos/química , Simulação de Dinâmica Molecular , Muramidase/química , Muramidase/genética , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Termodinâmica
18.
Cell Syst ; 6(4): 444-455.e6, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29525204

RESUMO

Transcriptional activation domains are essential for gene regulation, but their intrinsic disorder and low primary sequence conservation have made it difficult to identify the amino acid composition features that underlie their activity. Here, we describe a rational mutagenesis scheme that deconvolves the function of four activation domain sequence features-acidity, hydrophobicity, intrinsic disorder, and short linear motifs-by quantifying the activity of thousands of variants in vivo and simulating their conformational ensembles using an all-atom Monte Carlo approach. Our results with a canonical activation domain from the Saccharomyces cerevisiae transcription factor Gcn4 reconcile existing observations into a unified model of its function: the intrinsic disorder and acidic residues keep two hydrophobic motifs from driving collapse. Instead, the most-active variants keep their aromatic residues exposed to the solvent. Our results illustrate how the function of intrinsically disordered proteins can be revealed by high-throughput rational mutagenesis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Fatores de Transcrição/química , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Domínio Catalítico , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , Modelos Moleculares , Método de Monte Carlo , Mutagênese Sítio-Dirigida , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/fisiologia , Análise de Sequência de Proteína , Fatores de Transcrição/fisiologia
19.
Anal Biochem ; 540-541: 64-75, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054528

RESUMO

The emergence of microscale thermophoresis (MST) as a technique for determining the dissociation constants for bimolecular interactions has enabled these quantities to be measured in systems that were previously difficult or impracticable. However, most models for analyses of these data featured the assumption of a simple 1:1 binding interaction. The only model widely used for multiple binding sites was the Hill equation. Here, we describe two new MST analytic models that assume a 1:2 binding scheme: the first features two microscopic binding constants (KD(1) and KD(2)), while the other assumes symmetry in the bivalent molecule, culminating in a model with a single macroscopic dissociation constant (KD,M) and a single factor (α) that accounts for apparent cooperativity in the binding. We also discuss the general applicability of the Hill equation for MST data. The performances of the algorithms on both real and simulated data are assessed, and implementation of the algorithms in the MST analysis program PALMIST is discussed.


Assuntos
Algoritmos , Modelos Moleculares , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Sítios de Ligação , Bovinos , Cinética , Método de Monte Carlo , Mutagênese Sítio-Dirigida , Ácido Fítico/química , Ácido Fítico/metabolismo , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , beta-Arrestina 2/química , beta-Arrestina 2/metabolismo
20.
Methods Enzymol ; 594: 203-242, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28779841

RESUMO

Mechanosensitive (MS) ion channels are multimeric integral membrane proteins that respond to increased lipid bilayer tension by opening their nonselective pores to release solutes and relieve increased cytoplasmic pressure. These systems undergo major conformational changes during gating and the elucidation of their mechanism requires a deep understanding of the interplay between lipids and proteins. Lipids are responsible for transmitting lateral tension to MS channels and therefore play a key role in obtaining a molecular-detail model for mechanosensation. Site-directed spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful spectroscopic tool in the study of proteins. The main bottleneck for its use relates to challenges associated with successful isolation of the protein of interest, introduction of paramagnetic labels on desired sites, and access to specialized instrumentation and expertise. The design of sophisticated experiments, which combine a variety of existing EPR methodologies to address a diversity of specific questions, require knowledge of the limitations and strengths, characteristic of each particular EPR method. This chapter is using the MS ion channels as paradigms and focuses on the application of different EPR techniques to ion channels, in order to investigate oligomerization, conformation, and the effect of lipids on their regulation. The methodology we followed, from the initial strategic selection of mutants and sample preparation, including protein purification, spin labeling, reconstitution into lipid mimics to the complete set-up of the pulsed-EPR experiments, is described in detail.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Canais Iônicos/química , Canais Iônicos/metabolismo , Marcadores de Spin , Cisteína/química , Canais Iônicos/genética , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Mutação , Conformação Proteica , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA