Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Eur Radiol ; 29(11): 5910-5919, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30980123

RESUMO

OBJECTIVES: To quantitatively characterize diabetic amyotrophy (DA), or diabetic lumbosacral radiculoplexopathy, and compare with controls using magnetic resonance neurography (MRN). METHODS: Forty controls and 23 DA cases were analyzed qualitatively and quantitatively. Cross-sectional areas (CSAs) of bilateral L3 through S2 lumbosacral nerve roots, femoral nerves, and sciatic nerves (proximal and distal measurements) were measured. A linear model was used to assess the nerve location and case/control effect on angle-corrected CSAs. Intra- and inter-reader analysis was performed using intraclass correlation (ICC). RESULTS: In DA cases, abnormalities of the lumbosacral nerve roots, sciatic, femoral, and obturator nerves were seen in 21/23, 16/23, 21/23, and 9/23, respectively. Denervation abnormalities of multiple abdominopelvic muscles were seen. Quantitatively, the CSA of all measured LS plexus nerve roots and bilateral femoral nerves were significantly larger in DA cases vs. controls by 45% (95% CI, (30%, 49%); p < 0.001). The ICC was moderate for inter-rater analysis = 0.547 (95% CI, 0.456-0.626) and excellent for intra-rater analysis = 0.90 (95% CI, 0.89-92). CONCLUSIONS: Multifocal neuromuscular lesions related to diabetic amyotrophy were qualitatively and quantitatively detected on MRN. Qualitative abnormalities distinguished cases from controls, and nerve CSAs of cases were significantly larger than those of controls. Therefore, MRN may be employed as a non-invasive diagnostic tool for the evaluation of diabetic amyotrophy. KEY POINTS: • Qualitative abnormalities of lumbosacral nerve roots, their peripheral branches, and muscles are seen in DA. • The lumbosacral nerve roots and their peripheral branches in diabetic amyotrophy cases are significantly larger in cross-sectional area than non-diabetic subjects by 45% (95 CI, 30%, 49%; p < 0.001). • The ICC was moderate for inter-rater analysis = 0.547 (95% CI, 0.456-0.626) and excellent for intra-rater analysis = 0.90 (95% CI, 0.89-92).


Assuntos
Neuropatias Diabéticas/diagnóstico , Nervo Femoral/patologia , Plexo Lombossacral/patologia , Imageamento por Ressonância Magnética/métodos , Nervo Isquiático/patologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
2.
Plast Reconstr Surg ; 143(3): 771-778, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30601328

RESUMO

BACKGROUND: Donor nerve myelinated axon counts correlate with functional outcomes in reanimation procedures; however, there exists no reliable means for their intraoperative quantification. In this article, the authors report a novel protocol for rapid quantification of myelinated axons from frozen sections, and demonstrate its applicability to surgical practice. METHODS: The impact of various fixation and FluoroMyelin Red staining strategies on resolved myelin sheath morphology from cryosections of rat and rabbit femoral and sciatic nerves was assessed. A protocol comprising fresh cryosection and rapid staining was developed, and histomorphometric results were compared against conventional osmium-postfixed, resin-embedded, toluidine blue-stained sections of rat sciatic nerve. The rapid protocol was applied for intraoperative quantification of donor nerve myelinated axon count in a cross-facial nerve grafting procedure. RESULTS: Resolution of myelinated axon morphology suitable for counting was realized within 10 minutes of tissue harvest. Although mean myelinated axon diameter appeared larger using the rapid fresh-frozen as compared to conventional nerve processing techniques (mean ± SD; rapid, 9.25 ± 0.62 µm; conventional, 6.05 ± 0.71 µm; p < 0.001), no difference in axon counts was observed on high-power fields (rapid, 429.42 ± 49.32; conventional, 460.32 ± 69.96; p = 0.277). Whole nerve myelinated axon counts using the rapid protocol herein (8435.12 ± 1329.72) were similar to prior reports using conventional osmium processing of rat sciatic nerve. CONCLUSIONS: A rapid protocol for quantification of myelinated axon counts from peripheral nerves using widely available equipment and techniques has been described, rendering possible intraoperative assessment of donor nerve suitability for reanimation.


Assuntos
Expressão Facial , Nervo Facial/transplante , Paralisia Facial/cirurgia , Transferência de Nervo/métodos , Coloração e Rotulagem/métodos , Animais , Axônios/patologia , Axônios/transplante , Tomada de Decisão Clínica/métodos , Análise Custo-Benefício , Nervo Facial/citologia , Nervo Facial/patologia , Nervo Femoral/citologia , Nervo Femoral/patologia , Corantes Fluorescentes , Secções Congeladas , Humanos , Modelos Animais , Bainha de Mielina/patologia , Transferência de Nervo/economia , Transferência de Nervo/instrumentação , Coelhos , Ratos , Ratos Wistar , Nervo Isquiático/citologia , Nervo Isquiático/patologia , Coloração e Rotulagem/economia , Coloração e Rotulagem/instrumentação , Fatores de Tempo , Resultado do Tratamento
3.
Mol Cell Neurosci ; 46(2): 432-43, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21115117

RESUMO

Mutations in glycyl-, tyrosyl-, and alanyl-tRNA synthetases (GARS, YARS and AARS respectively) cause autosomal dominant Charcot-Marie-Tooth disease, and mutations in Gars cause a similar peripheral neuropathy in mice. Aminoacyl-tRNA synthetases (ARSs) charge amino acids onto their cognate tRNAs during translation; however, the pathological mechanism(s) of ARS mutations remains unclear. To address this, we tested possible mechanisms using mouse models. First, amino acid mischarging was discounted by examining the recessive "sticky" mutation in alanyl-tRNA synthetase (Aars(sti)), which causes cerebellar neurodegeneration through a failure to efficiently correct mischarging of tRNA(Ala). Aars(sti/sti) mice do not have peripheral neuropathy, and they share no phenotypic features with the Gars mutant mice. Next, we determined that the Wallerian Degeneration Slow (Wlds) mutation did not alter the Gars phenotype. Therefore, no evidence for misfolding of GARS itself or other proteins was found. Similarly, there were no indications of general insufficiencies in protein synthesis caused by Gars mutations based on yeast complementation assays. Mutant GARS localized differently than wild type GARS in transfected cells, but a similar distribution was not observed in motor neurons derived from wild type mouse ES cells, and there was no evidence for abnormal GARS distribution in mouse tissue. Both GARS and YARS proteins were present in sciatic axons and Schwann cells from Gars mutant and control mice, consistent with a direct role for tRNA synthetases in peripheral nerves. Unless defects in translation are in some way restricted to peripheral axons, as suggested by the axonal localization of GARS and YARS, we conclude that mutations in tRNA synthetases are not causing peripheral neuropathy through amino acid mischarging or through a defect in their known function in translation.


Assuntos
Aminoacil-tRNA Sintetases/genética , Degeneração Neural/genética , Doenças do Sistema Nervoso Periférico/genética , Animais , Axônios/patologia , Doença de Charcot-Marie-Tooth/enzimologia , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Nervo Femoral/patologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Confocal , Mutação , Degeneração Neural/enzimologia , Degeneração Neural/patologia , Junção Neuromuscular/patologia , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/patologia , Fenótipo , Biossíntese de Proteínas , Células de Purkinje/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA