Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Math Biosci Eng ; 21(4): 5577-5603, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38872549

RESUMO

In this paper we develop a four compartment within-host model of nutrition and HIV. We show that the model has two equilibria: an infection-free equilibrium and infection equilibrium. The infection free equilibrium is locally asymptotically stable when the basic reproduction number $ \mathcal{R}_0 < 1 $, and unstable when $ \mathcal{R}_0 > 1 $. The infection equilibrium is locally asymptotically stable if $ \mathcal{R}_0 > 1 $ and an additional condition holds. We show that the within-host model of HIV and nutrition is structured to reveal its parameters from the observations of viral load, CD4 cell count and total protein data. We then estimate the model parameters for these 3 data sets. We have also studied the practical identifiability of the model parameters by performing Monte Carlo simulations, and found that the rate of clearance of the virus by immunoglobulins is practically unidentifiable, and that the rest of the model parameters are only weakly identifiable given the experimental data. Furthermore, we have studied how the data frequency impacts the practical identifiability of model parameters.


Assuntos
Número Básico de Reprodução , Simulação por Computador , Infecções por HIV , Método de Monte Carlo , Carga Viral , Humanos , Número Básico de Reprodução/estatística & dados numéricos , Contagem de Linfócito CD4 , Estado Nutricional , Modelos Biológicos , Algoritmos , HIV-1
2.
Bull Math Biol ; 86(6): 71, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719993

RESUMO

Due to the complex interactions between multiple infectious diseases, the spreading of diseases in human bodies can vary when people are exposed to multiple sources of infection at the same time. Typically, there is heterogeneity in individuals' responses to diseases, and the transmission routes of different diseases also vary. Therefore, this paper proposes an SIS disease spreading model with individual heterogeneity and transmission route heterogeneity under the simultaneous action of two competitive infectious diseases. We derive the theoretical epidemic spreading threshold using quenched mean-field theory and perform numerical analysis under the Markovian method. Numerical results confirm the reliability of the theoretical threshold and show the inhibitory effect of the proportion of fully competitive individuals on epidemic spreading. The results also show that the diversity of disease transmission routes promotes disease spreading, and this effect gradually weakens when the epidemic spreading rate is high enough. Finally, we find a negative correlation between the theoretical spreading threshold and the average degree of the network. We demonstrate the practical application of the model by comparing simulation outputs to temporal trends of two competitive infectious diseases, COVID-19 and seasonal influenza in China.


Assuntos
COVID-19 , Simulação por Computador , Influenza Humana , Cadeias de Markov , Conceitos Matemáticos , Modelos Biológicos , SARS-CoV-2 , Humanos , COVID-19/transmissão , COVID-19/epidemiologia , COVID-19/prevenção & controle , Influenza Humana/epidemiologia , Influenza Humana/transmissão , China/epidemiologia , Número Básico de Reprodução/estatística & dados numéricos , Modelos Epidemiológicos , Pandemias/estatística & dados numéricos , Pandemias/prevenção & controle , Epidemias/estatística & dados numéricos
3.
Math Biosci ; 372: 109189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580079

RESUMO

The mosquito-borne disease (malaria) imposes significant challenges on human health, healthcare systems, and economic growth/productivity in many countries. This study develops and analyzes a model to understand the interplay between malaria dynamics, economic growth, and transient events. It uncovers varied effects of malaria and economic parameters on model outcomes, highlighting the interdependence of the reproduction number (R0) on both malaria and economic factors, and a reciprocal relationship where malaria diminishes economic productivity, while higher economic output is associated with reduced malaria prevalence. This emphasizes the intricate interplay between malaria dynamics and socio-economic factors. The study offers insights into malaria control and underscores the significance of optimizing external aid allocation, especially favoring an even distribution strategy, with the most significant reduction observed in an equal monthly distribution strategy compared to longer distribution intervals. Furthermore, the study shows that controlling malaria in high mosquito biting areas with limited aid, low technology, inadequate treatment, or low economic investment is challenging. The model exhibits a backward bifurcation implying that sustainability of control and mitigation measures is essential even when R0 is slightly less than one. Additionally, there is a parameter regime for which long transients are feasible. Long transients are critical for predicting the behavior of dynamic systems and identifying factors influencing transitions; they reveal reservoirs of infection, vital for disease control. Policy recommendations for effective malaria control from the study include prioritizing sustained control measures, optimizing external aid allocation, and reducing mosquito biting.


Assuntos
Desenvolvimento Econômico , Malária , Malária/economia , Malária/prevenção & controle , Malária/parasitologia , Malária/epidemiologia , Humanos , Desenvolvimento Econômico/estatística & dados numéricos , Número Básico de Reprodução/estatística & dados numéricos , Animais , Mosquitos Vetores/parasitologia , Mosquitos Vetores/crescimento & desenvolvimento
4.
PLoS Comput Biol ; 17(9): e1009347, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34492011

RESUMO

We construct a recursive Bayesian smoother, termed EpiFilter, for estimating the effective reproduction number, R, from the incidence of an infectious disease in real time and retrospectively. Our approach borrows from Kalman filtering theory, is quick and easy to compute, generalisable, deterministic and unlike many current methods, requires no change-point or window size assumptions. We model R as a flexible, hidden Markov state process and exactly solve forward-backward algorithms, to derive R estimates that incorporate all available incidence information. This unifies and extends two popular methods, EpiEstim, which considers past incidence, and the Wallinga-Teunis method, which looks forward in time. We find that this combination of maximising information and minimising assumptions significantly reduces the bias and variance of R estimates. Moreover, these properties make EpiFilter more statistically robust in periods of low incidence, where several existing methods can become destabilised. As a result, EpiFilter offers improved inference of time-varying transmission patterns that are advantageous for assessing the risk of upcoming waves of infection or the influence of interventions, in real time and at various spatial scales.


Assuntos
Número Básico de Reprodução/estatística & dados numéricos , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Epidemias/estatística & dados numéricos , Algoritmos , Número Básico de Reprodução/prevenção & controle , Teorema de Bayes , Viés , COVID-19/epidemiologia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Biologia Computacional , Simulação por Computador , Sistemas Computacionais , Epidemias/prevenção & controle , Monitoramento Epidemiológico , Humanos , Incidência , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/epidemiologia , Modelos Lineares , Cadeias de Markov , Modelos Estatísticos , Nova Zelândia/epidemiologia , Estudos Retrospectivos , SARS-CoV-2 , Fatores de Tempo , Estados Unidos/epidemiologia
5.
PLoS Comput Biol ; 17(7): e1009211, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310593

RESUMO

The effective reproduction number Reff is a critical epidemiological parameter that characterizes the transmissibility of a pathogen. However, this parameter is difficult to estimate in the presence of silent transmission and/or significant temporal variation in case reporting. This variation can occur due to the lack of timely or appropriate testing, public health interventions and/or changes in human behavior during an epidemic. This is exactly the situation we are confronted with during this COVID-19 pandemic. In this work, we propose to estimate Reff for the SARS-CoV-2 (the etiological agent of the COVID-19), based on a model of its propagation considering a time-varying transmission rate. This rate is modeled by a Brownian diffusion process embedded in a stochastic model. The model is then fitted by Bayesian inference (particle Markov Chain Monte Carlo method) using multiple well-documented hospital datasets from several regions in France and in Ireland. This mechanistic modeling framework enables us to reconstruct the temporal evolution of the transmission rate of the COVID-19 based only on the available data. Except for the specific model structure, it is non-specifically assumed that the transmission rate follows a basic stochastic process constrained by the observations. This approach allows us to follow both the course of the COVID-19 epidemic and the temporal evolution of its Reff(t). Besides, it allows to assess and to interpret the evolution of transmission with respect to the mitigation strategies implemented to control the epidemic waves in France and in Ireland. We can thus estimate a reduction of more than 80% for the first wave in all the studied regions but a smaller reduction for the second wave when the epidemic was less active, around 45% in France but just 20% in Ireland. For the third wave in Ireland the reduction was again significant (>70%).


Assuntos
Número Básico de Reprodução , COVID-19/epidemiologia , COVID-19/transmissão , Pandemias , SARS-CoV-2 , Algoritmos , Número Básico de Reprodução/estatística & dados numéricos , Teorema de Bayes , Biologia Computacional , Epidemias/estatística & dados numéricos , França/epidemiologia , Humanos , Irlanda/epidemiologia , Cadeias de Markov , Modelos Estatísticos , Método de Monte Carlo , Pandemias/estatística & dados numéricos , Estudos Soroepidemiológicos , Processos Estocásticos , Fatores de Tempo
6.
PLoS One ; 16(6): e0252271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34129608

RESUMO

Coronavirus disease 2019 (CoViD-19), with the fatality rate in elder (60 years old or more) being much higher than young (60 years old or less) patients, was declared a pandemic by the World Health Organization on March 11, 2020. A mathematical model considering young and elder subpopulations under different fatality rates was formulated based on the natural history of CoViD-19 to study the transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The model considered susceptible, exposed, asymptomatic, pre-symptomatic, mild CoViD-19, severe CoViD-19, and recovered compartments, besides compartments of isolated individuals and those who were caught by test. This model was applied to study the epidemiological scenario resulting from the adoption of quarantine (isolation or lockdown) in many countries to control the rapid propagation of CoViD-19. We chose as examples the isolation adopted in São Paulo State (Brazil) in the early phase but not at the beginning of the epidemic, and the lockdown implemented in Spain when the number of severe CoViD-19 cases was increasing rapidly. Based on the data collected from São Paulo State and Spain, the model parameters were evaluated, and we obtained a higher estimation for the basic reproduction number R0 (9.24 for São Paulo State, and 8 for Spain) compared to the currently accepted estimation of R0 around 2 using the SEIR (susceptible, exposed, infectious, and recovered compartments) model. In comparison with the lockdown in Spain, the relatively early adoption of the isolation in São Paulo State resulted in enlarging the period of the first wave of the epidemic and delaying its peak. The model allowed to explain the flattening of the epidemic curves by quarantine when associated with the protective measures (face mask, washing hands with alcohol and gel, and social distancing) adopted by the population. The description of the epidemic under quarantine and protections can be a background to foreseen the epidemiological scenarios from the release strategies, which can help guide public health policies by decision-makers.


Assuntos
Número Básico de Reprodução/estatística & dados numéricos , Controle de Doenças Transmissíveis/normas , Modelos Estatísticos , Pandemias/prevenção & controle , Quarentena/normas , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Brasil/epidemiologia , Tomada de Decisões Gerenciais , Desinfecção das Mãos/normas , Humanos , Expectativa de Vida , Máscaras/normas , Máscaras/estatística & dados numéricos , Pessoa de Meia-Idade , Pandemias/estatística & dados numéricos , Distanciamento Físico , Política Pública , Quarentena/estatística & dados numéricos , SARS-CoV-2/patogenicidade , Espanha/epidemiologia
7.
PLoS One ; 16(6): e0252373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34106993

RESUMO

OBJECTIVE: To assess whether the basic reproduction number (R0) of COVID-19 is different across countries and what national-level demographic, social, and environmental factors other than interventions characterize initial vulnerability to the virus. METHODS: We fit logistic growth curves to reported daily case numbers, up to the first epidemic peak, for 58 countries for which 16 explanatory covariates are available. This fitting has been shown to robustly estimate R0 from the specified period. We then use a generalized additive model (GAM) to discern both linear and nonlinear effects, and include 5 random effect covariates to account for potential differences in testing and reporting that can bias the estimated R0. FINDINGS: We found that the mean R0 is 1.70 (S.D. 0.57), with a range between 1.10 (Ghana) and 3.52 (South Korea). We identified four factors-population between 20-34 years old (youth), population residing in urban agglomerates over 1 million (city), social media use to organize offline action (social media), and GINI income inequality-as having strong relationships with R0, across countries. An intermediate level of youth and GINI inequality are associated with high R0, (n-shape relationships), while high city population and high social media use are associated with high R0. Pollution, temperature, and humidity did not have strong relationships with R0 but were positive. CONCLUSION: Countries have different characteristics that predispose them to greater intrinsic vulnerability to COVID-19. Studies that aim to measure the effectiveness of interventions across locations should account for these baseline differences in social and demographic characteristics.


Assuntos
Número Básico de Reprodução/estatística & dados numéricos , COVID-19/epidemiologia , Renda/estatística & dados numéricos , Mídias Sociais/estatística & dados numéricos , Fatores Etários , COVID-19/economia , COVID-19/transmissão , COVID-19/virologia , Bases de Dados Factuais , Saúde Global , Humanos , Modelos Estatísticos , Pandemias , SARS-CoV-2/isolamento & purificação , Fatores Socioeconômicos , População Urbana/estatística & dados numéricos
8.
Math Biosci Eng ; 18(2): 1833-1844, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33757213

RESUMO

In this paper, we present an SEIIaHR epidemic model to study the influence of recessive infection and isolation in the spread of COVID-19. We first prove that the infection-free equilibrium is globally asymptotically stable with condition R0<1 and the positive equilibrium is uniformly persistent when the condition R0>1. By using the COVID-19 data in India, we then give numerical simulations to illustrate our results and carry out some sensitivity analysis. We know that asymptomatic infections will affect the spread of the disease when the quarantine rate is within the range of [0.3519, 0.5411]. Furthermore, isolating people with symptoms is important to control and eliminate the disease.


Assuntos
COVID-19/epidemiologia , Epidemias , Modelos Biológicos , SARS-CoV-2 , Infecções Assintomáticas/epidemiologia , Número Básico de Reprodução/estatística & dados numéricos , COVID-19/prevenção & controle , COVID-19/transmissão , Simulação por Computador , Epidemias/prevenção & controle , Epidemias/estatística & dados numéricos , Humanos , Índia/epidemiologia , Cadeias de Markov , Conceitos Matemáticos , Método de Monte Carlo , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , Quarentena/estatística & dados numéricos
9.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1250-1261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33406042

RESUMO

Since the COVID-19 epidemic is still expanding around the world and poses a serious threat to human life and health, it is necessary for us to carry out epidemic transmission prediction, whole genome sequence analysis, and public psychological stress assessment for 2019-nCoV. However, transmission prediction models are insufficiently accurate and genome sequence characteristics are not clear, and it is difficult to dynamically assess the public psychological stress state under the 2019-nCoV epidemic. Therefore, this study develops a 2019nCoVAS web service (http://www.combio-lezhang.online/2019ncov/home.html) that not only offers online epidemic transmission prediction and lineage-associated underrepresented permutation (LAUP) analysis services to investigate the spreading trends and genome sequence characteristics, but also provides psychological stress assessments based on such an emotional dictionary that we built for 2019-nCoV. Finally, we discuss the shortcomings and further study of the 2019nCoVAS web service.


Assuntos
COVID-19/epidemiologia , Pandemias , SARS-CoV-2 , Navegador , Número Básico de Reprodução/estatística & dados numéricos , COVID-19/psicologia , COVID-19/transmissão , China/epidemiologia , Biologia Computacional , Emoções , Variação Genética , Genoma Viral , Humanos , Internet , Modelos Estatísticos , Pandemias/estatística & dados numéricos , SARS-CoV-2/genética , Estresse Psicológico , Sequenciamento Completo do Genoma
10.
Math Biosci ; 331: 108516, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253746

RESUMO

Seasonal changes in temperature, humidity, and rainfall affect vector survival and emergence of mosquitoes and thus impact the dynamics of vector-borne disease outbreaks. Recent studies of deterministic and stochastic epidemic models with periodic environments have shown that the average basic reproduction number is not sufficient to predict an outbreak. We extend these studies to time-nonhomogeneous stochastic dengue models with demographic variability wherein the adult vectors emerge from the larval stage vary periodically. The combined effects of variability and periodicity provide a better understanding of the risk of dengue outbreaks. A multitype branching process approximation of the stochastic dengue model near the disease-free periodic solution is used to calculate the probability of a disease outbreak. The approximation follows from the solution of a system of differential equations derived from the backward Kolmogorov differential equation. This approximation shows that the risk of a disease outbreak is also periodic and depends on the particular time and the number of the initial infected individuals. Numerical examples are explored to demonstrate that the estimates of the probability of an outbreak from that of branching process approximations agree well with that of the continuous-time Markov chain. In addition, we propose a simple stochastic model to account for the effects of environmental variability on the emergence of adult vectors from the larval stage.


Assuntos
Dengue/epidemiologia , Dengue/transmissão , Surtos de Doenças , Modelos Biológicos , Mosquitos Vetores/virologia , Aedes/crescimento & desenvolvimento , Aedes/virologia , Animais , Número Básico de Reprodução/estatística & dados numéricos , Simulação por Computador , Demografia , Dengue/virologia , Vírus da Dengue/patogenicidade , Meio Ambiente , Interações entre Hospedeiro e Microrganismos , Humanos , Cadeias de Markov , Conceitos Matemáticos , Mosquitos Vetores/crescimento & desenvolvimento , Estações do Ano , Processos Estocásticos
11.
Math Biosci ; 330: 108496, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33075364

RESUMO

We introduce a deterministic SEIR model and fit it to epidemiological data for the COVID-19 outbreak in Ireland. We couple the model to economic considerations - we formulate an optimal control problem in which the cost to the economy of the various non-pharmaceutical interventions is minimized, subject to hospital admissions never exceeding a threshold value corresponding to health-service capacity. Within the framework of the model, the optimal strategy of disease control is revealed to be one of disease suppression, rather than disease mitigation.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Número Básico de Reprodução/estatística & dados numéricos , Bioestatística , COVID-19 , Controle de Doenças Transmissíveis/economia , Controle de Doenças Transmissíveis/métodos , Simulação por Computador , Infecções por Coronavirus/economia , Infecções por Coronavirus/prevenção & controle , Surtos de Doenças/economia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Humanos , Irlanda/epidemiologia , Modelos Econômicos , Modelos Estatísticos , Pandemias/economia , Pandemias/prevenção & controle , Pneumonia Viral/economia , Pneumonia Viral/prevenção & controle , SARS-CoV-2
12.
Math Biosci Eng ; 17(4): 2842-2852, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32987501

RESUMO

Since the first case of coronavirus disease (COVID-19) in Wuhan Hubei, China, was reported in December 2019, COVID-19 has spread rapidly across the country and overseas. The first case in Anhui, a province of China, was reported on January 10, 2020. In the field of infectious diseases, modeling, evaluating and predicting the rate of disease transmission is very important for epidemic prevention and control. Different intervention measures have been implemented starting from different time nodes in the country and Anhui, the epidemic may be divided into three stages for January 10 to February 11, 2020, namely. We adopted interrupted time series method and develop an SEI/QR model to analyse the data. Our results displayed that the lockdown of Wuhan implemented on January 23, 2020 reduced the contact rate of epidemic transmission in Anhui province by 48.37%, and centralized quarantine management policy for close contacts in Anhui reduced the contact rate by an additional 36.97%. At the same time, the estimated basic reproduction number gradually decreased from the initial 2.9764 to 0.8667 and then to 0.5725. We conclude that the Wuhan lockdown and the centralized quarantine management policy in Anhui played a crucial role in the timely and effective mitigation of the epidemic in Anhui. One merit of this work is the adoption of morbidity data which may reflect the epidemic more accurately and promptly. Our estimated parameters are largely in line with the World Health Organization estimates and previous studies.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Modelos Biológicos , Pandemias , Pneumonia Viral/epidemiologia , Número Básico de Reprodução/estatística & dados numéricos , COVID-19 , China/epidemiologia , Simulação por Computador , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Humanos , Análise de Séries Temporais Interrompida/estatística & dados numéricos , Cadeias de Markov , Conceitos Matemáticos , Método de Monte Carlo , Morbidade/tendências , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Quarentena/estatística & dados numéricos , SARS-CoV-2
13.
Math Biosci Eng ; 17(4): 3052-3061, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32987516

RESUMO

The novel coronavirus disease 2019 (COVID-19) infection broke out in December 2019 in Wuhan, and rapidly overspread 31 provinces in mainland China on 31 January 2020. In the face of the increasing number of daily confirmed infected cases, it has become a common concern and worthy of pondering when the infection will appear the turning points, what is the final size and when the infection would be ultimately controlled. Based on the current control measures, we proposed a dynamical transmission model with contact trace and quarantine and predicted the peak time and final size for daily confirmed infected cases by employing Markov Chain Monte Carlo algorithm. We estimate the basic reproductive number of COVID-19 is 5.78 (95%CI: 5.71-5.89). Under the current intervention before 31 January, the number of daily confirmed infected cases is expected to peak on around 11 February 2020 with the size of 4066 (95%CI: 3898-4472). The infection of COVID-19 might be controlled approximately after 18 May 2020. Reducing contact and increasing trace about the risk population are likely to be the present effective measures.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Modelos Biológicos , Pandemias/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Algoritmos , Número Básico de Reprodução/estatística & dados numéricos , COVID-19 , China/epidemiologia , Simulação por Computador , Busca de Comunicante/estatística & dados numéricos , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Epidemias/prevenção & controle , Epidemias/estatística & dados numéricos , Mapeamento Geográfico , Humanos , Cadeias de Markov , Conceitos Matemáticos , Método de Monte Carlo , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Quarentena/estatística & dados numéricos , SARS-CoV-2
14.
Math Biosci Eng ; 17(4): 3618-3636, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32987547

RESUMO

A new COVID-19 epidemic model with media coverage and quarantine is constructed. The model allows for the susceptibles to the unconscious and conscious susceptible compartment. First, mathematical analyses establish that the global dynamics of the spread of the COVID-19 infectious disease are completely determined by the basic reproduction number R0. If R0 ≤ 1, then the disease free equilibrium is globally asymptotically stable. If R0 > 1, the endemic equilibrium is globally asymptotically stable. Second, the unknown parameters of model are estimated by the MCMC algorithm on the basis of the total confirmed new cases from February 1, 2020 to March 23, 2020 in the UK. We also estimate that the basic reproduction number is R0 = 4.2816(95%CI: (3.8882, 4.6750)). Without the most restrictive measures, we forecast that the COVID-19 epidemic will peak on June 2 (95%CI: (May 23, June 13)) (Figure 3a) and the number of infected individuals is more than 70% of UK population. In order to determine the key parameters of the model, sensitivity analysis are also explored. Finally, our results show reducing contact is effective against the spread of the disease. We suggest that the stringent containment strategies should be adopted in the UK.


Assuntos
Betacoronavirus , Meios de Comunicação , Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Quarentena , Algoritmos , Número Básico de Reprodução/estatística & dados numéricos , COVID-19 , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Humanos , Cadeias de Markov , Conceitos Matemáticos , Modelos Biológicos , Método de Monte Carlo , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , SARS-CoV-2 , Fatores de Tempo , Reino Unido/epidemiologia
15.
Math Biosci Eng ; 17(4): 3637-3648, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32987548

RESUMO

Based on the reported data from February 16, 2020 to March 9, 2020 in South Korea including confirmed cases, death cases and recovery cases, the control reproduction number was estimated respectively at different control measure phases using Markov chain Monte Carlo method and presented using the resulting posterior mean and 95% credible interval (CrI). At the early phase from February 16 to February 24, we estimate the basic reproduction number R0 of COVID-19 to be 4.79(95% CrI 4.38 - 5.2). The estimated control reproduction number dropped rapidly to Rc ≈ 0.32(95% CrI 0.19 - 0.47) at the second phase from February 25 to March 2 because of the voluntary lockdown measures. At the third phase from March 3 to March 9, we estimate Rc to be 0.27 (95% CrI 0.14 - 0.42). We predict that the final size of the COVID-19 outbreak in South Korea is 9661 (95% CrI 8660 - 11100) and the whole epidemic will be over by late April. It is found that reducing contact rate and enhancing the testing speed will have the impact on the peak value and the peak time.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Número Básico de Reprodução/estatística & dados numéricos , COVID-19 , Simulação por Computador , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Humanos , Cadeias de Markov , Conceitos Matemáticos , Modelos Biológicos , Método de Monte Carlo , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , República da Coreia/epidemiologia , SARS-CoV-2 , Fatores de Tempo
16.
Math Biosci Eng ; 17(4): 3710-3720, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32987551

RESUMO

Since December 2019, an outbreak of a novel coronavirus pneumonia (WHO named COVID-19) swept across China. In Shanxi Province, the cumulative confirmed cases finally reached 133 since the first confirmed case appeared on January 22, 2020, and most of which were imported cases from Hubei Province. Reasons for this ongoing surge in Shanxi province, both imported and autochthonous infected cases, are currently unclear and demand urgent investigation. In this paper, we developed a SEIQR difference-equation model of COVID-19 that took into account the transmission with discrete time imported cases, to perform assessment and risk analysis. Our findings suggest that if the lock-down date in Wuhan is earlier, the infectious cases are fewer. Moreover, we reveal the effects of city lock-down date on the final scale of cases: if the date is advanced two days, the cases may decrease one half (67, 95% CI: 66-68); if the date is delayed for two days, the cases may reach about 196 (95% CI: 193-199). Our investigation model could be potentially helpful to study the transmission of COVID-19, in other provinces of China except Hubei. Especially, the method may also be used in countries with the first confirmed case is imported.


Assuntos
Betacoronavirus , Infecções por Coronavirus/transmissão , Modelos Biológicos , Pandemias , Pneumonia Viral/transmissão , Número Básico de Reprodução/estatística & dados numéricos , COVID-19 , China/epidemiologia , Simulação por Computador , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Humanos , Cadeias de Markov , Conceitos Matemáticos , Método de Monte Carlo , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Quarentena/estatística & dados numéricos , SARS-CoV-2 , Fatores de Tempo , Viagem/estatística & dados numéricos
17.
Comput Math Methods Med ; 2020: 6721919, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802152

RESUMO

In this paper, we study the dynamics of soil-transmitted helminth infection. We formulate and analyse a deterministic compartmental model using nonlinear differential equations. The basic reproduction number is obtained and both disease-free and endemic equilibrium points are shown to be asymptotically stable under given threshold conditions. The model may exhibit backward bifurcation for some parameter values, and the sensitivity indices of the basic reproduction number with respect to the parameters are determined. We extend the model to include control measures for eradication of the infection from the community. Pontryagian's maximum principle is used to formulate the optimal control problem using three control strategies, namely, health education through provision of educational materials, educational messages to improve the awareness of the susceptible population, and treatment by mass drug administration that target the entire population(preschool- and school-aged children) and sanitation through provision of clean water and personal hygiene. Numerical simulations were done using MATLAB and graphical results are displayed. The cost effectiveness of the control measures were done using incremental cost-effective ratio, and results reveal that the combination of health education and sanitation is the best strategy to combat the helminth infection. Therefore, in order to completely eradicate soil-transmitted helminths, we advise investment efforts on health education and sanitation controls.


Assuntos
Helmintíase/prevenção & controle , Helmintíase/transmissão , Modelos Biológicos , Solo/parasitologia , Animais , Anti-Helmínticos/administração & dosagem , Anti-Helmínticos/economia , Número Básico de Reprodução/estatística & dados numéricos , Criança , Pré-Escolar , Simulação por Computador , Análise Custo-Benefício , Doenças Endêmicas/prevenção & controle , Doenças Endêmicas/estatística & dados numéricos , Educação em Saúde/economia , Helmintíase/epidemiologia , Humanos , Conceitos Matemáticos , Dinâmica não Linear , Saneamento/economia
19.
J R Soc Interface ; 17(168): 20200144, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32693748

RESUMO

A novel coronavirus (SARS-CoV-2) emerged as a global threat in December 2019. As the epidemic progresses, disease modellers continue to focus on estimating the basic reproductive number [Formula: see text]-the average number of secondary cases caused by a primary case in an otherwise susceptible population. The modelling approaches and resulting estimates of [Formula: see text] during the beginning of the outbreak vary widely, despite relying on similar data sources. Here, we present a statistical framework for comparing and combining different estimates of [Formula: see text] across a wide range of models by decomposing the basic reproductive number into three key quantities: the exponential growth rate, the mean generation interval and the generation-interval dispersion. We apply our framework to early estimates of [Formula: see text] for the SARS-CoV-2 outbreak, showing that many [Formula: see text] estimates are overly confident. Our results emphasize the importance of propagating uncertainties in all components of [Formula: see text], including the shape of the generation-interval distribution, in efforts to estimate [Formula: see text] at the outset of an epidemic.


Assuntos
Número Básico de Reprodução , Betacoronavirus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Surtos de Doenças , Modelos Biológicos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Número Básico de Reprodução/estatística & dados numéricos , Teorema de Bayes , COVID-19 , China/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Epidemias/estatística & dados numéricos , Humanos , Cadeias de Markov , Método de Monte Carlo , Pandemias , Probabilidade , SARS-CoV-2 , Incerteza
20.
Bull Math Biol ; 82(6): 73, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533498

RESUMO

Influenza usually breaks out seasonally in temperate regions, especially in winter, infection rates and mortality rates of influenza increase significantly, which means that dry air and cold temperatures accelerate the spread of influenza viruses. However, the meteorological factors that lead to seasonal influenza outbreaks and how these meteorological factors play a decisive role in influenza transmission remain unclear. During the epidemic of infectious diseases, the neglect of unreported cases leads to an underestimation of infection rates and basic reproduction number. In this paper, we propose a new non-autonomous periodic differential equation model with meteorological factors including unreported cases. First, the basic reproduction number is obtained and the global asymptotic stability of the disease-free periodic solution is proved. Furthermore, the existence of periodic solutions and the uniformly persistence of the model are demonstrated. Second, the best-fit parameter values in our model are identified by the MCMC algorithm on the basis of the influenza data in Gansu province, China. We also estimate that the basic reproduction number is 1.2288 (95% CI:(1.2287, 1.2289)). Then, to determine the key parameters of the model, uncertainty and sensitivity analysis are explored. Finally, our results show that influenza is more likely to spread in low temperature, low humidity and low precipitation environments. Temperature is a more important factor than relative humidity and precipitation during the influenza epidemic. In addition, our results also show that there are far more unreported cases than reported cases.


Assuntos
Surtos de Doenças , Influenza Humana/epidemiologia , Modelos Biológicos , Algoritmos , Número Básico de Reprodução/estatística & dados numéricos , China/epidemiologia , Biologia Computacional , Simulação por Computador , Surtos de Doenças/estatística & dados numéricos , Humanos , Umidade , Influenza Humana/transmissão , Cadeias de Markov , Conceitos Matemáticos , Conceitos Meteorológicos , Método de Monte Carlo , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA