Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biomater Adv ; 137: 212819, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929256

RESUMO

Nanotechnology has immensely advanced the field of cancer diagnostics and treatment by introducing potential delivery vehicles as carriers for drugs or therapeutic agents. In due course, mesoporous silica nanoparticles (MSNs) have emerged as excellent vehicles for delivering drugs, biomolecules, and biomaterials, attributed to their solid framework and porosity providing a higher surface area for decorating with various functional ligands. Recently, the metal tin (Sn) has gained huge importance in cancer research owing to its excellent cytotoxicity and ability to kill cancer cells. In the present work, we synthesized MSNs, conjugated them with organotin compounds, and characterized them using various physicochemical techniques. Subsequently, the biological evaluation of MSN (S1), MSN-MP (S2) and tin-conjugated MSNs (S3: MSN-MP-SnPh3) (MP = 3-mercaptopropyltriethoxysilane) revealed that these nanoconjugates induced cytotoxicity, necrosis, and apoptosis in MCF-7 cells. Moreover, these nanoconjugates exhibited anti-angiogenic properties as demonstrated in the chick embryo model. The increase of reactive oxygen species (ROS) was found as a one of the plausible mechanisms underlying cancer cell cytotoxicity induced by these nanoconjugates, encouraging their application for the treatment of cancer. The tin-conjugated MSNs demonstrated less toxicity to normal cells compared to cancer cells. Furthermore, the genotoxicity studies revealed the clastogenic and aneugenic effects of these nanoconjugates in CHO cells mostly at high concentrations. These interesting observations are behind the idea of developing tin-conjugated MSNs as prospective candidates for anticancer therapy.


Assuntos
Antineoplásicos , Dióxido de Silício , Estanho , Animais , Embrião de Galinha , Cricetinae , Humanos , Antineoplásicos/farmacologia , Sobrevivência Celular , Cricetulus , Portadores de Fármacos/química , Nanoconjugados , Dióxido de Silício/química , Estanho/farmacologia
2.
Molecules ; 27(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35458641

RESUMO

Cancer is one of the leading causes of death worldwide, accountable for a total of 10 million deaths in the year 2020, according to GLOBOCAN 2020. The advancements in the field of cancer research indicate the need for direction towards the development of new drug candidates that are instrumental in a tumour-specific action. The pool of natural compounds proves to be a promising avenue for the discovery of groundbreaking cancer therapeutics. Elaeocarpus ganitrus (Rudraksha) is known to possess antioxidant properties and after a thorough review of literature, it was speculated to possess significant biomedical potential. Green synthesis of nanoparticles is an environmentally friendly approach intended to eliminate toxic waste and reduce energy consumption. This approach was reported for the synthesis of silver nanoparticles from two different solvent extracts: aqueous and methanolic. These were characterized by biophysical and spectroscopic techniques, namely, UV-Visible Spectroscopy, FTIR, XRD, EDX, DLS, SEM, and GC-MS. The results showed that the nanoconjugates were spherical in geometry. Further, the assessment of antibacterial, antifungal, and antiproliferative activities was conducted which yielded results that were qualitatively positive at the nanoscale. The nanoconjugates were also evaluated for their anticancer properties using a standard MTT Assay. The interactions between the phytochemicals (ligands) and selected cancer receptors were also visualized in silico using the PyRx tool for molecular docking.


Assuntos
Elaeocarpaceae , Nanopartículas Metálicas , Antibacterianos/química , Química Verde , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Nanoconjugados , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
3.
J Colloid Interface Sci ; 482: 142-150, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27501037

RESUMO

The present investigation was aimed at developing various ligands-anchored dendrimers and comparing their brain targeting potential at one platform. Sialic acid (S), glucosamine (G) and concanavalin A (C) anchored poly(propyleneimine) (PPI) dendritic nanoconjugates were developed and evaluated for delivery of anti-cancer drug, paclitaxel (PTX) to the brain. MTT assay on U373MG human astrocytoma cells indicated IC50 values of 0.40, 0.65, 0.95, 2.00 and 3.50µM for PTX loaded SPPI, GPPI, CPPI, PPI formulations, and free PTX, respectively. The invivo pharmacokinetics and biodistribution studies in rats showed significantly higher accumulation of PTX in brain as compared to free PTX. The order of targeting potential of various ligands under investigation was found as sialic acid>glucosamine>concanavalin A. Thus, it can be concluded that sialic acid, glucosamine and Con A can be used as potential ligands to append PPI dendrimers for enhanced delivery of anticancer drugs to the brain for higher therapeutic outcome.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Dendrímeros/química , Nanoconjugados/química , Paclitaxel/farmacocinética , Polipropilenos/química , Animais , Antineoplásicos Fitogênicos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Concanavalina A/química , Dendrímeros/farmacocinética , Composição de Medicamentos , Liberação Controlada de Fármacos , Glucosamina/química , Humanos , Injeções Intravenosas , Ligantes , Terapia de Alvo Molecular , Nanoconjugados/uso terapêutico , Nanoconjugados/ultraestrutura , Paclitaxel/farmacologia , Ratos , Ácidos Siálicos/química , Distribuição Tecidual
4.
Cancer Gene Ther ; 20(12): 683-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24287722

RESUMO

PDX1 (pancreatic and duodenal homeobox 1) is overexpressed in pancreatic cancer, and its reduction results in tumor regression. Bi-functional pbi-shRNA PDX1 nanoparticle (OFHIRNA-PDX1) utilizes the endogenous micro-RNA biogenesis pathway to effect cleavage- and non-cleavage-dependent degradation of PDX1 mRNA. We have shown that OFHIRNA-PDX1 reduces pancreatic tumor volume in xenograft models. Thus, we are now exploring biorelevant large animal safety of OFHIRNA-PDX1. Mini pigs were chosen as the biorelevant species based on the similarity of human and pig PDX1 target sequence. In the initial study, animals developed fever, lethargy, hyporexia and cutaneous hyperemia following administration of OFHIRNA-PDX1. Twenty-one days later, the same animals demonstrated less toxicity with a second OFHIRNA-PDX1 infusion in conjunction with a prophylactic regimen involving dexamethasone, diphenhydramine, Indocin and ranitidine. In a new group of animals, PDX1 protein (31 kDa) expression in the pancreas was significantly repressed at 48 and 72 h (85%, P=0.018 and 88%, P=0.013; respectively) following a single infusion of OFHIRNA-PDX1 but recovered to normal state within 7 days. In conclusion, a single intravenous infusion of OFHIRNA-PDX1 in conjunction with premedication in pigs was well tolerated and demonstrated significant PDX1 knockdown.


Assuntos
Proteínas de Homeodomínio/genética , Nanoconjugados , RNA Interferente Pequeno/genética , Transativadores/genética , Animais , Pareamento de Bases , Sequência de Bases , Glicemia , Temperatura Corporal , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Ordem dos Genes , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/sangue , Camundongos , Nanoconjugados/administração & dosagem , Nanoconjugados/efeitos adversos , Nanoconjugados/química , Plasmídeos/química , Plasmídeos/genética , Isoformas de Proteínas , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Suínos , Transativadores/química , Transativadores/metabolismo
5.
Int J Nanomedicine ; 6: 2007-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21976976

RESUMO

BACKGROUND: Carbon nanotubes have shown broad potential in biomedical applications, given their unique mechanical, optical, and chemical properties. In this pilot study, carbon nanotubes have been explored as multimodal drug delivery vectors that facilitate antiangiogenic therapy in zebrafish embryos. METHODS: Three different agents, ie, an antiangiogenic binding site (cyclic arginine-glycin-easpartic acid), an antiangiogenic drug (thalidomide), and a tracking dye (rhodamine), were conjugated onto single-walled carbon nanotubes (SWCNT). The biodistribution, efficacy, and biocompatibility of these triple functionalized SWCNT were tested in mammalian cells and validated in transparent zebrafish embryos. RESULTS: Accumulation of SWCNT-associated nanoconjugates in blastoderm cells facilitated drug delivery applications. Mammalian cell xenograft assays demonstrated that these antiangiogenic SWCNT nanoconjugates specifically inhibited ectopic angiogenesis in the engrafted zebrafish embryos. CONCLUSION: This study highlights the potential of using SWCNT for generating efficient nanotherapeutics.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Nanoconjugados , Neovascularização Patológica/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Talidomida/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Blastoderma/citologia , Blastoderma/efeitos dos fármacos , Linhagem Celular Tumoral , Embrião não Mamífero/citologia , Humanos , Nanoconjugados/química , Nanoconjugados/uso terapêutico , Nanotubos de Carbono/análise , Nanotubos de Carbono/química , Rodaminas/análise , Rodaminas/química , Distribuição Tecidual , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA