Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 2737, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066765

RESUMO

Astronauts on interplanetary missions - such as to Mars - will be exposed to space radiation, a spectrum of highly-charged, fast-moving particles that includes 56Fe and 28Si. Earth-based preclinical studies show space radiation decreases rodent performance in low- and some high-level cognitive tasks. Given astronaut use of touchscreen platforms during training and space flight and given the ability of rodent touchscreen tasks to assess functional integrity of brain circuits and multiple cognitive domains in a non-aversive way, here we exposed 6-month-old C57BL/6J male mice to whole-body space radiation and subsequently assessed them on a touchscreen battery. Relative to Sham treatment, 56Fe irradiation did not overtly change performance on tasks of visual discrimination, reversal learning, rule-based, or object-spatial paired associates learning, suggesting preserved functional integrity of supporting brain circuits. Surprisingly, 56Fe irradiation improved performance on a dentate gyrus-reliant pattern separation task; irradiated mice learned faster and were more accurate than controls. Improved pattern separation performance did not appear to be touchscreen-, radiation particle-, or neurogenesis-dependent, as 56Fe and 28Si irradiation led to faster context discrimination in a non-touchscreen task and 56Fe decreased new dentate gyrus neurons relative to Sham. These data urge revisitation of the broadly-held view that space radiation is detrimental to cognition.


Assuntos
Cognição/efeitos da radiação , Radiação Cósmica , Giro Denteado/efeitos da radiação , Aprendizagem por Associação de Pares/efeitos da radiação , Reconhecimento Visual de Modelos/efeitos da radiação , Reversão de Aprendizagem/efeitos da radiação , Animais , Astronautas , Ciências Biocomportamentais , Cognição/fisiologia , Giro Denteado/fisiologia , Isótopos de Ferro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/fisiologia , Neurônios/efeitos da radiação , Aprendizagem por Associação de Pares/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Reversão de Aprendizagem/fisiologia , Voo Espacial , Irradiação Corporal Total
2.
Life Sci Space Res (Amst) ; 13: 27-38, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28554507

RESUMO

Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (> 100µm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3He and 12C particles at energies corresponding to a distance of 1cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch.


Assuntos
Dendritos/efeitos da radiação , Íons Pesados , Modelos Estruturais , Neurônios/efeitos da radiação , Prótons , Simulação por Computador , Radiação Cósmica , Dendritos/patologia , Humanos , Método de Monte Carlo , Neurônios/patologia , Doses de Radiação
3.
Lasers Med Sci ; 32(5): 1163-1172, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28478504

RESUMO

This paper implemented a model study of combined electrical and near-infrared (808 nm) neural stimulation (NINS) on the bullfrog sciatic nerve. The model includes a COMSOL model to calculate the electric-field distribution of the surrounding area of the nerve, a Monte Carlo model to simulate light transport and absorption in the bullfrog sciatic nerve during NINS, and a NEURON model to simulate the neural electrophysiology changes under electrical stimulus and laser irradiation. The optical thermal effect is considered the main mechanism during NINS. Therefore, thermal change during laser irradiation was calculated by the Monte Carlo method, and the temperature distribution was then transferred to the NEURON model to stimulate the sciatic nerve. The effects on thermal response by adjusting the laser spot size, energy of the beam, and the absorption coefficient of the nerve are analyzed. The effect of the ambient temperature on the electrical stimulation or laser stimulation and the interaction between laser irradiation and electrical stimulation are also studied. The results indicate that the needed stimulus threshold for neural activation or inhibition is reduced by laser irradiation. Additionally, the needed laser energy for blocking the action potential is reduced by electrical stimulus. Both electrical and laser stimulation are affected by the ambient temperature. These results provide references for subsequent animal experiments and could be of great help to future basic and applied studies of infrared neural stimulation (INS).


Assuntos
Raios Infravermelhos , Modelos Biológicos , Neurônios/efeitos da radiação , Rana catesbeiana/fisiologia , Nervo Isquiático/efeitos da radiação , Potenciais de Ação/efeitos da radiação , Animais , Simulação por Computador , Estimulação Elétrica , Eletrodos , Lasers , Modelos Animais , Método de Monte Carlo , Temperatura
4.
Sci Rep ; 7: 43997, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276522

RESUMO

Optogenetics is widely used in fundamental neuroscience. Its potential clinical translation for brain neuromodulation requires a careful assessment of the safety and efficacy of repeated, sustained optical stimulation of large volumes of brain tissues. This study was performed in rats and not in non-human primates for ethical reasons. We studied the spatial distribution of light, potential damage, and non-physiological effects in vivo, in anesthetized rat brains, on large brain volumes, following repeated high irradiance photo-stimulation. We generated 2D irradiance and temperature increase surface maps based on recordings taken during optical stimulation using irradiance and temporal parameters representative of common optogenetics experiments. Irradiances of 100 to 600 mW/mm2 with 5 ms pulses at 20, 40, and 60 Hz were applied during 90 s. In vivo electrophysiological recordings and post-mortem histological analyses showed that high power light stimulation had no obvious phototoxic effects and did not trigger non-physiological functional activation. This study demonstrates the ability to illuminate cortical layers to a depth of several millimeters using pulsed red light without detrimental thermal damages.


Assuntos
Córtex Cerebral/efeitos da radiação , Luz , Optogenética/métodos , Animais , Córtex Cerebral/fisiologia , Temperatura Alta/efeitos adversos , Luz/efeitos adversos , Neurônios/fisiologia , Neurônios/efeitos da radiação , Optogenética/efeitos adversos , Ratos Wistar , Pesquisa Translacional Biomédica
5.
J Biophotonics ; 10(2): 311-319, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27090065

RESUMO

Manipulating neural activity is crucial for studying the neural connectivity and the pathophysiology of neurodegenerative disease. Among various techniques for neural activation, direct optical stimulation method with femtosecond-pulsed laser is simple and can be specifically applied on a single neuron. Brief irradiation of femtosecond laser pulses on a neuron elevates intracellular calcium, and it propagates to adjacent neurons. However, the mechanisms of laser-induced neural activation are still unclear. In this report, we have elucidated the mechanism of laser-induced neural activation which could be mediated by superoxide, specifically blocked by diphenyleneiodonium chloride, and depletion in intracellular calcium storage. Furthermore, we also showed that the propagation of calcium initiated by laser stimulation is dependent on the presence of extracellular calcium as well as electrical and chemical synapses. We verified the applicability of such mechanism for the assessment of neuronal functionality, by measuring calcium elevation, intracellular calcium propagation, ROS increase, and performing cell death assay in vehicle and Aß-treated neurons. This work suggests promising applications of the potential for implementing such laser-induced neural activation for rapid and reliable drug screening.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Lasers , Neurônios/efeitos da radiação , Animais , Cálcio/metabolismo , Morte Celular , Células Cultivadas , Hipocampo/citologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sinapses
6.
Phys Med ; 32(12): 1510-1520, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27865670

RESUMO

Radiation damage to the central nervous system (CNS) has been an on-going challenge for the last decades primarily due to the issues of brain radiotherapy and radiation protection for astronauts during space travel. Although recent findings revealed a number of molecular mechanisms associated with radiation-induced impairments in behaviour and cognition, some uncertainties exist in the initial neuronal cell injury leading to the further development of CNS malfunction. The present study is focused on the investigation of early biological damage induced by ionizing radiations in a sample neural network by means of modelling physico-chemical processes occurring in the medium after exposure. For this purpose, the stochastic simulation of incident particle tracks and water radiation chemistry was performed in realistic neuron phantoms constructed using experimental data on cell morphology. The applied simulation technique is based on using Monte-Carlo processes of the Geant4-DNA toolkit. The calculations were made for proton, 12C, and 56Fe particles of different energy within a relatively wide range of linear energy transfer values from a few to hundreds of keV/µm. The results indicate that the neuron morphology is an important factor determining the accumulation of microscopic radiation dose and water radiolysis products in neurons. The estimation of the radiolytic yields in neuronal cells suggests that the observed enhancement in the levels of reactive oxygen species may potentially lead to oxidative damage to neuronal components disrupting the normal communication between cells of the neural network.


Assuntos
Modelos Biológicos , Rede Nervosa/citologia , Neurônios/metabolismo , Neurônios/efeitos da radiação , Água/metabolismo , Animais , Neoplasias Encefálicas/radioterapia , Carbono/efeitos adversos , Ferro/efeitos adversos , Transferência Linear de Energia/efeitos da radiação , Masculino , Método de Monte Carlo , Rede Nervosa/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
7.
PLoS Comput Biol ; 11(8): e1004428, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26252394

RESUMO

In this work, a stochastic computational model of microscopic energy deposition events is used to study for the first time damage to irradiated neuronal cells of the mouse hippocampus. An extensive library of radiation tracks for different particle types is created to score energy deposition in small voxels and volume segments describing a neuron's morphology that later are sampled for given particle fluence or dose. Methods included the construction of in silico mouse hippocampal granule cells from neuromorpho.org with spine and filopodia segments stochastically distributed along the dendritic branches. The model is tested with high-energy (56)Fe, (12)C, and (1)H particles and electrons. Results indicate that the tree-like structure of the neuronal morphology and the microscopic dose deposition of distinct particles may lead to different outcomes when cellular injury is assessed, leading to differences in structural damage for the same absorbed dose. The significance of the microscopic dose in neuron components is to introduce specific local and global modes of cellular injury that likely contribute to spine, filopodia, and dendrite pruning, impacting cognition and possibly the collapse of the neuron. Results show that the heterogeneity of heavy particle tracks at low doses, compared to the more uniform dose distribution of electrons, juxtaposed with neuron morphology make it necessary to model the spatial dose painting for specific neuronal components. Going forward, this work can directly support the development of biophysical models of the modifications of spine and dendritic morphology observed after low dose charged particle irradiation by providing accurate descriptions of the underlying physical insults to complex neuron structures at the nano-meter scale.


Assuntos
Biologia Computacional/métodos , Modelos Neurológicos , Neurônios/efeitos da radiação , Radiometria/métodos , Animais , Simulação por Computador , Dendritos/efeitos da radiação , Giro Denteado/citologia , Camundongos , Método de Monte Carlo , Pseudópodes/efeitos da radiação , Radioquímica
8.
PLoS One ; 9(11): e111488, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383687

RESUMO

Stimulation of specific neurons expressing opsins in a targeted region to manipulate brain function has proved to be a powerful tool in neuroscience. However, the use of visible light for optogenetic stimulation is invasive due to low penetration depth and tissue damage owing to larger absorption and scattering. Here, we report, for the first time, in-depth non-scanning fiber-optic two-photon optogenetic stimulation (FO-TPOS) of neurons in-vivo in transgenic mouse models. In order to optimize the deep-brain stimulation strategy, we characterized two-photon activation efficacy at different near-infrared laser parameters. The significantly-enhanced in-depth stimulation efficiency of FO-TPOS as compared to conventional single-photon beam was demonstrated both by experiments and Monte Carlo simulation. The non-scanning FO-TPOS technology will lead to better understanding of the in-vivo neural circuitry because this technology permits more precise and less invasive anatomical delivery of stimulation.


Assuntos
Encéfalo/efeitos da radiação , Tecnologia de Fibra Óptica/métodos , Neurônios/efeitos da radiação , Optogenética/métodos , Fótons , Análise de Variância , Animais , Encéfalo/citologia , Estimulação Encefálica Profunda , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Modelos Químicos , Método de Monte Carlo , Técnicas de Patch-Clamp , Estimulação Luminosa/métodos
9.
J Biomed Opt ; 17(7): 075002, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22894474

RESUMO

A Monte Carlo model has been developed to simulate light transport and absorption in neural tissue during infrared neural stimulation (INS). A range of fiber core sizes and numerical apertures are compared illustrating the advantages of using simulations when designing a light delivery system. A range of wavelengths, commonly used for INS, are also compared for stimulation of nerves in the cochlea, in terms of both the energy absorbed and the change in temperature due to a laser pulse. Modeling suggests that a fiber with core diameter of 200 µm and NA=0.22 is optimal for optical stimulation in the geometry used and that temperature rises in the spiral ganglion neurons are as low as 0.1°C. The results show a need for more careful experimentation to allow different proposed mechanisms of INS to be distinguished.


Assuntos
Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Modelos Neurológicos , Neurônios/fisiologia , Neurônios/efeitos da radiação , Estimulação Luminosa/métodos , Absorção , Animais , Simulação por Computador , Humanos , Raios Infravermelhos , Luz , Modelos Estatísticos , Método de Monte Carlo , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA