Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 767
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 150: 105641, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723937

RESUMO

In dietary risk assessment of plant protection products, residues of active ingredients and their metabolites need to be evaluated for their genotoxic potential. The European Food Safety Authority recommend a tiered approach focussing assessment and testing on classes of similar chemicals. To characterise similarity, in terms of metabolism, a metabolic similarity profiling scheme has been developed from an analysis of 69 α-chloroacetamide herbicides for which either Ames, chromosomal aberration or micronucleus test results are publicly available. A set of structural space alerts were defined, each linked to a key metabolic transformation present in the α-chloroacetamide metabolic space. The structural space alerts were combined with covalent chemistry profiling to develop categories suitable for chemical prioritisation via read-across. The method is a robust and reproducible approach to such read-across predictions, with the potential to reduce unnecessary testing. The key challenge in the approach was identified as being the need for metabolism data individual groups of plant protection products as the basis for the development of the structural space alerts.


Assuntos
Acetamidas , Herbicidas , Testes de Mutagenicidade , Acetamidas/toxicidade , Acetamidas/química , Medição de Risco , Herbicidas/toxicidade , Herbicidas/química , Resíduos de Praguicidas/toxicidade , Humanos , Mutagênicos/toxicidade , Mutagênicos/química , Animais
2.
Artigo em Inglês | MEDLINE | ID: mdl-38821670

RESUMO

Human epidemiological studies with biomarkers of effect play an invaluable role in identifying health effects with chemical exposures and in disease prevention. Effect biomarkers that measure genetic damage are potent tools to address the carcinogenic and/or mutagenic potential of chemical exposures, increasing confidence in regulatory risk assessment decision-making processes. The micronucleus (MN) test is recognized as one of the most successful and reliable assays to assess genotoxic events, which are associated with exposures that may cause cancer. To move towards the next generation risk assessment is crucial to establish bridges between standard approaches, new approach methodologies (NAMs) and tools for increase the mechanistically-based biological plausibility in human studies, such as the adverse outcome pathways (AOPs) framework. This paper aims to highlight the still active role of MN as biomarker of effect in the evolution and applicability of new methods and approaches in human risk assessment, with the positive consequence, that the new methods provide a deeper knowledge of the mechanistically-based biology of these endpoints.


Assuntos
Biomarcadores , Testes para Micronúcleos , Humanos , Medição de Risco/métodos , Testes para Micronúcleos/métodos , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Animais
3.
Environ Mol Mutagen ; 65(3-4): 129-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717101

RESUMO

Chronic exposure to high (20,000 ppm) concentrations of tert-butyl alcohol (TBA) in drinking water, equivalent to ~2100 mg/kg bodyweight per day, is associated with slight increases in the incidence of thyroid follicular cell adenomas and carcinomas in mice, with no other indications of carcinogenicity. In a recent toxicological review of TBA, the U.S. EPA determined that the genotoxic potential of TBA was inconclusive, largely based on non-standard studies such as in vitro comet assays. As such, the potential role of genotoxicity in the mode of action of thyroid tumors and therefore human relevance was considered uncertain. To address the potential role of genotoxicity in TBA-associated thyroid tumor formation, CD-1 mice were exposed up to a maximum tolerated dose of 1500 mg/kg-day via oral gavage for two consecutive days and DNA damage was assessed with the comet assay in the thyroid. Blood TBA levels were analyzed by headspace GC-MS to confirm systemic tissue exposure. At study termination, no significant increases (DNA breakage) or decreases (DNA crosslinks) in %DNA tail were observed in TBA exposed mice. In contrast, oral gavage of the positive control ethyl methanesulfonate significantly increased %DNA tail in the thyroid. These findings are consistent with most genotoxicity studies on TBA and provide mechanistic support for non-linear, threshold toxicity criteria for TBA. While the mode of action for the thyroid tumors remains unclear, linear low dose extrapolation methods for TBA appear more a matter of policy than science.


Assuntos
Ensaio Cometa , Dano ao DNA , Glândula Tireoide , terc-Butil Álcool , Animais , Ensaio Cometa/métodos , Camundongos , terc-Butil Álcool/toxicidade , Dano ao DNA/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/induzido quimicamente , Neoplasias da Glândula Tireoide/patologia , Mutagênicos/toxicidade , Masculino , Feminino
4.
Transfusion ; 64(6): 1097-1108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38716879

RESUMO

BACKGROUND: N-(-9 acridinyl)-b-alanine hydrochloride (S-300) is the main byproduct of red blood cell (RBC) amustaline/glutathione(GSH) pathogen reduction, currently undergoing phase III US clinical trials following successful European studies(1-3). Phosphatidylinositol glycan, class A (Pig-a) X-linked gene mutagenesis is a validated mammalian in vivo mutation assay for genotoxicity, assessed as clonal loss of glycosylphosphatidylinositol-linked CD59 cell-surface molecules on reticulocytes (RETs) and RBCs. METHODS: Male Sprague-Dawley rats received continuous infusion of S-300 up to the maximum feasible dose (240 mg/kg/day-limited by solubility and volume) for 28 days. Positive controls received a known mutagen by oral gavage on Days 1-3. Plasma levels of S-300 were assessed by HPLC before, during and after infusion. CD59-negative RBCs and RETs were enumerated in pre-dose and Day 28 samples, using a flow cytometric method. Outcome was evaluated by predetermined criteria using concurrent and historical controls. Toxicity was assessed by laboratory measures and necropsy. RESULTS: S-300 reached maximum, dose-dependent levels (3-15 µmol/L) within 2-8 h that were sustained for 672 h and undetectable 2 h after infusion. Circulating RET levels indicated a lack of hematopoietic toxicity. Necropsy revealed minimal-mild observations related to poor S-300 solubility at high concentrations. Pig-a assessment met the preset acceptability criteria and revealed no increase in mutant RBCs or RETs. CONCLUSIONS: Maximum feasible S-300 exposure of rats by continuous infusion for 28 days was not genotoxic as assessed by an Organization for Economic Cooperation and Development-compliant, mammalian, in vivo Pig-a gene mutation assay that meets the requirements of International Conference on Harmonization (ICH) S2(R1) and FDA guidances on genotoxicity testing.


Assuntos
Testes de Mutagenicidade , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Testes de Mutagenicidade/métodos , Antígenos CD59/genética , Reticulócitos/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Proteínas de Membrana/genética , Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade
5.
Toxicol Ind Health ; 40(6): 337-351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38597775

RESUMO

Gasoline station attendants are exposed to numerous chemicals that might have genotoxic and carcinogenic potential, such as benzene in fuel vapor and particulate matter and polycyclic aromatic hydrocarbons in vehicle exhaust emission. According to IARC, benzene and diesel particulates are Group 1 human carcinogens, and gasoline has been classified as Group 2A "possibly carcinogenic to humans." At gas stations, self-service is not implemented in Turkey; fuel-filling service is provided entirely by employees, and therefore they are exposed to those chemicals in the workplace during all working hours. Genetic monitoring of workers with occupational exposure to possible genotoxic agents allows early detection of cancer. We aimed to investigate the genotoxic damage due to exposures in gasoline station attendants in Turkey. Genotoxicity was evaluated by the Comet, chromosomal aberration, and cytokinesis-block micronucleus assays in peripheral blood lymphocytes. Gasoline station attendants (n = 53) had higher tail length, tail intensity, and tail moment values than controls (n = 61). In gasoline station attendants (n = 46), the frequencies of chromatid gaps, chromosome gaps, and total aberrations were higher compared with controls (n = 59). Increased frequencies of micronuclei and nucleoplasmic bridges were determined in gasoline station attendants (n = 47) compared with controls (n = 40). Factors such as age, duration of working, and smoking did not have any significant impact on genotoxic endpoints. Only exposure increased genotoxic damage in gasoline station attendants independently from demographic and clinical characteristics. Occupational exposure-related genotoxicity risk may increase in gasoline station attendants who are chronically exposed to gasoline and various chemicals in vehicle exhaust emissions.


Assuntos
Aberrações Cromossômicas , Dano ao DNA , Gasolina , Testes para Micronúcleos , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Gasolina/toxicidade , Adulto , Masculino , Turquia , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Pessoa de Meia-Idade , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Ensaio Cometa , Biomarcadores , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Linfócitos/efeitos dos fármacos , Feminino , Mutagênicos/toxicidade , Benzeno/toxicidade , Benzeno/análise
6.
Food Chem Toxicol ; 187: 114597, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492856

RESUMO

CONTEXT: Transition to the use of recycled plastics raises an issue concerning safety assessment of Non Intentionally Added Substances (NIAS). To assess the mutagenic potential of the recycled polyethylene impurities and to evaluate the need to perform in vitro assays on recycled resins, this study lies in identifying existing NIAS associated with recycled Low/High Density Polyethylene and assessing the mutagenicity data-gaps by employing in silico tools. METHODS: Quantitative Structure-Activity Relationship (QSAR) models predicting Ames mutagenicity were selected from literature, then NIAS were run to 1/evaluate performances of each model, 2/apply a QSAR strategy on the NIAS molecular space and address data-gaps. RESULTS: Among the 165 NIAS identified, experimental Ames results were not found for 50 substances while the substances with experimental data were predominantly negatives. No individual model was able to predict all NIAS due to applicability domain limitations. Taking into account 1/calculated performances, 2/availability of applicability domain, 3/description of the Training Set, an Integrated Strategy was founded including Sarpy, Consensus and Protox to extend the applicability domain. CONCLUSION & PERSPECTIVES: Existing data and predictions generated by this strategy suggest a low mutagenic potential of NIAS. Further investigation is needed to explore other genotoxicity mechanisms.


Assuntos
Mutagênicos , Relação Quantitativa Estrutura-Atividade , Mutagênicos/toxicidade , Mutagênicos/análise , Testes de Mutagenicidade/métodos , Mutagênese , Reciclagem , Simulação por Computador
7.
Arch Toxicol ; 98(4): 1225-1236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427119

RESUMO

So far, the majority of in vitro toxicological experiments are conducted after an acute 24 h treatment that does not represent a realistic human chemical exposure. Recently, new in vitro approaches have been proposed to study the chemical toxicological effect over several days in order to be more predictive of a representative exposure scenario. In this study, we investigated the genotoxic potential of chemicals (direct or bioactived clastogen, aneugen and apoptotic inducer) with the γH2AX and pH3 biomarkers, in the human liver-derived HepaRP cell line. We used different treatment durations, with or without a three-day recovery stage (release period), before genotoxicity measurement. Data were analysed with the Benchmark Dose approach. We observed that the detection of clastogenic compounds (notably for DNA damaging agents) was more sensitive after three days of repeated treatment compared to one or three treatments over 24 h. In contrast, aneugenic chemicals were detected as genotoxic in a similar manner whether after a 24 h exposure or a three-day repeated treatment. Globally, the release period decreases the genotoxicity measurement substantially. For DNA damaging agents, after high concentration treatments, γH2AX induction was always observed after a three-day release period. In contrast, for DNA topoisomerase inhibitors, no effect could be observed after the release period. In conclusion, in the HepaRP cell line, there are some important differences between a one-day acute and a three-day repeated treatment protocol, indicating that different cell treatment procedures may differentiate chemical genotoxic mechanisms of action more efficiently.


Assuntos
Histonas , Mutagênicos , Humanos , Histonas/metabolismo , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Aneugênicos/toxicidade , Dano ao DNA , DNA
8.
Toxicol Mech Methods ; 34(5): 584-595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38347751

RESUMO

High Fructose Corn Syrup (HFCS) and Fructose (FR) are widely used sweeteners in many foods and beverages. This study aimed at investigating the cytotoxic effects of HFCS (5%-30%) and FR (62.5-2000 µg/mL) using MTT assay in Human Hepatocellular Carcinoma (HepG2) cells, and genotoxic effects of using Chromosome Aberrations (CAs), Sister Chromatid Exchanges (SCEs), Micronuclei (MN) and comet assays in human lymphocytes. HFCS significantly reduced the cell viability in HepG2 cells at between 7.5% and 30% for 24 and 48 h. 30% HFCS caused a very significant toxic effect. FR had a cytotoxic effect in HepG2 cells at all treatments. However, as fructose concentration decreased, the cell viability decreased. HFCS (10%-20%) and FR (250-2000 µg/mL) decreased the mitotic index at higher concentrations. IC50 value was found to be a 15% for 48 h. IC50 value of FR was detected as 62.5 µg/mL for 24 h and 48 h. HFCS significantly increased CAs frequency at 15% and 20%. FR significantly increased the frequency of CAs at 250, 1000, and 2000 µg/mL for 48 h. Both sweeteners increased the frequency of SCEs at all concentrations. HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency at higher concentrations. HFCS caused DNA damage in comet assay at 10% -30%. FR increased tail intensity and moment at 125-2000 µg/mL and tail length at 62.5, 250 and 500 µg/mL. Therefore, HFCS and FR are clearly seen to be cytotoxic and genotoxic, especially at higher concentrations.


HFCS and FR exhibited cytotoxic effect at HepG2 and human lymphocytes at higher concentrations.Both sweeteners increased the frequencies of CAs and SCEs at higher concentrations.HFCS caused DNA damage at 10% -30% concentrations.HFCS (15% and 20%) and FR (250, 1000, and 2000 µg/mL) induced MN frequency.


Assuntos
Sobrevivência Celular , Ensaio Cometa , Frutose , Xarope de Milho Rico em Frutose , Edulcorantes , Humanos , Edulcorantes/toxicidade , Xarope de Milho Rico em Frutose/toxicidade , Xarope de Milho Rico em Frutose/efeitos adversos , Frutose/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Dano ao DNA/efeitos dos fármacos , Troca de Cromátide Irmã/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Aberrações Cromossômicas/induzido quimicamente , Testes para Micronúcleos , Relação Dose-Resposta a Droga , Mutagênicos/toxicidade , Masculino , Medição de Risco
9.
Artigo em Inglês | MEDLINE | ID: mdl-38272634

RESUMO

5-Aminoisophthalic acid and 5-nitroisophthalic acid (5-NIPA) are potential impurities in preparations of 5-amino-2,4,6-triiodoisophthalic acid, which is a key intermediate in the synthesis of the iodinated contrast agent iopamidol. We have studied their mutagenicity in silico (quantitative structure-activity relationships, QSAR) and by the bacterial reverse mutation assay (Ames test). First, the compounds were screened with the tools Derek Nexus™ and Leadscope®. Both compounds were flagged as potentially mutagenic (class 3 under ICH M7). However, contrary to the in silico prediction, neither chemical was mutagenic in the Ames test (plate incorporation method) with or without S9 metabolic activation.


Assuntos
Meios de Contraste , Mutagênicos , Mutagênicos/toxicidade , Mutagênicos/química , Meios de Contraste/toxicidade , Iopamidol/toxicidade , Simulação por Computador , Testes de Mutagenicidade/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38272629

RESUMO

The Ames MPF™ is a miniaturized, microplate fluctuation format of the Ames test. It is a standardized, commercially available product which can be used to assess mutagenicity in Salmonella and E. coli strains in 384-well plates using a color change-based readout. Several peer-reviewed comparisons of the Ames MPF™ to the Ames test in Petri dishes confirmed its suitability to evaluate the mutagenic potential of a variety of test items. An international multicenter study involving seven laboratories tested six coded chemicals with this assay using five bacterial strains, as recommended by the OECD test guideline 471. The data generated by the participating laboratories was in excellent agreement (93%), and the similarity of their dose response curves, as analyzed with sophisticated statistical approaches further confirmed the suitability of the Ames MPF™ assay as an alternative to the Ames test on agar plates, but with advantages with respect to significantly reduced amount of test substance and S9 requirements, speed, hands-on time and, potentially automation.


Assuntos
Escherichia coli , Salmonella typhimurium , Escherichia coli/genética , Salmonella typhimurium/genética , Mutagênicos/toxicidade , Mutagênese , Testes de Mutagenicidade/métodos
11.
Food Chem Toxicol ; 185: 114484, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280474

RESUMO

Can's polyester coatings are intended to replace epoxy-phenolic ones due to rising safety concern regarding the potential release of bisphenol A under increased regulations and consumer pressure. In this study, hazard linked to the migration of non-intentionally added substances from a single polyester-coated tin plate (5 batches) to canned food has been studied. Migration tests were performed using acetonitrile (ACN) and ethanol (EtOH) 95 %. Non-targeted analyses by liquid chromatography-high-resolution mass spectrometry revealed the presence of four cyclic oligoesters classified as Cramer class III substances with an estimated exposure (calculated for French population only) below the threshold of toxicological concern value of 1.5 µg/kg b.w./day, suggesting a no safety concern. Moreover, migrates were tested using in vitro genotoxicity DNA damage response (DDR) test and mini mutagenicity test (MMT) with different strains of S. Typhimurium using direct incorporation (TA100, TA98, TA102, TA1537) and pre-incubation (TA100, TA98) methods. Samples were negative in both bioassays suggesting the absence of genotoxicity/mutagenicity of the mixtures. To verify any false negative response due to matrix effect, migrates were spiked with corresponding positive controls in parallel with the MMT and the DDR test. No matrix effect was observed in these experimental conditions.


Assuntos
Contaminação de Alimentos , Poliésteres , Poliésteres/toxicidade , Poliésteres/química , Contaminação de Alimentos/análise , Embalagem de Alimentos , Alimentos , Mutagênicos/toxicidade , Mutagênicos/análise , Testes de Mutagenicidade
12.
Photochem Photobiol ; 100(1): 146-158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37477119

RESUMO

The effect of terahertz (THz) radiation has been studied in medicine. However, there is a lack of scientific information regarding its possible mutagenicity. Therefore, the present study aimed to assess the mutagenicity of 1.6 THz laser irradiation. The Ames test was conducted using five bacterial tester strains. The bacteria were subjected to (i) 1.6 THz laser irradiation at 3.8 mW/cm2 for 60 min using a tabletop THz pulse laser system, (ii) ultraviolet irradiation, (iii) treatment with positive control chemicals (positive control) or (iv) treatment with the solvent used in the positive control (negative control). After treatment, the bacterial suspensions were cultured on minimal glucose agar to determine the number of revertant colonies. In addition, the comet assay was performed using fibroblasts (V79) to assess possible DNA damage caused by the THz laser irradiation. The Ames test demonstrated that the THz laser irradiation did not increase the number of revertant colonies compared to that in the negative control group, whereas the ultraviolet irradiation and positive control treatment increased the number of revertant colonies. Thus, 1.6 THz laser irradiation is unlikely to be mutagenic. The comet assay additionally suggests that the THz laser irradiation unlikely induce cellular DNA damage.


Assuntos
Dano ao DNA , Mutagênicos , Mutagênicos/toxicidade , Ensaio Cometa , Mutagênese , Fibroblastos/efeitos da radiação , Testes de Mutagenicidade
13.
Int J Toxicol ; 43(2): 157-164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38048784

RESUMO

Methyl ester sulphonate (MES) is an anionic surfactant that is suitable to be used as an active ingredient in household products. Four palm-based MES compounds with various carbon chains, namely C12, C14, C16 and C16/18 MES, were assayed by the in vitro bacterial reverse mutation (Ames) test in the Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537 and the Escherichia coli strain WP2 uvrA, with the aim of establishing the safety data of the compounds, specifically their mutagenicity. The test was also carried out on linear alkylbenzene sulphonate (LAS) for comparison. The plate incorporation method was conducted according to the Organization for Economic Cooperation and Development (OECD) Test Guideline 471. All compounds were tested at five analysable non-cytotoxic concentrations, varying from .001 mg/plate to 5 mg/plate, with and without S-9 metabolic activation. All tested concentrations showed no significant increase in the number of revertant colonies compared to revertant colonies of the negative control. The Ames test indicated that each concentration of C12, C14, C16, C16/18 MES, and LAS used in this study induced neither base-pair substitutions nor frame-shift mutations in the S. typhimurium strains TA98, TA100, TA1535, and TA1537 and the E. coli strain WP2 uvrA. The results showed that C12, C14, C16 and C16/18 MES have no potential mutagenic properties in the presence and absence of S-9 metabolic activation, similarly to LAS. Therefore, the MES is safe to be used as an alternative to petroleum-based surfactants for household cleaning products.


Assuntos
Escherichia coli , Mutagênicos , Mutagênicos/toxicidade , Escherichia coli/genética , Ésteres , Mutação , Salmonella typhimurium/genética , Tensoativos , Testes de Mutagenicidade/métodos
14.
Arch Toxicol ; 98(2): 425-469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147116

RESUMO

Fungi of the genus Alternaria are ubiquitous plant pathogens and saprophytes which are able to grow under varying temperature and moisture conditions as well as on a large range of substrates. A spectrum of structurally diverse secondary metabolites with toxic potential has been identified, but occurrence and relative proportion of the different metabolites in complex mixtures depend on strain, substrate, and growth conditions. This review compiles the available knowledge on hazard identification and characterization of Alternaria toxins. Alternariol (AOH), its monomethylether AME and the perylene quinones altertoxin I (ATX-I), ATX-II, ATX-III, alterperylenol (ALP), and stemphyltoxin III (STTX-III) showed in vitro genotoxic and mutagenic properties. Of all identified Alternaria toxins, the epoxide-bearing analogs ATX-II, ATX-III, and STTX-III show the highest cytotoxic, genotoxic, and mutagenic potential in vitro. Under hormone-sensitive conditions, AOH and AME act as moderate xenoestrogens, but in silico modeling predicts further Alternaria toxins as potential estrogenic factors. Recent studies indicate also an immunosuppressive role of AOH and ATX-II; however, no data are available for the majority of Alternaria toxins. Overall, hazard characterization of Alternaria toxins focused, so far, primarily on the commercially available dibenzo-α-pyrones AOH and AME and tenuazonic acid (TeA). Limited data sets are available for altersetin (ALS), altenuene (ALT), and tentoxin (TEN). The occurrence and toxicological relevance of perylene quinone-based Alternaria toxins still remain to be fully elucidated. We identified data gaps on hazard identification and characterization crucial to improve risk assessment of Alternaria mycotoxins for consumers and occupationally exposed workers.


Assuntos
Micotoxinas , Perileno , Humanos , Alternaria/metabolismo , Micotoxinas/toxicidade , Micotoxinas/análise , Mutagênicos/toxicidade , Mutagênicos/metabolismo , Lactonas/toxicidade , Lactonas/metabolismo , Medição de Risco , Contaminação de Alimentos/análise
15.
J Toxicol Environ Health A ; 87(6): 245-265, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38115604

RESUMO

The consumption of dietary supplements to enhance physical performance has increased significantly in the last century, especially thermogenic pre-workout supplements. Nevertheless, this industry has faced criticism for inadequate safety measures surveillance in regulatory issues regarding their products. The aims of our study were to investigate two pre-workout supplements with respect to (1) mutagenicity utilizing Salmonella/microsome assay; (2) genotoxicity employing cytokinesis-block micronucleus (CBMN) assay protocols; and (3) hepatocytoxicity using WST cell proliferation, activities of lactate dehydrogenase (LDH) and alkaline phosphatase using human liver carcinoma (HepG2) and mouse fibroblast (F C3H) cells. Oxidative stress was determined through glutathione (GSH) measurement and in silico for predictions of pharmacokinetics and toxicity for the most abundant isolated substances present in these supplements. Both supplements induced mutagenicity in all examined bacterial strains, especially in the presence of exogenous metabolism. Further, tested supplements significantly elevated the formation of micronuclei (MN) as well as other cellular phenomena. Concentration- and time-dependent curves were observed for hepatotoxicity in both studied cell lines. In addition, both supplements decreased levels of intracellular and extracellular GSH. In silico predictions showed that the isolated individual compounds failed to induce the observed outcomes. Our findings provide contributions to the molecular mechanisms underlying two pre-workout supplement-induced toxicity and the need for surveillance.


Assuntos
Aminas , Cafeína , Suplementos Nutricionais , Camundongos , Animais , Humanos , Cafeína/farmacologia , Camundongos Endogâmicos C3H , Suplementos Nutricionais/toxicidade , Estresse Oxidativo , Glutationa , Mutagênicos/toxicidade , Dano ao DNA
16.
Toxicology ; 501: 153712, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128774

RESUMO

The T-2 toxin is a mycotoxin produced by molds belonging to Fusarium. Among the Fusarium mycotoxins, trichothecenes are frequently reported in food and feed, being the T-2 toxin (T-2) the mycotoxin which possesses the highest toxicity. According to EFSA, T-2 is found in various cereal grains used in food and feed products, mainly in oats, and it has a high environmental impact due to its mechanisms of toxicity. However, recent information on its genotoxic and mutagenic effects is lacking. This work aimed to evaluate the genotoxic and mutagenic potential of T-2 in vitro. For this purpose, HepG2 cells were exposed to 15, 30, and 60 nM T-2 for 24 h, then the DNA damage was evaluated by the micronucleus and the comet assays. In addition, point mutation analysis was performed by the bacterial reverse mutation test using 0.15-60 nM of T-2 concentrations. The results showed chromosomal damage at 60 nM T-2 since significantly more MN appeared at this concentration than in the control samples. Regarding the comet assay, DNA double helix breaks appeared at all concentrations tested and, in a concentration-dependent manner. However, no mutagenic effects were observed at any of the concentrations tested for the Salmonella typhimurium (S. Typhimurium) strains TA98, TA100, TA1535, TA1537, or the Escherichia coli (E. Coli) WP2 strain in the absence or presence of a metabolic activation system. Therefore, these results showed that T-2 mycotoxin produced genotoxic effects by MN and comet assay, while no mutagenicity was observed. However, further research simulating different metabolic activation pathways and the combined exposure of this mycotoxin with other mutagenic chemicals that could be present in the diet is necessary to discard the mutagenic potential of T-2 fully. These results highlight the carcinogenic potential and danger associated with T-2 exposure and should be considered to prevent associated food risks for the human population.


Assuntos
Mutagênicos , Toxina T-2 , Humanos , Mutagênicos/toxicidade , Testes de Mutagenicidade/métodos , Células Hep G2 , Escherichia coli/genética , Toxina T-2/toxicidade , Dano ao DNA , Testes para Micronúcleos
17.
Food Chem Toxicol ; 182: 114211, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38007212

RESUMO

Minoxidil is regularly prescribed for alopecia, and its therapeutic potential has expanded in recent times. However, few studies have been conducted to evaluate its toxicity, and controversial findings regarding its mutagenic activities remain unsolved. This study aimed to access cytotoxic, genotoxic, and mutagenic properties of minoxidil using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, comet assay, and micronucleus test in mouse fibroblast (L929) cells and its point mutation induction potential in the Salmonella/microsome assay. Furthermore, an in vivo toxicity assessment was conducted in Caenorhabditis elegans. Minoxidil showed cytotoxicity at 2.0 mg/mL in MTT assay. Genotoxicity was observed after 3 h treatment in L929 cells using comet assay. No mutagenic effect was observed in both the micronucleus test and the Salmonella/microsome assay. The lethal dose 50 in C. elegans was determined to be 1.75 mg/mL, and a delay in body development was detected at all concentrations. In conclusion, minoxidil induces DNA damage only in early treatment, implying that this DNA damage may be repairable. This observation corroborates the absence of mutagenic activities observed in L929 cells and Salmonella typhimurium strains. However, the toxicity of minoxidil was evident in both C. elegans and L929 cells, underscoring the need for caution in its use.


Assuntos
Caenorhabditis elegans , Minoxidil , Camundongos , Animais , Testes de Mutagenicidade , Minoxidil/toxicidade , Ensaio Cometa , Dano ao DNA , Testes para Micronúcleos , Mutagênicos/toxicidade , Alopecia/induzido quimicamente
18.
Environ Mol Mutagen ; 64(8-9): 458-465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37704589

RESUMO

We are evaluating the use of metabolically competent HepaRG™ cells combined with CometChip® for DNA damage and the micronucleus (MN) assay as a New Approach Methodology (NAM) alternative to animals for follow up genotoxicity assessment to in vitro positive genotoxic response. Naphthalene is genotoxic in human TK6 cells inducing a nonlinear dose-response for the induction of micronuclei in the presence of rat liver S9. of naphthalene. In HepaRG™ cells, naphthalene genotoxicity was assessed using either 6 (CometChip™) or 12 concentrations of naphthalene (MN assay) with the top dose used for assessment of genotoxicity for the Comet and MN assay was 1.25 and 1.74 mM respectively, corresponding to approximately 45% cell survival. In contrast to human TK6 cell with S9, naphthalene was not genotoxic in either the HepaRG™ MN assay or the Comet assay using CometChip®. The lack of genotoxicity in both the MN and comet assays in HepaRG™ cells is likely due to Phase II enzymes removing phenols preventing further bioactivation to quinones and efficient detoxication of naphthalene quinones or epoxides by glutathione conjugation. In contrast to CYP450 mediated metabolism, these Phase II enzymes are inactive in rat liver S9 due to lack of appropriate cofactors causing a positive genotoxic response. Rat liver S9-derived BMD10 over-predicts naphthalene genotoxicity when compared to the negative genotoxic response observed in HepaRG™ cells. Metabolically competent hepatocyte models like HepaRG™ cells should be considered as human-relevant NAMs for use genotoxicity assessments to reduce reliance on rodents.


Assuntos
Dano ao DNA , Mutagênicos , Ratos , Animais , Humanos , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Seguimentos , Ensaio Cometa/métodos , Naftalenos/toxicidade , Quinonas
19.
Food Chem Toxicol ; 180: 114022, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716495

RESUMO

Although there are a number of guidance documents and frameworks for evaluation of carcinogenicity, none of the current methods fully reflects the state of the science. Common limitations include the absence of dose-response assessment and not considering the impact of differing exposure patterns (e.g., intermittent, high peaks vs. lower, continuous exposures). To address these issues, we have developed a framework for risk assessment of dietary carcinogens. This framework includes an enhanced approach for weight of evidence (WOE) evaluation for genetic toxicology data, with a focus on evaluating studies based on the most recent testing guidance to determine whether a chemical is a mutagen. Included alongside our framework is a discussion of resources for evaluating tissue dose and the temporal pattern of internal dose, taking into account the chemical's toxicokinetics. The framework then integrates the mode of action (MOA) and associated dose metric category with the exposure data to identify the appropriate approach(es) to low-dose extrapolation and level of concern associated with the exposure scenario. This framework provides risk managers with additional flexibility in risk management and risk communication options, beyond the binary choice of linear low-dose extrapolation vs. application of uncertainty factors.


Assuntos
Carcinógenos , Neoplasias , Humanos , Carcinógenos/toxicidade , Mutagênicos/toxicidade , Medição de Risco/métodos
20.
Mutat Res Rev Mutat Res ; 792: 108466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37643677

RESUMO

Error-corrected Next Generation Sequencing (ecNGS) is rapidly emerging as a valuable, highly sensitive and accurate method for detecting and characterizing mutations in any cell type, tissue or organism from which DNA can be isolated. Recent mutagenicity and carcinogenicity studies have used ecNGS to quantify drug-/chemical-induced mutations and mutational spectra associated with cancer risk. ecNGS has potential applications in genotoxicity assessment as a new readout for traditional models, for mutagenesis studies in 3D organotypic cultures, and for detecting off-target effects of gene editing tools. Additionally, early data suggest that ecNGS can measure clonal expansion of mutations as a mechanism-agnostic early marker of carcinogenic potential and can evaluate mutational load directly in human biomonitoring studies. In this review, we discuss promising applications, challenges, limitations, and key data initiatives needed to enable regulatory testing and adoption of ecNGS - including for advancing safety assessment, augmenting weight-of-evidence for mutagenicity and carcinogenicity mechanisms, identifying early biomarkers of cancer risk, and managing human health risk from chemical exposures.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutagênicos , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Testes de Mutagenicidade , Mutação , Mutagênicos/toxicidade , Carcinógenos/toxicidade , Carcinogênese , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA