Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(6): 101581, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38781963

RESUMO

Non-communicable diseases (NCD) constitute one of the highest burdens of disease globally and are associated with inflammatory responses in target organs. There is increasing evidence of significant human exposure to micro- and nanoplastics (MnPs). This review of environmental MnP exposure and health impacts indicates that MnP particles, directly and indirectly through their leachates, may exacerbate inflammation. Meanwhile, persistent inflammation associated with NCDs in gastrointestinal and respiratory systems potentially increases MnP uptake, thus influencing MnP access to distal organs. Consequently, a future increase in MnP exposure potentially augments the risk and severity of NCDs. There is a critical need for an integrated one-health approach to human health and environmental research for assessing the drivers of human MnP exposure and their bidirectional links with NCDs. Assessing these risks requires interdisciplinary efforts to identify and link drivers of environmental MnP exposure and organismal uptake to studies of impacted disease mechanisms and health outcomes.


Assuntos
Exposição Ambiental , Microplásticos , Doenças não Transmissíveis , Humanos , Doenças não Transmissíveis/epidemiologia , Exposição Ambiental/efeitos adversos , Carga Global da Doença , Nanopartículas/efeitos adversos , Inflamação
2.
NanoImpact ; 34: 100503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514026

RESUMO

TiO2 is the most widely used white pigment in plastics and food packaging industry, thus the question of its migration towards food and hence the impact on consumers is raised. Since recent research indicate its potential toxicity, it is necessary to study TiO2 contamination as a consequence of food storage. For this purpose, plastic containers from commercially-available dairy products and custom-made TiO2-spiked polypropylene materials were put in contact with 50% (v/v) ethanol and 3% (w/v) acetic acid, which were used here as food simulants. The migration assays were carried out under standard contact conditions of packaging use (as recommended by Commission Regulation (EU) N° 10/2011 for food contact migration testing), and under conditions of extreme mechanical degradation of the packaging. The TiO2 (nano)particles released in the food simulants were analysed by single particle inductively coupled plasma-tandem mass spectrometry in mass-shift mode and using a high efficiency sample introduction system (APEX™ Ω) to avoid matrix effects from food simulants. For the dairy product containers and for the spiked polypropylene, results showed release of TiO2 particles of rather large sizes (average size: 164 and 175 nm, respectively) under mechanical degradation conditions, i.e. when the polymeric structure is damaged. The highest amounts of TiO2 were observed in 50% ethanol after 10 days of storage at 50 °C (0.62 ng cm-2) for the dairy product containers and after 1 day of storage at 50 °C (0.68 ng cm-2) for the spiked polypropylene. However, the level of Ti released in particle form was very small compared to the total Ti content in the packaging and far below the acceptable migration limits set by European legislation. Release under standard contact conditions of use of the container was not measurable, thus the migration of TiO2 particles from this packaging to dairy products among storage is expected to be negligible.


Assuntos
Contaminação de Alimentos , Embalagem de Alimentos , Espectrometria de Massas em Tandem , Titânio , Titânio/análise , Titânio/química , Contaminação de Alimentos/análise , Polipropilenos/química , Polipropilenos/análise , Tamanho da Partícula , Nanopartículas/análise , Nanopartículas/efeitos adversos
3.
Biomed Res Int ; 2021: 9322282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746313

RESUMO

The emerging science of nanotechnology sparked a research attention in its potential benefits in comparison to the conventional materials used. Oral products prepared via nanoparticles (NPs) have garnered great interest worldwide. They are used commonly to incorporate nutrients and provide antimicrobial activity. Formulation into NPs can offer opportunities for targeted drug delivery, improve drug stability in the harsh environment of the gastrointestinal (GI) tract, increase drug solubility and bioavailability, and provide sustained release in the GI tract. However, some issues like the management of toxicity and safe handling of NPs are still debated and should be well concerned before their application in oral preparations. This article will help the reader to understand safety issues of NPs in oral drug delivery and provides some recommendations to the use of NPs in the drug industry.


Assuntos
Nanopartículas/administração & dosagem , Nanopartículas/efeitos adversos , Administração Oral , Animais , Disponibilidade Biológica , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/tendências , Estabilidade de Medicamentos , Humanos , Nanotecnologia , Solubilidade
4.
Nat Nanotechnol ; 16(9): 955-964, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34518657

RESUMO

Nanopesticides are not only in an advanced state of research and development but have started to appear on the market. Industry and regulatory agencies need a consolidated and comprehensive framework and guidance for human health risk assessments. In this perspective we develop such a comprehensive framework by exploring two case studies from relevant product types: an active ingredient delivered with a nanocarrier system, and a nanoparticle as an active ingredient. For a nanocarrier system, three entities are tracked during the assessment: the nanocarrier-active ingredient complex, the empty nanocarrier remaining after the complete release of the active ingredient, and the released active ingredient. For the nanoparticle of pure active ingredient, only two entities are relevant: the nanoparticle and the released ions. We suggest important adaptations of the existing pesticide framework to determine the relevant nanopesticide entities and their concentrations for toxicity testing. Depending on the nature of the nanopesticides, additional data requirements, such as those pertaining to durability in biological media and potential for crossing biological barriers, have also been identified. Overall, our framework suggests a tiered approach for human health risk assessment, which is applicable for a range of nanopesticide products to support regulators and industry in making informed decisions on nanopesticide submissions. Brief summaries of suitable methods including references to existing standards (if available) have been included together with an analysis of current knowledge gaps. Our study is an important step towards a harmonized approach accepted by regulatory agencies for assessing nanopesticides.


Assuntos
Nanopartículas/efeitos adversos , Praguicidas/efeitos adversos , Medição de Risco , Humanos , Testes de Toxicidade
5.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445265

RESUMO

Standard toxicity tests might not be fully adequate for evaluating nanomaterials since their unique features are also responsible for unexpected interactions. The in vitro cytokinesis-block micronucleus (CBMN) test is recommended for genotoxicity testing, but cytochalasin-B (Cyt-B) may interfere with nanoparticles (NP), leading to inaccurate results. Our objective was to determine whether Cyt-B could interfere with MN induction by TiO2 NP in human SH-SY5Y cells, as assessed by CBMN test. Cells were treated for 6 or 24 h, according to three treatment options: co-treatment with Cyt-B, post-treatment, and delayed co-treatment. Influence of Cyt-B on TiO2 NP cellular uptake and MN induction as evaluated by flow cytometry (FCMN) were also assessed. TiO2 NP were significantly internalized by cells, both in the absence and presence of Cyt-B, indicating that this chemical does not interfere with NP uptake. Dose-dependent increases in MN rates were observed in CBMN test after co-treatment. However, FCMN assay only showed a positive response when Cyt-B was added simultaneously with TiO2 NP, suggesting that Cyt-B might alter CBMN assay results. No differences were observed in the comparisons between the treatment options assessed, suggesting they are not adequate alternatives to avoid Cyt-B interference in the specific conditions tested.


Assuntos
Citocinese/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico , Nanopartículas/efeitos adversos , Titânio/efeitos adversos , Linhagem Celular Tumoral , Citocalasina B/farmacologia , Relação Dose-Resposta a Droga , Humanos , Titânio/farmacologia
6.
Biochim Biophys Acta Mol Basis Dis ; 1867(7): 166131, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766738

RESUMO

Pregnant women often have to take medication either for pregnancy-related diseases or for previously existing medical conditions. Current maternal medications pose fetal risks due to off target accumulation in the fetus. Nanoparticles, engineered particles in the nanometer scale, have been used for targeted drug delivery to the site of action without off-target effects. This has opened new avenues for treatment of pregnancy-associated diseases while minimizing risks on the fetus. It is therefore instrumental to study the potential transfer of nanoparticles from the mother to the fetus. Due to limitations of in vivo and ex vivo models, an in vitro model mimicking the in vivo situation is essential. Placenta-on-a-chip provides a microphysiological recapitulation of the human placenta. Here, we reviewed the fetal risks associated with current therapeutic approaches during pregnancy, analyzed the advantages and limitations of current models used for nanoparticle assessment, and highlighted the current need for using dynamic placenta-on-a-chip models for assessing the safety of novel nanoparticle-based therapies during pregnancy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Feto/metabolismo , Dispositivos Lab-On-A-Chip/estatística & dados numéricos , Nanopartículas/administração & dosagem , Placenta/metabolismo , Complicações na Gravidez/tratamento farmacológico , Medição de Risco/métodos , Feminino , Feto/efeitos dos fármacos , Humanos , Troca Materno-Fetal , Nanopartículas/efeitos adversos , Placenta/efeitos dos fármacos , Gravidez , Complicações na Gravidez/etiologia , Complicações na Gravidez/patologia
7.
J Fish Dis ; 43(9): 1049-1063, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32632933

RESUMO

Nanotechnology is an emerging avenue employed in disease prevention and treatment. This study evaluated the antimicrobial efficacy of chitosan nanoparticles (CSNPs) against major bacterial and oomycete fish pathogens in comparison with chitosan suspension. Initially, the minimum inhibitory concentrations (MIC, MIC90 ) were determined and the per cent inhibition of bacterial growth was calculated. Subsequently, the minimum bactericidal concentrations (MBCs) were determined. The time-dependent disruptions of CSNP-treated pathogens were observed via transmission electron microscopy (TEM), and the effect of CSNPs on the viability of two fish cell lines was assessed. No antimicrobial effect was observed with chitosan, while CSNPs (105 nm) exhibited a dose-dependent and species-specific antimicrobial properties. They were bactericidal against seven bacterial isolates recording MBC values from 1 to 7 mg/ml, bacteriostatic against four further isolates recording MIC values from 0.125 to 5 mg/ml and fungistatic against oomycetes recording MIC90 values of 3 and 4 mg/ml. TEM micrographs showed the attachment of CSNPs to the pathogenic cell membranes disrupting their integrity. No significant cytotoxicity was observed using 1 mg/ml CSNPs, while low dose-dependent cytotoxicity was elicited by the higher doses. Therefore, it is anticipated that CSNPs are able to compete and reduce using antibiotics in aquaculture.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Quitosana/farmacologia , Doenças dos Peixes/microbiologia , Nanopartículas , Oomicetos/efeitos dos fármacos , Animais , Anti-Infecciosos/efeitos adversos , Bactérias/ultraestrutura , Carpas , Linhagem Celular , Quitosana/efeitos adversos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Nanopartículas/efeitos adversos , Oomicetos/ultraestrutura , Salmão
8.
Endocr Regul ; 54(1): 53-63, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32597145

RESUMO

OBJECTIVES: Rapid development and widespread application of different types of nanoparticles (NPs) may result in increased exposure of humans and animals to NPs. Recently, reproductive toxicity due to NP exposure has become a major component of risk assessment. Current data have suggested that NPs may pose adverse effects on male and female reproductive health by altering normal testis and ovarian structure, and sex hormone levels. To detect possible alterations in steroidogenesis in adult and infantile rats following neonatal exposure to polymeric poly(ethylene glycol)-block-polylactide methyl ether (PEG-b-PLA) or titanium dioxide (TiO2) NPs, whole ovary cultures were used. METHODS: Newborn female Wistar rats were intraperitoneally (i.p.) injected daily with two different doses of PEG-b-PLA NPs (20 and 40 mg/kg body weight, b.w.) or TiO2 NPs (1% LD50 TiO2=59.2 µg/kg b.w. and 10% LD50 TiO2=592 µg/kg b.w.) from postnatal day 4 (PND 4) to PND 7. The ovaries were collected on PND73 and PND15 of PEG-b-PLA- and TiO2 NP-treated rats, respectively, and their corresponding control animals. Minced ovaries were cultured in vitro in the absence (basal conditions) or presence of gonadotropins (follicle-stimulating hormone, FSH and luteinizing hormone, LH) and insulin-like growth factor-1 (IGF-1) (stimulated conditions) for 6 days. At indicated time intervals, culture media were collected for steroid hormone (progesterone, estradiol) analysis by specific radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) kits. RESULTS: Basal progesterone and estradiol secretion by ovaries from adult rats (PND73) were significantly decreased (p<0.01) in both PEG-b-PLA-treated groups after 3 days and 1 day of ex vivo ovary culture, respectively, compared with control group. With the presence of FSH/LH and IGF-1 in the culture medium, progesterone and estradiol production significantly increased (p<0.001) compared to basal levels. Stimulated progesterone production was significantly decreased (p<0.05) in PEG-b-PLA40-treated group after 3 days of culture compared with controls. After ex vivo culture of rat ovaries collected on PND15, basal progesterone and estradiol levels measured in the culture media did not differ between control and both TiO2 NP-treated groups. The ovaries from rats neonatally exposed to both doses of TiO2 NPs failed to respond to FSH/IGF stimulation in progesterone secretion at all time intervals. CONCLUSIONS: The obtained results indicate that neonatal exposure to NPs in female rats may alter ovarian steroidogenic output (steroid hormone secretion) and thereby might subsequently induce perturbation of mammalian reproductive functions. Possible mechanisms (induction of oxidative stress, inflammation) of adverse effects of NPs on ovarian function should be further elucidated.


Assuntos
Estradiol/metabolismo , Lactatos/administração & dosagem , Nanopartículas/efeitos adversos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Polietilenoglicóis/administração & dosagem , Progesterona/metabolismo , Titânio/administração & dosagem , Animais , Animais Recém-Nascidos , Feminino , Nanopartículas/administração & dosagem , Ratos , Ratos Wistar
9.
Nanoscale ; 11(27): 12965-12972, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31259344

RESUMO

With the wide application of Stöber silica nanoparticles and their ability to access the brain, it is crucial to evaluate their neurotoxicity. In this study, we used three in vitro model cells, i.e., N9, bEnd.3 and HT22 cells, representing microglia, microendothelial cells and neurons, respectively, to assess the neurotoxicity of Stöber silica nanoparticles with different sizes. We found that Stöber silica nanoparticles almost had no effect on the viability of bEnd.3 and HT22 cells. In contrast, they induced size-dependent toxicity in N9 cells, which represent the residential macrophages of the central nervous system. Further mechanistic study demonstrated that the toxicity in N9 cells was related to their surface silanol display. In addition, we demonstrated that Stöber silica nanoparticles induced the production of mitochondrial ROS, release of IL-1ß, cleavage of GSDMD, and occurrence of pyroptosis in N9 cells. Features of pyroptosis were also observed in primary microglia and macrophage J774A.1. In conclusion, these findings were helpful for the safety consideration of Stöber silica nanoparticles considering their wide applications in our daily life.


Assuntos
Microglia/metabolismo , Mitocôndrias/metabolismo , Nanopartículas/efeitos adversos , Piroptose/efeitos dos fármacos , Dióxido de Silício/efeitos adversos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Microglia/patologia , Mitocôndrias/patologia , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Dióxido de Silício/farmacologia
10.
ACS Appl Mater Interfaces ; 11(22): 19669-19678, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31074257

RESUMO

Nanoparticles have been widely used for preclinical cancer imaging. However, their successful clinical translation is largely hampered by potential toxicity, unsatisfactory detection of malignancy at early stages, inaccurate diagnosis of tumor biomarkers, and histology for imaging-guided treatment. Herein, a targeted copper nanocluster (CuNC) is reported with high potential to address these challenges for future translation. Its ultrasmall structure enables efficient renal/bowel clearance, minimized off-target effects in nontargeted organs, and low nonspecific tumor retention. The pH-dependent in vivo dissolution of CuNCs affords minimal toxicity and potentially selective drug delivery to tumors. The intrinsic radiolabeling through the direct addition of 64Cu to CuNC (64Cu-CuNCs-FC131) synthesis offers high specific activity for sensitive and accurate detection of CXCR4 via FC131-directed targeting in novel triple negative breast cancer (TNBC) patient-derived xenograft mouse models and human TNBC tissues. In summary, this study not only reveals the potential of CXCR4-targeted 64Cu-CuNCs for TNBC imaging in clinical settings, but also provides a useful strategy to design and assess the translational potential of nanoparticles for cancer theranostics.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Cobre/química , Portadores de Fármacos/química , Nanopartículas/química , Animais , Cobre/efeitos adversos , Radioisótopos de Cobre/química , Feminino , Humanos , Camundongos , Nanopartículas/efeitos adversos , Peptídeos Cíclicos/química , Tomografia por Emissão de Pósitrons , Receptores CXCR4/metabolismo , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem
11.
Artif Cells Nanomed Biotechnol ; 47(1): 475-490, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30739499

RESUMO

OBJECTIVE: Enhancement of CS-GA-PCL-NPs (Glycyrrhizic Acid-encapsulated-chitosan-coated-PCL-Nanoparticles) bioavailability in brain. METHODS: Double emulsification solvent evaporation method in order to develop CS-PCL-NPs (Chitosan-coated-PCL-Nanoparticles) followed by characterization of particle size and distribution, zeta potential, encapsulation efficiency and drug release (in vitro). To determine drug-uptake and its pharmacokinetic profile in brain as well as plasma, UHPLC (triple quadrupole Q-trap) MS/MS method was developed and optimized for CS-GA-PCL-NPs as well as to follow-up examined effective role of optimized NPs in reduction of all brain injury parameters after MCAO through the grip strength, locomotor activity, inflammatory cytokines levels, measurement of infarction volume and histopathological changes in neurons with safety/toxicity after i.n. in animals. RESULTS: The developed NPs showed an average particle size, entrapment efficiency with PDI (polydispersity index) of 201.3 ± 4.6 nm, 77.94 ± 5.01% and 0.253 ± 0.019, respectively. Higher mucoadhesive property for CS-GA-PCL-NPs as compared to conventional and homogenized nanoformulations was observed whereas an elution time of 0.37 min and m/z of 821.49/113.41 for GA along with an elution time of 1.94 min and m/z of 363.45/121.40 was observed for hydrocortisone i.e. Internal standard (IS). Similarly, %CV i.e. inter and intra assay i.e. 0.49-4.41%, linear dynamic range (10-2000 ng/mL) and % accuracy of 90.00-99.09% was also observed. AUC0-24 with augmented Cmax was noted (**p < .01), in Wistar rat brain as compared to i.v. treated group during pharmacokinetics studies. In MCA-occluded rats, enhanced neurobehavioral activity i.e. locomotor and grip strength along with a decrease in cytokines level (TNF-α and IL-1ß) was observed, following i.n. administration. CONCLUSIONS: CS-coated-GA-loaded-PCL-NPs when administered i.n. enhanced the bioavailability of the drug in rat brain as compared to i.v. administration. The observation from toxicity study concludes; the developed NPS are safe and free of any health associated risk.


Assuntos
Isquemia Encefálica , Encéfalo/metabolismo , Portadores de Fármacos , Ácido Glicirrízico , Nanopartículas , Administração Intranasal , Animais , Encéfalo/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Liberação Controlada de Fármacos , Ácido Glicirrízico/efeitos adversos , Ácido Glicirrízico/química , Ácido Glicirrízico/farmacocinética , Ácido Glicirrízico/farmacologia , Cabras , Masculino , Nanopartículas/efeitos adversos , Nanopartículas/química , Nanopartículas/uso terapêutico , Ratos , Ratos Wistar
12.
Int J Mol Sci ; 20(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888290

RESUMO

Laser printer-emitted nanoparticles (PEPs) generated from toners during printing represent one of the most common types of life cycle released particulate matter from nano-enabled products. Toxicological assessment of PEPs is therefore important for occupational and consumer health protection. Our group recently reported exposure to PEPs induces adverse cardiovascular responses including hypertension and arrythmia via monitoring left ventricular pressure and electrocardiogram in rats. This study employed genome-wide mRNA and miRNA profiling in rat lung and blood integrated with metabolomics and lipidomics profiling in rat serum to identify biomarkers for assessing PEPs-induced disease risks. Whole-body inhalation of PEPs perturbed transcriptional activities associated with cardiovascular dysfunction, metabolic syndrome, and neural disorders at every observed time point in both rat lung and blood during the 21 days of exposure. Furthermore, the systematic analysis revealed PEPs-induced transcriptomic changes linking to other disease risks in rats, including diabetes, congenital defects, auto-recessive disorders, physical deformation, and carcinogenesis. The results were also confirmed with global metabolomics profiling in rat serum. Among the validated metabolites and lipids, linoleic acid, arachidonic acid, docosahexanoic acid, and histidine showed significant variation in PEPs-exposed rat serum. Overall, the identified PEPs-induced dysregulated genes, molecular pathways and functions, and miRNA-mediated transcriptional activities provide important insights into the disease mechanisms. The discovered important mRNAs, miRNAs, lipids and metabolites may serve as candidate biomarkers for future occupational and medical surveillance studies. To the best of our knowledge, this is the first study systematically integrating in vivo, transcriptomics, metabolomics, and lipidomics to assess PEPs inhalation exposure-induced disease risks using a rat model.


Assuntos
Doença/genética , Exposição por Inalação/efeitos adversos , Lipidômica , Pulmão/metabolismo , Nanopartículas/efeitos adversos , Soro/metabolismo , Transcriptoma/genética , Poluentes Atmosféricos/análise , Animais , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Impressão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Fatores de Risco
13.
G Ital Med Lav Ergon ; 41(4): 349-353, 2019 12.
Artigo em Italiano | MEDLINE | ID: mdl-32126608

RESUMO

SUMMARY: Aims. A growing number of workers are employed in research laboratories where nanomaterials (NMs) are synthesized, characterized, processed and investigated for their physico-chemical and toxicological properties. To adequately evaluate occupational risks in such contexts, a suitable exposure assessment is necessary. Methods. A critical review of the scientific and grey literature on NM exposure in laboratories has been performed. Results. The evaluation of the exposure, in general, includes a preliminary analysis of the working processes and of the features of NMs employed. Environmental and personal monitoring can be used for a quantitative assessment of the exposure, although the current uncertainties relating to the metrological parameters to be measured and the occupational exposure limits to be compared with collected data make the interpretation of the results and the definition of shared sampling strategies a challenging issue. Conclusions. To date, qualitative information on NM exposure can be used in "control banding" instruments useful for the precautionary assessment and management of risks in research laboratories involved with NMs. Future NM environmental and personal exposure assessments should be pursued to define appropriate monitoring strategies and guide the adoption of appropriate preventive measures to protect the health of workers.


Assuntos
Nanopartículas/efeitos adversos , Exposição Ocupacional/prevenção & controle , Saúde Ocupacional , Monitoramento Ambiental/métodos , Humanos , Laboratórios/normas , Nanopartículas/análise , Pesquisa , Medição de Risco/métodos , Gestão de Riscos/métodos
14.
Adv Healthc Mater ; 8(1): e1801233, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30536962

RESUMO

The unique photoluminescent properties of upconversion nanoparticles (UCNPs) have attracted worldwide research interest and inspired many bioanalytical applications. The anti-Stokes emission with long luminescence lifetimes, narrow and multiple absorption and emission bands, and excellent photostability enable background-free and multiplexed detection in deep tissues. So far, however, in vitro and in vivo applications of UCNPs are restricted to the laboratory use due to safety concerns. Possible harmful effects may originate from the chemical composition but also from the small size of UCNPs. Potential end users must rely on well-founded safety data. Thus, a risk to benefit assessment of the envisioned combined therapeutic and diagnostic ("theranostic") applications is fundamentally important to bridge the translational gap between laboratory and clinics. The COST Action CM1403 "The European Upconversion Network-From the Design of Photon-Upconverting Nanomaterials to Biomedical Applications" integrates research on UCNPs ranging from fundamental materials synthesis and research, detection instrumentation, biofunctionalization, and bioassay development to toxicity testing. Such an interdisciplinary approach is necessary for a better and safer theranostic use of UCNPs. Here, the status of nanotoxicity research on UCNPs is compared to other nanomaterials, and routes for the translation of UCNPs into clinical applications are delineated.


Assuntos
Nanopartículas/química , Pesquisa Translacional Biomédica , Animais , Tecnologia Biomédica , Humanos , Nanopartículas/efeitos adversos , Publicações , Controle Social Formal
15.
AAPS J ; 20(5): 92, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30128758

RESUMO

The US Food and Drug Administration (FDA) recently released a draft guidance for industry titled "Drug Products, Including Biological Products, that Contain Nanomaterials." The FDA's attention to the unique safety and efficacy aspects of drugs containing nanomaterials is commendable. This Draft Guidance succeeds in acknowledging the complexity of these products, as well as the challenges associated with approving safe and therapeutically equivalent complex generic versions. However, the challenge posed by the manufacturing process for drugs containing nanomaterials is insufficiently addressed. The critical quality attributes of such products cannot be properly defined, and therefore it is not possible to design informative comparative physicochemical assessments for equivalence. As a consequence, the 505(j) Abbreviated New Drug Application (ANDA) pathway, currently advised as the standard from the FDA, is not suitable for the approval of complex generic products. Drawing from the successful story of biologics, we propose instead a stepwise totality-of-evidence approach, demonstrating similarity and including clinical studies when deemed necessary, as an appropriate alternative to the 505(j) ANDA pathway.


Assuntos
Produtos Biológicos/uso terapêutico , Aprovação de Drogas , Indústria Farmacêutica/normas , Guias como Assunto/normas , Nanomedicina/normas , Nanopartículas/uso terapêutico , Segurança do Paciente/normas , United States Food and Drug Administration/normas , Produtos Biológicos/efeitos adversos , Aprovação de Drogas/legislação & jurisprudência , Indústria Farmacêutica/legislação & jurisprudência , Humanos , Nanomedicina/legislação & jurisprudência , Nanopartículas/efeitos adversos , Segurança do Paciente/legislação & jurisprudência , Formulação de Políticas , Medição de Risco , Estados Unidos , United States Food and Drug Administration/legislação & jurisprudência
16.
Chemosphere ; 193: 745-753, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29175402

RESUMO

The increasing use of plastics has raised concerns about pollution of freshwater by these polymeric materials. Knowledge about their potential effects on environmental and public health is limited. Recent publications have suggested that the degradation of plastics will result in the release of nano-sized plastic particles to the environment. Therefore, it is of utmost importance to gain knowledge about whether and how nanoplastics affect living organisms. The present study aimed to analyse potential neurobehavioral effects of polystyrene nanoparticles (PS-NPs) after long-term exposure on rat. Potential effects of PS-NPs were investigated using four test dosages (1, 3, 6, and 10 mg PS-NPs/kg of body weight/day) administrated orally with adult Wistar male rats for five weeks. Neurobehavioral tests were chosen to assess a variety of behavioral domains. Particle diameters in test suspensions were determined through dynamic light scattering and showed an average hydrodynamic diameter of approximately 38.92 nm. No statistically significant behavioral effects were observed in all tests performed (p > 0.05). In the elevated plus maze, PS-NPs-exposed rats showed greater number of entries into open arms compared to controls. Also, PS-NPs had no significant influence on body weight of animals. Taking into account the subtle and transient nature of neurobehavioral consequences, however, these results underline the possibility of even pristine plastic nanoparticles to induce behavioral alteration in the rest of the food web, including for marine biota and humans. Indeed even though studied neurobehavioral effects in our study was not statistically significant, the observed subtle effects may be clinically considerable.


Assuntos
Comportamento Animal/efeitos dos fármacos , Poliestirenos/farmacologia , Poluentes Químicos da Água/farmacologia , Animais , Cadeia Alimentar , Humanos , Masculino , Nanopartículas/efeitos adversos , Nanopartículas/metabolismo , Tamanho da Partícula , Plásticos , Ratos , Ratos Wistar
17.
Front Immunol ; 9: 3074, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687312

RESUMO

In recent years, the unique properties of nanoparticles have fostered novel applications in various fields such as biology, pharmaceuticals, agriculture, and others. Unfortunately, their rapid integration into daily life has also led to environmental concerns due to uncontrolled release of nanoparticles into the aquatic environment. Despite increasing awareness of nanoparticle bioaccumulation in the aquatic environment, much remains to be learned about their impact on aquatic organisms and how to best monitor these effects. Herein, we provide the first review of innate immunity as an emerging tool to assess the health of fish following nanoparticle exposure. Fish are widely used as sentinels for aquatic ecosystem pollution and innate immune parameters offer sensitive and reliable tools that can be harnessed for evaluation of contamination events. The most frequent biomarkers highlighted in literature to date include, but are not limited to, parameters associated with leukocyte dynamics, oxidative stress, and cytokine production. Taken together, innate immunity offers finite and sensitive biomarkers for assessment of the impact of nanoparticles on fish health.


Assuntos
Biomarcadores , Exposição Ambiental/efeitos adversos , Peixes/imunologia , Indicadores Básicos de Saúde , Imunidade Inata , Nanopartículas/efeitos adversos , Animais , Citocinas/metabolismo , Resistência à Doença/imunologia , Suscetibilidade a Doenças , Peixes/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
18.
Methods Mol Biol ; 1682: 103-124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29039097

RESUMO

Blood clotting is a complex process which involves both cellular and biochemical components. The key cellular players in the blood clotting process are thrombocytes or platelets. Other cells, including leukocytes and endothelial cells, contribute to clotting by expressing the so-called pro-coagulant activity (PCA) complex on their surface. The biochemical component of blood clotting is represented by the plasma coagulation cascade, which includes plasma proteins also known as coagulation factors. The coordinated interaction between platelets, leukocytes, endothelial cells, and plasma coagulation factors is necessary for maintaining hemostasis and for preventing excessive bleeding. Undesirable activation of all or some of these components may lead to pathological blood coagulation and life-threatening conditions such as consumptive coagulopathy or disseminated intravascular coagulation (DIC). In contrast, unintended inhibition of the coagulation pathways may lead to hemorrhage. Thrombogenicity is the property of a test material to induce blood coagulation by affecting one or more elements of the clotting process. Anticoagulant activity refers to the property of a test material to inhibit coagulation. The tendency to cause platelet aggregation, perturb plasma coagulation, and induce leukocyte PCA can serve as an in vitro measure of a nanomaterial's likelihood to be pro- or anticoagulant in vivo. This chapter describes three procedures for in vitro analyses of platelet aggregation, plasma coagulation time, and activation of leukocyte PCA. Platelet aggregation and plasma coagulation procedures have been described earlier. The revision here includes updated details about nanoparticle sample preparation, selection of nanoparticle concentration for the in vitro study, and updated details about assay controls. The chapter is expanded to describe a method for the leukocyte PCA analysis and case studies demonstrating the performance of these in vitro assays.


Assuntos
Testes de Coagulação Sanguínea/métodos , Coagulação Sanguínea , Teste de Materiais/métodos , Nanopartículas/efeitos adversos , Testes de Função Plaquetária/métodos , Coleta de Amostras Sanguíneas/métodos , Humanos , Leucócitos/citologia , Leucócitos/metabolismo , Nanopartículas/metabolismo , Agregação Plaquetária
19.
Vaccine ; 35(48 Pt B): 6657-6663, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29061347

RESUMO

An attenuated nanovaccine (Nps - V∗) has been developed to protect humans from fatal scorpion envenomation in at-risk regions. This study was conducted to evaluate the toxicity and the local reactogenicity of the Nps - V∗ nanovaccine developed against Androctonus australis hector (Aah) venom. Assessment of the systemic inflammatory response and serum cytokine levels were evaluated in vaccinated mice with 100µg of irradiated Aah venom (V∗) encapsulated or not into polymeric calcium-alginate nanoparticles (Nps) and injected by subcutaneous (s.c) route. The local reactogenicity was evaluated by dermal Draize observations and skin tissue analysis at the injection site of vaccinated rabbits with 250 or 500µg of V∗-loaded into Nps. All animals gained weight and had normal food consumption during the study. Additionally, results showed that the nanoformulation Nps - V∗ did not cause clinical evidence of systemic toxicity in mice or rabbits, a transient edema/erythema at the injection site was only recorded as treatment-related reactogenicity. These results indicated a favorable safety profile for Nps - V∗ and supported its use in superior animal tests, then in a Phase 1 clinical trial.


Assuntos
Alginatos/administração & dosagem , Nanopartículas/química , Venenos de Escorpião/administração & dosagem , Venenos de Escorpião/efeitos adversos , Venenos de Escorpião/efeitos da radiação , Alginatos/efeitos adversos , Alginatos/química , Animais , Citocinas/biossíntese , Citocinas/imunologia , Avaliação Pré-Clínica de Medicamentos , Edema , Eritema , Ácido Glucurônico/administração & dosagem , Ácido Glucurônico/efeitos adversos , Ácido Glucurônico/química , Ácidos Hexurônicos/administração & dosagem , Ácidos Hexurônicos/efeitos adversos , Ácidos Hexurônicos/química , Humanos , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/efeitos adversos , Nanopartículas/uso terapêutico , Nanotecnologia/métodos , Venenos de Escorpião/uso terapêutico , Vacinação/métodos
20.
Med Health Care Philos ; 20(1): 3-11, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27522374

RESUMO

Nanomedicine offers remarkable options for new therapeutic avenues. As methods in nanomedicine advance, ethical questions conjunctly arise. Nanomedicine is an exceptional niche in several aspects as it reflects risks and uncertainties not encountered in other areas of medical research or practice. Nanomedicine partially overlaps, partially interlocks and partially exceeds other medical disciplines. Some interpreters agree that advances in nanotechnology may pose varied ethical challenges, whilst others argue that these challenges are not new and that nanotechnology basically echoes recurrent bioethical dilemmas. The purpose of this article is to discuss some of the ethical issues related to nanomedicine and to reflect on the question whether nanomedicine generates ethical challenges of new and unique nature. Such a determination should have implications on regulatory processes and professional conducts and protocols in the future.


Assuntos
Nanomedicina/ética , Bioética , Pesquisa Biomédica/ética , Humanos , Nanomedicina/legislação & jurisprudência , Nanopartículas/efeitos adversos , Nanopartículas/uso terapêutico , Exposição Ocupacional/efeitos adversos , Medicina de Precisão/ética , Medicina Regenerativa/ética , Medição de Risco , Pesquisa Translacional Biomédica/ética , Incerteza , Local de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA