Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 269(Pt 1): 131897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677671

RESUMO

Chitosan (Ch) is a linear biodegradable natural carbohydrate polymer and the most appealing biopolymer, such as low-cost biodegradability, biocompatibility, hydrophilicity, and non-toxicity. In this case, Ch was utilized to synthesize AgCoFe2O4@Ch/Activated Carbon (AC) by the modified microwave-assisted co-precipitation method. The physical and chemical structure of magnetic nanocomposites was analyzed and characterized by Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Energy Dispersive Spectroscopy (EDS), Diffuse Reflection Spectroscopy (DRS), Value stream mapping (VSM), Fourier transform spectroscopy (FTIR) and BET. The effects of various parameters on the removal of dye (Acid Red18), including catalyst dose, dye concentration, pH, and time were studied. Results showed that the highest removal efficiencies were 96.68 % and 84 % for the synthetic sample and actual wastewater, respectively, in optimal conditions (pH: 3, the initial dye concentration: 10 mgL-1, the catalyst dose: 0.14 gL-1, time: 50 min). Mineralization, according to the COD analysis, was 89.56 %. Photocatalytic degradation kinetics of Acid Red 18 followed pseudo-first order and Langmuir-Hinshelwood with constants of kc = 0.12 mg L-1 min-1 and KL-H = 0.115 Lmg-1. Synthesized photocatalytic AgCoFe2O4@Ch/AC showed high stability and after five recycling cycles was able to remove the pollutant with an efficiency of 85.6 %. So, the synthesized heterogenous magnetic nanocatalyst AgCoFe2O4@Ch/AC was easily recycled from aqueous solutions and it can be used in the removal of dyes from industries with high efficiency.


Assuntos
Poluentes Químicos da Água , Catálise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Nanocompostos/química , Quitosana/química , Purificação da Água/métodos , Compostos Azo/química , Compostos Azo/isolamento & purificação , Reciclagem/métodos , Concentração de Íons de Hidrogênio , Águas Residuárias/química , Fotólise , Nanopartículas de Magnetita/química , Cinética , Compostos Férricos/química , Carbono/química
2.
Adv Healthc Mater ; 13(12): e2304044, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38303644

RESUMO

Iron Oxide Nanoparticles (IONPs) hold the potential to exert significant influence on fighting cancer through their theranostics capabilities as contrast agents (CAs) for magnetic resonance imaging (MRI) and as mediators for magnetic hyperthermia (MH). In addition, these capabilities can be improved by doping IONPs with other elements. In this work, the synthesis and characterization of single-core and alloy ZnFe novel magnetic nanoparticles (MNPs), with improved magnetic properties and more efficient magnetic-to-heat conversion, are reported. Remarkably, the results challenge classical nucleation and growth theories, which cannot fully predict the final size/shape of these nanoparticles and, consequently, their magnetic properties, implying the need for further studies to better understand the nanomagnetism phenomenon. On the other hand, leveraging the enhanced properties of these new NPs, successful tumor therapy by MH is achieved following their intravenous administration and tumor accumulation via the enhanced permeability and retention (EPR) effect. Notably, these results are obtained using a single low dose of MNPs and a single exposure to clinically suitable alternating magnetic fields (AMF). Therefore, as far as the authors are aware, for the first time, the successful application of intravenously administered MNPs for MRI-tracked MH tumor therapy in passively targeted tumor xenografts using clinically suitable conditions is demonstrated.


Assuntos
Hipertermia Induzida , Imageamento por Ressonância Magnética , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Zinco/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Meios de Contraste/química , Nanopartículas de Magnetita/química , Ferro/química
3.
Acta Chim Slov ; 69(4): 826-836, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36562162

RESUMO

Magnetic nanoparticles (MNPs) have received increasing attention for various applications due to their fast synthesis, versatile functionalization, and recyclability by the application of a magnetic field. The high surface-to-volume ratio of MNP dispersions has suggested their use as an adsorbent for the removal of heavy metal ions. We investigated the applicability of MNPs composed of a maghemite core surrounded by a silica shell functionalized with aminopropylsilane, γ-Fe2O3-NH4OH@SiO2(APTMS), for the removal of neodymium ions (Nd3+) from aqueous solution. The MNPs were characterized for their size, composition, surface functionality and charge. Despite of the promising properties of MNPs, their removal from the aqueous dispersion with an external magnet was not sufficient to reliably quantify the adsorption of Nd3+ by UV-Vis spectroscopy.


Assuntos
Compostos Férricos , Nanopartículas de Magnetita , Neodímio , Dióxido de Silício , Nanopartículas de Magnetita/química , Adsorção , Íons
4.
PLoS One ; 17(6): e0269603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704647

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) coated with glucose (Glc-SPIONs) were prepared by a new approach called Metal Vapor Synthesis (MVS) and their morphological/structural features were investigated by transmission electron microscopy (TEM) and dynamic light scattering. TEM analysis revealed the presence of small roundish crystalline iron oxide nanoparticles in the organic amorphous phase of glucose, The particles were distributed in a narrow range (1.5 nm-3.5 nm) with a mean diameter of 2.7 nm. The hydrodynamic mean diameter of the Glc-SPIONs, was 15.5 nm. From 4 mg/mL onwards, there was a constant level of positive contrast in a T1-weighted sequence. In vitro experiments were performed in three cell lines: pancreatic cancer (PSN-1), human thyroid cancer (BCPAP), and human embryonic kidney non-tumor cells. We evaluated GLUT1 expression in each cell line and demonstrated that the exposure time and concentration of the Glc-SPIONs we used did not affect cell viability. PSN-1 cells were the most effective at internalizing Glc-SPIONs. Although significantly higher than the control cells, a lower Fe content was detected BCPAP cells treated with Glc-SPIONs. To confirm the involvement of GLUT1 in Glc-SPIONs internalization, cellular uptake experiments were also conducted by pre-treating cancer cells with specific GLUT1 inhibitors, All the inhibitors reduced the cancer cell uptake of Glc-SPIONs In vivo tests were performed on mice inoculated with Lewis lung carcinoma. Mice were treated with a single i.v. injection of Glc-SPION and our results showed a great bioavailability to the malignant tissue by the i.v. administration of Glc-SPIONs. Glc-SPIONs were efficiently eliminated by the kidney. To the best of our knowledge, our study demonstrates for the first time that Glc-SPIONs prepared with MVS can be electively internalized by tumor cells both in vitro and in vivo by exploiting one of the most universal metabolic anomalies of cancer.


Assuntos
Nanopartículas de Magnetita , Neoplasias , Animais , Compostos Férricos/química , Glucose , Transportador de Glucose Tipo 1 , Técnicas In Vitro , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas de Magnetita/química , Camundongos , Neoplasias/terapia
5.
Environ Sci Pollut Res Int ; 29(31): 46813-46829, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35171415

RESUMO

Triclosan (TCS) is widely used in the production of antibacterial products, being often found in wastewater. Therefore, this study developed new materials via soybean hulls (SBHF) and açaí seeds (AÇSF) functionalization with iron oxide nanoparticles to be applied in the TCS adsorption. The characterization confirmed the functionalization of the materials. The adsorption results indicated that the equilibrium of the process occurred after 480 and 960 min for SBHF and AÇSF, respectively. The maximum adsorptive capacity values were 158.35 and 155.09 mg g-1 for SBHF and AÇSF, respectively, at 318 K. The kinetic and isothermal data better fitted to the pseudo-second-order and Langmuir models. Thermodynamics indicated that the processes had an endothermic, spontaneous, and reversible character. The main adsorption mechanisms were H-bond and π-interactions. The pH and ionic strength studies indicated that the adsorption efficiency has not been reduced pronouncedly. The biosorbents reuse was effective for five cycles. In the synthetic mixture, the removal rate was satisfactory (92.53% and 57.02%, respectively for SBHF and AÇSF). These results demonstrate the biosorbents high potential for large-scale application.


Assuntos
Nanopartículas de Magnetita , Triclosan , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Magnetismo , Nanopartículas de Magnetita/química , Termodinâmica , Poluentes Químicos da Água/análise
6.
Mol Divers ; 26(2): 891-902, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33861411

RESUMO

Magnetite nanoparticles (MNPs) composed of γ-Fe2O3 and hydroxyapatite (HAp) were modified by hexamethylen-1,6-diisocyanate (HMDI) followed by thiourea dioxide and used as recyclable catalyst for the synthesis of some newly derivatives of chromeno[2,3-b]pyridine. The products were synthesized in excellent yields via one-pot three-component reactions of 3-cyano-6-hydroxy-4-methyl-pyridin-2(1H)-one with aldehydes and dimedone under solvent-free conditions. The successful synthesis of products were confirmed using Fourier transform infrared (FTIR), proton/carbon nuclear magnetic resonance (1H/13C NMR), and mass spectroscopies as well as physical data (e.g., melting points and elemental composition). The in vitro antioxidant and antifungal activities of the synthesized samples were evaluated using scavenging effects on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and potato dextrose agar (PDA) medium, respectively. Based on results, the chromeno[2,3-b]pyridine derivatives exhibited excellent biological activities that qualified them for biomedical applications.


Assuntos
Nanopartículas de Magnetita , Piridinas , Antioxidantes/farmacologia , Catálise , Nanopartículas de Magnetita/química , Piridinas/farmacologia , Solventes
7.
Life Sci ; 277: 119625, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015288

RESUMO

AIM: Iron oxide nanoparticles (IONPs) have been widely used in diagnosis, drug delivery, and therapy. However, the biodistribution and toxicity profile of IONPs remain debatable and incomplete, thus limiting their further use. We predict that coating iron oxide nanoparticles using curcumin (Cur-IONPs) will provide an advantage for their safety profile. MATERIALS AND METHODS: In this study, an evaluation of the multidose effect (6 doses of 5 mg/kg Cur-IONPs to male BALB/c mice, on alternating days for two weeks) on the toxicity and biodistribution of Cur-IONPs was conducted. KEY FINDINGS: Serum biochemical analysis demonstrated no significant difference in enzyme levels in the liver and kidney between the Cur-IONP-treated and control groups. Blood glucose level measurements showed a nonsignificant change between groups. However, the serum iron concentration was found to initially increase significantly but then decreased at 10 days after the final injection. Histopathological examination of the liver, spleen, kidneys, and brain showed no abnormalities or differences between the Cur-IONP-treated and control groups. There were no abnormal changes in mouse body weight. The biodistribution results showed that Cur-IONPs accumulated mainly in the liver, spleen, and brain, while almost no Cur-IONPs were found in the kidney. The iron content in the liver remained high even 10 days after the final injection, while the iron content in the spleen and brain had returned to normal levels by this time point, indicating their complete clearance. SIGNIFICANCE: These results are significant and promising for the further application of Cur-IONPs as theragnostic nanoparticles.


Assuntos
Curcumina/administração & dosagem , Curcumina/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Curcumina/toxicidade , Compostos Férricos/farmacologia , Ferro/metabolismo , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas de Magnetita/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Baço/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
8.
Theranostics ; 11(12): 5620-5633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897871

RESUMO

Rationale: Magnetic nanoparticle hyperthermia (MH) therapy is capable of thermally damaging tumor cells, yet a biomechanically-sensitive monitoring method for the applied thermal dosage has not been established. Biomechanical changes to tissue are known indicators for tumor diagnosis due to its association with the structural organization and composition of tissues at the cellular and molecular level. Here, by exploiting the theranostic functionality of magnetic nanoparticles (MNPs), we aim to explore the potential of using stiffness-based metrics that reveal the intrinsic biophysical changes of in vivo melanoma tumors after MH therapy. Methods: A total of 14 melanoma-bearing mice were intratumorally injected with dextran-coated MNPs, enabling MH treatment upon the application of an alternating magnetic field (AMF) at 64.7 kHz. The presence of the MNP heating sources was detected by magnetomotive optical coherence tomography (MM-OCT). For the first time, the elasticity alterations of the hyperthermia-treated, MNP-laden, in vivo tumors were also measured with magnetomotive optical coherence elastography (MM-OCE), based on the mechanical resonant frequency detected. To investigate the correlation between stiffness changes and the intrinsic biological changes, histopathology was performed on the excised tumor after the in vivo measurements. Results: Distinct shifts in mechanical resonant frequency were observed only in the MH-treated group, suggesting a heat-induced stiffness change in the melanoma tumor. Moreover, tumor cellularity, protein conformation, and temperature rise all play a role in tumor stiffness changes after MH treatment. With low cellularity, tumor softens after MH even with low temperature elevation. In contrast, with high cellularity, tumor softening occurs only with a low temperature rise, which is potentially due to protein unfolding, whereas tumor stiffening was seen with a higher temperature rise, likely due to protein denaturation. Conclusions: This study exploits the theranostic functionality of MNPs and investigates the MH-induced stiffness change on in vivo melanoma-bearing mice with MM-OCT and MM-OCE for the first time. It was discovered that the elasticity alteration of the melanoma tumor after MH treatment depends on both thermal dosage and the morphological features of the tumor. In summary, changes in tissue-level elasticity can potentially be a physically and physiologically meaningful metric and integrative therapeutic marker for MH treatment, while MM-OCE can be a suitable dosimetry technique.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Hipertermia/diagnóstico por imagem , Nanopartículas de Magnetita/química , Melanoma/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Animais , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Campos Magnéticos , Magnetismo/métodos , Camundongos , Camundongos Endogâmicos C57BL
9.
Sci Rep ; 10(1): 19004, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149153

RESUMO

Ecuador is one of the most affected countries, with the coronavirus disease 2019 (COVID-19) infection, in Latin America derived from an ongoing economic crisis. One of the most important methods for COVID-19 detection is the use of techniques such as real time RT-PCR based on a previous extraction/purification of RNA procedure from nasopharyngeal cells using functionalized magnetic nanoparticles (MNP). This technique allows the processing of ~ 10,000 tests per day in private companies and around hundreds per day at local Universities guaranteeing to reach a wide range of the population. However, the main drawback of this method is the need for specialized MNP with a strong negative charge for the viral RNA extraction to detect the existence of the SARS-CoV-2 virus. Here we present a simplified low cost method to produce 10 g of nanoparticles in 100 mL of solution that was scaled to one litter by parallelizing the process 10 times in just two days and allowing for the possibility of making ~ 50,000 COVID-19 tests. This communication helps in reducing the cost of acquiring MNP for diverse biomolecular applications supporting developing country budgets constraints and chemical availability specially during the COVID-19 International Health Emergency.


Assuntos
Técnicas de Laboratório Clínico/métodos , Custos e Análise de Custo , Nanopartículas de Magnetita/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Teste para COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/diagnóstico , Países em Desenvolvimento , Humanos , Nanopartículas de Magnetita/economia , RNA Viral/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa/economia
10.
ACS Appl Mater Interfaces ; 12(39): 43474-43487, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32870658

RESUMO

Magnetic hyperthermia is a cancer treatment based on the exposure of magnetic nanoparticles to an alternating magnetic field in order to generate local heat. In this work, 3D cell culture models were prepared to observe the effect that a different number of internalized particles had on the mechanisms of cell death triggered upon the magnetic hyperthermia treatment. Macrophages were selected by their high capacity to uptake nanoparticles. Intracellular nanoparticle concentrations up to 7.5 pg Fe/cell were measured both by elemental analysis and magnetic characterization techniques. Cell viability after the magnetic hyperthermia treatment was decreased to <25% for intracellular iron contents above 1 pg per cell. Theoretical calculations of the intracellular thermal effects that occurred during the alternating magnetic field application indicated a very low increase in the global cell temperature. Different apoptotic routes were triggered depending on the number of internalized particles. At low intracellular magnetic nanoparticle amounts (below 1 pg Fe/cell), the intrinsic route was the main mechanism to induce apoptosis, as observed by the high Bax/Bcl-2 mRNA ratio and low caspase-8 activity. In contrast, at higher concentrations of internalized magnetic nanoparticles (1-7.5 pg Fe/cell), the extrinsic route was observed through the increased activity of caspase-8. Nevertheless, both mechanisms may coexist at intermediate iron concentrations. Knowledge on the different mechanisms of cell death triggered after the magnetic hyperthermia treatment is fundamental to understand the biological events activated by this procedure and their role in its effectiveness.


Assuntos
Apoptose/efeitos dos fármacos , Hipertermia Induzida , Macrófagos/efeitos dos fármacos , Nanopartículas de Magnetita/química , Animais , Células Cultivadas , Cinética , Campos Magnéticos , Camundongos , Método de Monte Carlo , Tamanho da Partícula , Células RAW 264.7 , Propriedades de Superfície
11.
Drug Deliv ; 27(1): 1201-1217, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32772887

RESUMO

Superparamagnetic iron oxide nanoparticles have been synthesized using chain length of (3-aminopropyl) triethoxysilane for cancer therapy. First, we have developed a layer by layer functionalized with grafting 2,4-toluene diisocyanate as a bi-functional covalent linker onto a nano-Fe3O4 support. Then, they were characterized by Fourier transform infrared, X-ray powder diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and VSM techniques. Finally, all nanoparticles with positive or negative surface charges were tested against K562 (myelogenous leukemia cancer) cell lines to demonstrate their therapeutic efficacy by MTT assay test. We found that the higher toxicity of Fe3O4@SiO2@APTS ∼ Schiff base-Cu(II) (IC50: 1000 µg/mL) is due to their stronger in situ degradation, with larger intracellular release of iron ions, as compared to surface passivated NPs. For first time, the molecular dynamic simulations of all compounds were carried out afterwards optimizing using MM+, Semi-empirical (AM1) and Ab-initio (STO-3G), Forcite Gemo Opt, Forcite Dynamics, Forcite Energy and CASTEP in Materials studio 2017. The energy (eV), space group, lattice parameters (Å), unit cell parameters (Å), and electron density of the predicted structures were taken from the CASTEP module of Materials Studio. The docking methods were used to predict the DNA binding affinity, ribonucleotide reductase, and topoisomerase II.


Assuntos
Antineoplásicos/farmacologia , Simulação por Computador , Compostos Férricos/química , Nanopartículas de Magnetita/química , Bases de Schiff/farmacologia , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular , Química Farmacêutica , DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Propilaminas/química , Ligação Proteica/efeitos dos fármacos , Ribonucleotídeo Redutases/metabolismo , Bases de Schiff/administração & dosagem , Silanos/química , Propriedades de Superfície , Tolueno 2,4-Di-Isocianato/química , Difração de Raios X
12.
Artif Cells Nanomed Biotechnol ; 48(1): 443-451, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32024389

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have been employed in several biomedical applications where they facilitate both diagnostic and therapeutic aims. Although the potential benefits of SPIONs with different surface chemistry and conjugated targeting ligands/proteins are considerable, complicated interactions between these nanoparticles (NPs) and cells leading to toxic impacts could limit their clinical applications. Hence, elevation of our knowledge regarding the SPION-related toxicity is necessary. Here, the present review article will consider current studies and compare the potential toxic effect of SPIONs with or without identical surface chemistries on different cell lines. It centers on cellular and molecular mechanisms underlying toxicity of SPIONs. Likewise, emphasis is being dedicated for toxicity of SPIONs in various cell lines, in vitro and animal models, in vivo.


Assuntos
Compostos Férricos/farmacocinética , Compostos Férricos/toxicidade , Nanopartículas de Magnetita/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/toxicidade , Compostos Férricos/química , Humanos , Nanopartículas de Magnetita/química , Nanomedicina , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/toxicidade , Distribuição Tecidual
13.
Nanoscale ; 12(3): 1759-1778, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31895375

RESUMO

Ultrasmall superparamagnetic iron oxide nanoparticles with a size <5 nm are emerging nanomaterials for their excellent biocompatibility, chemical stability, and tunable surface modifications. The applications explored include dual-modal or multi-modal imaging, drug delivery, theranostics and, more recently, magnetic resonance angiography. Good biocompatibility and biosafety are regarded as the preliminary requirements for their biomedical applications and further exploration in this field is still required. We previously synthesized and characterized ultrafine (average core size of 3 nm) silica-coated superparamagnetic iron oxide fluorescent nanoparticles, named sub-5 SIO-Fl, uniform in size, shape, chemical properties and composition. The cellular uptake and in vitro biocompatibility of the as-synthesized nanoparticles were demonstrated in a human colon cancer cellular model. Here, we investigated the biocompatibility of sub-5 SIO-Fl nanoparticles in human Amniotic Mesenchymal Stromal/Stem Cells (hAMSCs). Kinetic analysis of cellular uptake showed a quick nanoparticle internalization in the first hour, increasing over time and after long exposure (48 h), the uptake rate gradually slowed down. We demonstrated that after internalization, sub-5 SIO-Fl nanoparticles neither affect hAMSC growth, viability, morphology, cytoskeletal organization, cell cycle progression, immunophenotype, and the expression of pro-angiogenic and immunoregulatory paracrine factors nor the osteogenic and myogenic differentiation markers. Furthermore, sub-5 SIO-Fl nanoparticles were intravenously injected into mice to investigate the in vivo biodistribution and toxicity profile for a time period of 7 weeks. Our findings showed an immediate transient accumulation of nanoparticles in the kidney, followed by the liver and lungs, where iron contents increased over a 7-week period. Histopathology, hematology, serum pro-inflammatory response, body weight and mortality studies demonstrated a short- and long-term biocompatibility and biosafety profile with no apparent acute and chronic toxicity caused by these nanoparticles in mice. Overall, these results suggest the feasibility of using sub-5 SIO-Fl nanoparticles as a promising agent for stem cell magnetic targeting as well as for diagnostic and therapeutic applications in oncology.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Nanopartículas de Magnetita/química , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Dióxido de Silício , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Dióxido de Silício/química , Dióxido de Silício/farmacologia
14.
J Nanobiotechnology ; 18(1): 3, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898542

RESUMO

Nanotechnology-based therapeutic approaches have attracted attention of scientists, in particular due to the special features of nanomaterials, such as adequate biocompatibility, ability to improve therapeutic efficiency of incorporated drugs and to limit their adverse effects. Among a variety of reported nanomaterials for biomedical applications, metal and metal oxide-based nanoparticles offer unique physicochemical properties allowing their use in combination with conventional antimicrobials and as magnetic field-controlled drug delivery nanocarriers. An ever-growing number of studies demonstrate that by combining magnetic nanoparticles with membrane-active, natural human cathelicidin-derived LL-37 peptide, and its synthetic mimics such as ceragenins, innovative nanoagents might be developed. Between others, they demonstrate high clinical potential as antimicrobial, anti-cancer, immunomodulatory and regenerative agents. Due to continuous research, knowledge on pleiotropic character of natural antibacterial peptides and their mimics is growing, and it is justifying to stay that the therapeutic potential of nanosystems containing membrane active compounds has not been exhausted yet.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Invenções , Nanopartículas de Magnetita/química , Esteroides/farmacologia , Humanos , Catelicidinas
15.
Food Chem ; 303: 125396, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31446365

RESUMO

This study describes the determination of lead at trace levels by slotted quartz tube flame atomic absorption spectrophotometry (SQT-FAAS) after preconcentration by the help of stearic acid coated magnetic nanoparticle (SAC-MNPs) based sonication assisted dispersive solid phase extraction (SA-DSPE). SAC-MNPs were used due to their easy separation advantages by the application of external magnetic field. All extraction parameters were optimized by response surface methodology based experimental design. The experimented data was evaluated by the analysis of variance. Under the optimum conditions, about 31 folds enhancement in detection power was obtained over the conventional FAAS. The recovery results obtained for samples spiked at 60 and 120 ng mL-1 were 106.6 and 102.6%, respectively, validating the method as accurate and applicable to the red pepper matrix. The percent relative standard deviations of the results were under 5.0% even at low concentrations that established high precision for replicate extractions and instrumental readings.


Assuntos
Capsicum/química , Chumbo/análise , Chumbo/isolamento & purificação , Microextração em Fase Líquida/métodos , Magnetismo/métodos , Extração em Fase Sólida/métodos , Espectrofotometria Atômica/métodos , Contaminação de Alimentos/análise , Frutas/química , Magnetismo/instrumentação , Nanopartículas de Magnetita/química , Quartzo/química , Sensibilidade e Especificidade , Sonicação , Ácidos Esteáricos/química
16.
Cancer Invest ; 38(1): 61-84, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31791151

RESUMO

Cancer treatment by magnetic hyperthermia offers numerous advantages, but for practical applications many variables still need to be adjusted before developing a controlled and reproducible cancer treatment that is bio-compatible (non-damaging) to healthy cells. In this work, Fe3O4 and CoFe2O4 were synthesized and systematically studied for the development of efficient therapeutic agents for applications in hyperthermia. The biocompatibility of the materials was further evaluated using HepG2 cells as biological model. Colorimetric and microscopic techniques were used to evaluate the interaction of magnetic nano-materials (MNMs) and HepG2 cells. Finally, the behavior of MNMs was evaluated under the influence of an alternating magnetic field (AMF), observing a more efficient temperature increment for CoFe2O4, a desirable behavior for biomedical applications since lower doses and shorter expositions to alternating magnetic field might be required.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas de Magnetita/administração & dosagem , Nanomedicina/métodos , Neoplasias/terapia , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Cobalto/administração & dosagem , Cobalto/química , Cobalto/toxicidade , Colorimetria , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Compostos Férricos/toxicidade , Óxido Ferroso-Férrico/administração & dosagem , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/toxicidade , Células Hep G2 , Humanos , Hipertermia Induzida/efeitos adversos , Fígado/efeitos da radiação , Magnetoterapia/efeitos adversos , Magnetoterapia/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Masculino , Teste de Materiais/métodos , Ratos , Fatores de Tempo , Testes de Toxicidade/métodos
17.
Prep Biochem Biotechnol ; 50(3): 215-225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31750758

RESUMO

Drug-loaded magnetic nanoparticles have been developed because of the advantages of specific drug targeting in cancer treatment. Pemetrexed (PEM) is a multi-targeting antifolate agent that is effective for the treatment of many cancers, for example, non-small cell lung cancer. Here, PEM loaded magnetic O-carboxymethyl chitosan (O-CMC) nanoparticles were prepared to deliver PEM on tumor tissue with an external magnetic field. The modification of chitosan to O-CMC was confirmed by FTIR analysis. Nanoparticle synthesis was performed via ionic gelation method. The diameter of magnetic O-CMC nanoparticles (MCMC) was found to be 130.1 ± 22.96 nm. After PEM loading, diameter was found to be 123.9 ± 11.42 nm. The drug release of PEM loaded MCMC (PMCMC) was slower in physiological medium than in acidic medium. A549-luc-C8 and CRL5807 cell lines were used for MTT test which showed that IC50 values of nanoparticles were lower than PEM. The antitumor efficiency of PMCMC in xenograft tumor model was examined with in vivo imaging system (IVIS) and caliper and with hematological analyses. In vivo studies revealed that PMCMC had targeted antitumor activity in A549-luc-C8-tumor-bearing mice compared to PEM. As a result, it was suggested that PMCMC have great potential for the treatment of non-small cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares , Nanopartículas de Magnetita , Pemetrexede , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Camundongos Nus , Pemetrexede/química , Pemetrexede/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Artigo em Inglês | MEDLINE | ID: mdl-31710973

RESUMO

Functional magnetic nanomaterials based on molecular imprinting technique were successfully prepared on the surface of modified Fe3O4. Transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometer, and vibrating sample magnetometry were applied for characterization of the synthesized magnetic nanoparticles. The magnetic molecularly imprinted polymers (MMIPs) exhibited satisfactory magnetic response, specific recognition, and excellent adsorption capacity toward triazoles (maximum adsorption capacity of 9202.9 µg g-1 for triadimefon). The obtained MMIPs were further used as magnetic dispersive solid-phase extraction (MDSPE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for detection of 20 triazoles in cucumber spiked at different levels. The mean recoveries were ranged from 79.9% to 110.3% and relative standard deviations (RSDs) were <11.2% (n = 5). Herein, we report a simple, rapid, environmentally friendly, and magnetic stuff recyclable approach for triazoles residual analysis in complicated agricultural products.


Assuntos
Cucumis sativus/química , Nanopartículas de Magnetita/química , Impressão Molecular/métodos , Triazóis/análise , Cromatografia Líquida , Limite de Detecção , Modelos Lineares , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Resíduos de Praguicidas/isolamento & purificação , Polímeros/química , Reprodutibilidade dos Testes , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Triazóis/química , Triazóis/isolamento & purificação
19.
Artigo em Inglês | MEDLINE | ID: mdl-31561889

RESUMO

Iron oxide nanoparticles (ION) have received much attention for their utility in biomedical applications, such as magnetic resonance imaging, drug delivery and hyperthermia, but concerns regarding their potential harmful effects are also growing. Even though ION may induce different toxic effects in a wide variety of cell types and animal systems, there is a notable lack of toxicological data on the human nervous system, particularly important given the increasing number of applications on this specific system. An important mechanism of nanotoxicity is reactive oxygen species (ROS) generation and oxidative stress. On this basis, the main objective of this work was to assess the oxidative potential of silica-coated (S-ION) and oleic acid-coated (O-ION) ION on human SH-SY5Y neuronal and A172 glial cells. To this aim, ability of ION to generate ROS (both in the absence and presence of cells) was determined, and consequences of oxidative potential were assessed (i) on DNA by means of the 8-oxo-7,8-dihydroguanine DNA glycosylase (OGG1)-modified comet assay, and (ii) on antioxidant reserves by analyzing ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG). Conditions tested included a range of concentrations, two exposure times (3 and 24 h), and absence and presence of serum in the cell culture media. Results confirmed that, even though ION were not able to produce ROS in acellular environments, ROS formation was increased in the neuronal and glial cells by ION exposure, and was parallel to induction of oxidative DNA damage and, only in the case of neuronal cells treated with S-ION, to decreases in the GSH/GSSG ratio. Present findings suggest the production of oxidative stress as a potential action mechanism leading to the previously reported cellular effects, and indicate that ION may pose a health risk to human nervous system cells by generating oxidative stress, and thus should be used with caution.


Assuntos
Nanopartículas de Magnetita/toxicidade , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro , Dano ao DNA , DNA Glicosilases/farmacologia , Relação Dose-Resposta a Droga , Glioblastoma/patologia , Glutationa/metabolismo , Humanos , Nanopartículas de Magnetita/química , Neuroblastoma/patologia , Ácido Oleico , Oxirredução , Tamanho da Partícula , Espécies Reativas de Oxigênio , Dióxido de Silício , Propriedades de Superfície
20.
ACS Appl Mater Interfaces ; 11(33): 29549-29556, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31259516

RESUMO

An aptamer-linked assay of a target biomarker (e.g., thrombin) is facing the challenges of long-term run, complex performance, and expensive instrument, unfitting clinical diagnosis in resource-limited areas. Herein, a facile chip electrophoresis titration (ET) model was proposed for rapid, portable, and low-cost assay of thrombin via aptamer-linked magnetic nanoparticles (MNPs), redox boundary (RB), and horseradish peroxidase (HRP). In the electrophoresis titration-redox boundary (ET-RB) model, thrombin was chosen as a model biomarker, which could be captured within 15 min by MNP-aptamer 1 and HRP-aptamer 2, forming a sandwich complex of (MNP-aptamer 1)-thrombin-(HRP-aptamer 2). After MNP separation and chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) within 10 min, an ET-RB run could be completed within 5 min based on the reaction between a 3,3',5,5'-tetramethylbenzidine radical cation (TMB•+) and l-ascorbic acid in the ET channel. The systemic experiments based on the ET-RB method revealed that the sandwich complex could be formed and the thrombin content could be assayed via an ET-RB chip, demonstrating the developed model and method. In particular, the ET-RB method had the evident merits of simplicity, rapidity (less than 30 min), and low cost as well as portability and visuality, in contrast to the currently used thrombin assay. In addition, the developed method had high selectivity, sensitivity (limit of detection of 0.04 nM), and stability (intraday: 3.26%, interday: 6.07%) as well as good recovery (urine: 97-102%, serum: 94-103%). The developed model and method have potential to the development of a point-of-care testing assay in resource-constrained conditions.


Assuntos
Aptâmeros de Nucleotídeos/química , Eletroforese , Nanopartículas de Magnetita/química , Trombina/química , Peroxidase do Rábano Silvestre/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA