Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810180

RESUMO

Status epilepticus (SE) is a frequent medical emergency that can lead to a variety of neurological disorders, including cognitive impairment and abnormal neurogenesis. The aim of the presented study was the in vitro evaluation of potential neuroprotective properties of a new pyrrolidine-2,5-dione derivatives compound C11, as well as the in vivo assessment of the impact on the neurogenesis and cognitive functions of C11 and levetiracetam (LEV) after pilocarpine (PILO)-induced SE in mice. The in vitro results indicated a protective effect of C11 (500, 1000, and 2500 ng/mL) on astrocytes under trophic stress conditions in the MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) test. The results obtained from the in vivo studies, where mice 72 h after PILO SE were treated with C11 (20 mg/kg) and LEV (10 mg/kg), indicated markedly beneficial effects of C11 on the improvement of the neurogenesis compared to the PILO control and PILO LEV mice. Moreover, this beneficial effect was reflected in the Morris Water Maze test evaluating the cognitive functions in mice. The in vitro confirmed protective effect of C11 on astrocytes, as well as the in vivo demonstrated beneficial impact on neurogenesis and cognitive functions, strongly indicate the need for further advanced molecular research on this compound to determine the exact neuroprotective mechanism of action of C11.


Assuntos
Anticonvulsivantes/farmacologia , Cognição/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Pilocarpina/efeitos adversos , Estado Epiléptico/etiologia , Animais , Anticonvulsivantes/administração & dosagem , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Biomarcadores , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Estado Epiléptico/diagnóstico , Estado Epiléptico/tratamento farmacológico
2.
Nat Med ; 26(8): 1285-1294, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719487

RESUMO

We asked whether pharmacological stimulation of endogenous neural precursor cells (NPCs) may promote cognitive recovery and brain repair, focusing on the drug metformin, in parallel rodent and human studies of radiation injury. In the rodent cranial radiation model, we found that metformin enhanced the recovery of NPCs in the dentate gyrus, with sex-dependent effects on neurogenesis and cognition. A pilot double-blind, placebo-controlled crossover trial was conducted (ClinicalTrials.gov, NCT02040376) in survivors of pediatric brain tumors who had been treated with cranial radiation. Safety, feasibility, cognitive tests and MRI measures of white matter and the hippocampus were evaluated as endpoints. Twenty-four participants consented and were randomly assigned to complete 12-week cycles of metformin (A) and placebo (B) in either an AB or BA sequence with a 10-week washout period at crossover. Blood draws were conducted to monitor safety. Feasibility was assessed as recruitment rate, medication adherence and procedural adherence. Linear mixed modeling was used to examine cognitive and MRI outcomes as a function of cycle, sequence and treatment. We found no clinically relevant safety concerns and no serious adverse events associated with metformin. Sequence effects were observed for all cognitive outcomes in our linear mixed models. For the subset of participants with complete data in cycle 1, metformin was associated with better performance than placebo on tests of declarative and working memory. We present evidence that a clinical trial examining the effects of metformin on cognition and brain structure is feasible in long-term survivors of pediatric brain tumors and that metformin is safe to use and tolerable in this population. This pilot trial was not intended to test the efficacy of metformin for cognitive recovery and brain growth, but the preliminary results are encouraging and warrant further investigation in a large multicenter phase 3 trial.


Assuntos
Neoplasias Encefálicas/complicações , Disfunção Cognitiva/tratamento farmacológico , Metformina/administração & dosagem , Pediatria/tendências , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Sobreviventes de Câncer , Criança , Pré-Escolar , Cognição/efeitos dos fármacos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Método Duplo-Cego , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Metformina/efeitos adversos , Neurogênese/efeitos dos fármacos , Projetos Piloto , Resultado do Tratamento , Adulto Jovem
3.
Biochim Biophys Acta Gen Subj ; 1863(11): 129398, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31306709

RESUMO

BACKGROUND: The pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1), a class B G protein-coupled receptor (GPCR), has emerged as a promising target for treating neurodegenerative conditions. Unfortunately, despite years of research, no PAC1-specific agonist has been discovered, as activity on two other GPCRs, VPAC1 and VPAC2, is retained with current analogs. Cell signaling is related to structural modifications in the intracellular loops (ICLs) of GPCRs. Thus, we hypothesized that peptides derived from the ICLs (called pepducins) of PAC1 might initiate, as allosteric ligands, signaling cascades after recognition of the parent receptor and modulation of its conformational landscape. METHODS: Three pepducins were synthesized and evaluated for their ability to 1) promote cell survival; 2) stimulate various signaling pathways associated with PAC1 activation; 3) modulate selectively PAC1, VPAC1 or VPAC2 activation; and 4) sustain mobility and prevent death of dopaminergic neurons in a zebrafish model of neurodegeneration. RESULTS: Assays demonstrated that these molecules promote SH-SY5Y cell survival, a human neuroblastoma cell line expressing PAC1, and activate signaling via Gαs and Gαq, with distinct potencies and efficacies. Also, PAC1-Pep1 and PAC1-Pep2 activated selectively PAC1-mediated Gαs stimulation. Finally, experiments, using a zebrafish neurodegeneration model, showed a neuroprotective action with all three pepducins and in particular, revealed the ability of PAC1-Pep1 and PAC1-Pep3 to preserve fish mobility and tyrosine hydroxylase expression in the brain. CONCLUSION: We have developed the first neuroprotective pepducins derived from PAC1, a class B GPCR. GENERAL SIGNIFICANCE: PAC1-derived pepducins represent attractive templates for the development of innovative neuroprotecting molecules.


Assuntos
Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores , Peptídeos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Peixe-Zebra/embriologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Peptídeos/química , Peptídeos/farmacologia
4.
Neurotoxicology ; 73: 17-30, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30786249

RESUMO

Developmental neurotoxicity (DNT) is an important endpoint for the safety assessment of chemicals. However, the current in vivo animal model for DNT assessment is resource-intensive and may not fully capture all mechanisms that may be relevant to DNT in humans. As a result, there is a growing need for more reliable, time- and cost-efficient approaches for DNT evaluation. Toward this end, many stem/progenitor cell-based in vitro models and alternative organism-based models are becoming available with the potential for high throughput screening of DNT. Meanwhile, with advances in the knowledgebase of DNT molecular mechanisms and the identification of DNT-related adverse outcome pathways (AOP) there is potential to develop a mechanism-based integrated testing strategy for DNT assessment. This review summarizes the state of science regarding currently available human stem/progenitor cell-based in vitro models and alternative organism-based models that could be used for DNT testing. In addition, the current knowledge regarding DNT AOPs is reviewed to identify common key events that could serve as critical endpoints to assess multiple AOPs that underlie DNT. Following the identification of common key events, a streamlined strategy is proposed using alternative models to assess the DNT potential of chemicals as an early screening approach for chemicals in development.


Assuntos
Alternativas aos Testes com Animais , Encéfalo/efeitos dos fármacos , Desenvolvimento de Medicamentos/métodos , Ensaios de Triagem em Larga Escala , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Testes de Toxicidade , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Reprodutibilidade dos Testes , Medição de Risco
5.
Sci Rep ; 8(1): 8669, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875468

RESUMO

Nerve regeneration is a serious clinical challenge following peripheral nerve injury. Lycium barbarum polysaccharide (LBP) is the major component of wolfberry extract, which has been shown to be neuroprotective and promising in nerve recovery in many studies. Electrospun nanofibers, especially core-shell structured nanofibers being capable of serving as both drug delivery system and tissue engineering scaffolds, are well known to be suitable scaffolds for regeneration of peripheral nerve applications. In this study, LBP was incorporated into core-shell structured nanofibrous scaffolds via coaxial electrospinning. Alamar blue assays were performed to investigate the proliferation of both PC12 and Schwann cells cultured on the scaffolds. The neuronal differentiation of PC12 cells was evaluated by NF200 expression with immunostaining and morphology changes observed by SEM. The results indicated that the released LBP dramatically enhanced both proliferation and neuronal differentiation of PC12 cells induced by NGF. Additionally, the promotion of Schwann cells myelination and neurite outgrowth of DRG neurons were also observed on LBP loaded scaffolds by LSCM with immunostaining. In summary, LBP, as a drug with neuroprotection, encapsulated into electrospun nanofibers could be a potential candidate as tissue engineered scaffold for peripheral nerve regeneration.


Assuntos
Portadores de Fármacos/química , Medicamentos de Ervas Chinesas/administração & dosagem , Nanofibras/química , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Alicerces Teciduais/química , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Medicamentos de Ervas Chinesas/farmacologia , Nanofibras/ultraestrutura , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células PC12 , Ratos , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Engenharia Tecidual
6.
Toxicol Appl Pharmacol ; 354: 176-190, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29544898

RESUMO

High throughput screens for developmental neurotoxicity (DN) will facilitate evaluation of chemicals and can be used to prioritize those designated for follow-up. DN is evaluated under different guidelines. Those for drugs generally include peri- and postnatal studies and juvenile toxicity studies. For pesticides and commercial chemicals, when triggered, include developmental neurotoxicity studies (DNT) and extended one-generation reproductive toxicity studies. Raffaele et al. (2010) reviewed 69 pesticide DNT studies and found two of the four behavioral tests underperformed. There are now many epidemiological studies on children showing adverse neurocognitive effects, yet guideline DN studies fail to assess most of the functions affected in children; nor do DN guidelines reflect the advances in brain structure-function relationships from neuroscience. By reducing the number of test ages, removing underperforming tests and replacing them with tests that assess cognitive abilities relevant to children, the value of DN protocols can be improved. Testing for the brain networks that mediate higher cognitive functions need to include assessments of working memory, attention, long-term memory (explicit, implicit, and emotional), and executive functions such as cognitive flexibility. The current DNT focus on what can be measured should be replaced with what should be measured. With the wealth of data available from human studies and neuroscience, the recommendation is made for changes to make DN studies better focused on human-relevant functions using tests of proven validity that assess comparable functions to tests used in children. Such changes will provide regulatory authorities with more relevant data.


Assuntos
Encéfalo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Testes de Toxicidade , Toxicologia/métodos , Adolescente , Fatores Etários , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Comportamento Infantil/efeitos dos fármacos , Desenvolvimento Infantil/efeitos dos fármacos , Pré-Escolar , Humanos , Lactente , Modelos Animais , Neurônios/metabolismo , Neurônios/patologia , Testes Neuropsicológicos , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Medição de Risco , Especificidade da Espécie
7.
Toxicol Appl Pharmacol ; 354: 7-18, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29476865

RESUMO

Currently, the identification of chemicals that have the potential to induce developmental neurotoxicity (DNT) is based on animal testing. Since at the regulatory level, systematic testing of DNT is not a standard requirement within the EU or USA chemical legislation safety assessment, DNT testing is only performed in higher tiered testing triggered based on chemical structure activity relationships or evidence of neurotoxicity in systemic acute or repeated dose toxicity studies. However, these triggers are rarely used and, in addition, do not always serve as reliable indicators of DNT, as they are generally based on observations in adult rodents. Therefore, there is a pressing need for developing alternative methodologies that can reliably support identification of DNT triggers, and more rapidly and cost-effectively support the identification and characterization of chemicals with DNT potential. We propose to incorporate mechanistic knowledge and data derived from in vitro studies to support various regulatory applications including: (a) the identification of potential DNT triggers, (b) initial chemical screening and prioritization, (c) hazard identification and characterization, (d) chemical biological grouping, and (e) assessment of exposure to chemical mixtures. Ideally, currently available cellular neuronal/glial models derived from human induced pluripotent stem cells (hiPSCs) should be used as they allow evaluation of chemical impacts on key neurodevelopmental processes, by reproducing different windows of exposure during human brain development. A battery of DNT in vitro test methods derived from hiPSCs could generate valuable mechanistic data, speeding up the evaluation of thousands of compounds present in industrial, agricultural and consumer products that lack safety data on DNT potential.


Assuntos
Sistema Nervoso/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Testes de Toxicidade , Toxicologia/métodos , Alternativas aos Testes com Animais , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/embriologia , Síndromes Neurotóxicas/metabolismo , Formulação de Políticas , Relação Quantitativa Estrutura-Atividade , Medição de Risco , Toxicologia/legislação & jurisprudência
8.
J Physiol Pharmacol ; 68(2): 231-241, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28614773

RESUMO

Human embryonic stem cells (hESCs), with the potential for differentiation, have been used to evaluate the embryotoxicity of various compounds. The effects of pharmacological compounds (cytosine arabinoside, 5-fluorouracil, hydroxyurea, indomethacin, and dexamethasone) on neurogenesis of hESCs over 28 days were examined based on cytotoxicity (half-maximal inhibitory concentration of viability, IC50) and expression of neural markers. Cytosine arabinoside, 5-fluorouracil, and hydroxyurea showed strong cytotoxicity (IC50 < 10 µM), whereas indomethacin and dexamethasone had weaker cytotoxic effects. Dose-dependent expression profiles of neural markers in the compound-treated groups are presented in triangular charts to allow comparison with the standard expression levels in the control group. Differences in compound-specific reductions in expression patterns of GAD1, OLIG2, FABP, and NES were similar to the differences in cytotoxic strength. Cytosine arabinoside diminished nestin and ß3-tubulin in neural differentiated hESCs. The results of this study extend the understanding of how differentiated hESCs may be useful for assessment of cell viability or neurogenesis impairment by chemicals that could have effects during the embryonic stage, particularly during neurogenesis.


Assuntos
Ácido Ascórbico/farmacologia , Citarabina/farmacologia , Dexametasona/farmacologia , Fluoruracila/farmacologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Hidroxiureia/farmacologia , Indometacina/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Nestina/metabolismo , Neurogênese/efeitos dos fármacos
9.
Toxicol Appl Pharmacol ; 325: 61-70, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28396216

RESUMO

Estrogen receptors (ERs) α and ß are distributed in most tissues of women and men. ERs are bound by estradiol (E2), a natural hormone, and mediate the pleiotropic and tissue-specific effects of E2, such as proliferation of breast epithelial cells or protection and differentiation of neuronal cells. Numerous environmental molecules, called endocrine disrupting compounds, also interact with ERs. Phytoestrogens belong to this large family and are considered potent therapeutic molecules that act through their selective estrogen receptor modulator (SERM) activity. Using breast cancer cell lines as a model of estrogen-dependent proliferation and a stably ER-expressing PC12 cell line as a model of neuronal differentiating cells, we studied the SERM activity of major dietary compounds, such as apigenin, liquiritigenin, daidzein, genistein, coumestrol, resveratrol and zearalenone. The ability of these compounds to induce ER-transactivation and breast cancer cell proliferation and enhance Nerve Growth Factor (NGF) -induced neuritogenesis was assessed. Surprisingly, although all compounds were able to activate the ER through an estrogen responsive element reporter gene, they showed differential activity toward proliferation or differentiation. Apigenin and resveratrol showed a partial or no proliferative effect on breast cancer cells but fully contributed to the neuritogenesis effect of NGF. However, daidzein and zearalenone showed full effects on cellular proliferation but did not induce cellular differentiation. In summary, our results suggest that the therapeutic potential of phytoestrogens can diverge depending on the molecule and the phenotype considered. Hence, apigenin and resveratrol might be used in the development of therapeutics for breast cancer and brain diseases.


Assuntos
Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Dieta , Neurogênese/efeitos dos fármacos , Feocromocitoma/tratamento farmacológico , Fitoestrógenos/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia , Animais , Apigenina/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Isoflavonas/farmacologia , Células MCF-7 , Proteínas do Tecido Nervoso/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neuritos/patologia , Células PC12 , Feocromocitoma/genética , Feocromocitoma/metabolismo , Feocromocitoma/patologia , Ratos , Elementos de Resposta , Resveratrol , Estilbenos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transfecção , Zearalenona/farmacologia
10.
J Neurochem ; 140(2): 231-244, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664791

RESUMO

Oligodendrocytes are the myelin-forming cells of the central nervous system. Oligodendrocyte loss and failure of myelin development result in serious human disorders, including multiple sclerosis. Previously, using oligodendrocyte progenitor cells, we have shown that donepezil, which is an acetylcholinesterase inhibitor developed for the treatment of Alzheimer's disease, stimulates myelin gene expression and oligodendrocyte differentiation. Here, we aimed to analyze the effects of donepezil on primary mouse embryonic neural stem cells (NSCs). Donepezil treatment led to impaired self-renewal ability and increased apoptosis. These effects appeared to be mediated through the Akt/Bad signaling pathway. Using neurosphere differentiation analysis, we observed that donepezil leads to reduced numbers of astrocytes and increased numbers of oligodendrocytes and neurons. Consistent with this finding, mRNA and protein levels for the oligodendrocyte markers myelin-associated glycoprotein, 2', 3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), and myelin basic protein, as well as the neuronal marker ß-tubulin type III (Tuj1) were up-regulated. In contrast, the expression of the astrocyte marker glial fibrillary acidic protein (GFAP) was down-regulated by donepezil in a dose- and time-dependent manner. Moreover, donepezil increased oligodendrocyte differentiation, resulting in a reduction in the differentiation of NSCs into astrocytes, by suppressing the activation of signal transducer and activator of transcription 3 (STAT3), SMAD1/5/9, and the downstream target gene GFAP, even under astrocyte-inducing conditions. These results suggest that efficient differentiation of NSCs into oligodendrocytes by donepezil may indicate a novel therapeutic role for this drug in promoting repair in demyelinated lesions in addition to its role in preventing astrogenesis.


Assuntos
Astrócitos/efeitos dos fármacos , Indanos/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Piperidinas/farmacologia , Animais , Astrócitos/metabolismo , Células Cultivadas , Donepezila , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Básica da Mielina/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
11.
Hippocampus ; 26(4): 517-29, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26443687

RESUMO

Adult hippocampal neurogenesis is a highly dynamic process in which new cells are born, but only some of which survive. Of late it has become clear that these surviving newborn neurons have functional roles, most notably in certain forms of memory. Conventional methods to look at adult neurogenesis are based on the quantification of the number of newly born neurons using a simple cell counting methodology. However, this type of approach fails to capture the dynamic aspects of the neurogenic process, where neural proliferation, death and differentiation take place continuously and simultaneously. In this paper, we propose a simple mathematical approach to better understand the adult neurogenic process in the hippocampus which in turn will allow for a better analysis of this process in disease states and following drug therapies.


Assuntos
Hipocampo/fisiologia , Modelos Neurológicos , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Área Sob a Curva , Bromodesoxiuridina , Contagem de Células/métodos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Fármacos do Sistema Nervoso Central/farmacologia , Proteínas do Domínio Duplacortina , Fluoxetina/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Antígeno Ki-67/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Fatores de Tempo
12.
J Med Chem ; 58(12): 4998-5014, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26023814

RESUMO

Herein we present a new family of melatonin-based compounds, in which the acetamido group of melatonin has been bioisosterically replaced by a series of reversed amides and azoles, such as oxazole, 1,2,4-oxadiazole, and 1,3,4-oxadiazole, as well as other related five-membered heterocycles, namely, 1,3,4-oxadiazol(thio)ones, 1,3,4-triazol(thio)ones, and an 1,3,4-thiadiazole. New compounds were fully characterized at melatonin receptors (MT1R and MT2R), and results were rationalized by superimposition studies of their structures to the bioactive conformation of melatonin. We also found that several of these melatonin-based compounds promoted differentiation of rat neural stem cells to a neuronal phenotype in vitro, in some cases to a higher extent than melatonin. This unique profile constitutes the starting point for further pharmacological studies to assess the mechanistic pathways and the relevance of neurogenesis induced by melatonin-related structures.


Assuntos
Melatonina/análogos & derivados , Melatonina/farmacologia , Neurogênese/efeitos dos fármacos , Receptores de Melatonina/metabolismo , Animais , Células CHO , Células Cultivadas , Cricetulus , Humanos , Masculino , Modelos Moleculares , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Oxidiazóis/química , Oxidiazóis/farmacologia , Ratos , Ratos Wistar , Receptores de Melatonina/agonistas , Receptores de Melatonina/antagonistas & inibidores , Tiadiazóis/química , Tiadiazóis/farmacologia
13.
ACS Chem Neurosci ; 6(5): 800-10, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25815906

RESUMO

6-Methoxy-1,2,3,4-tetrahydro-ß-carboline (pinoline) and N-acetyl-5-methoxytryptamine (melatonin) are both structurally related to 5-hydroxytryptamine (serotonin). Here we describe the design, synthesis, and characterization of a series of melatonin rigid analogues resulting from the hybridization of both pinoline and melatonin structures. The pharmacological evaluation of melatonin-pinoline hybrids comprises serotonergic and melatonergic receptors, metabolic enzymes (monoamine oxidases), antioxidant potential, the in vitro blood-brain barrier permeability, and neurogenic studies. Pinoline at trace concentrations and 2-acetyl-6-methoxy-1,2,3,4-tetrahydro-ß-carboline (2) were able to stimulate early neurogenesis and neuronal maturation in an in vitro model of neural stem cells isolated from the adult rat subventricular zone. Such effects are presumably mediated via serotonergic and melatonergic stimulation, respectively.


Assuntos
Carbolinas/farmacologia , Melatonina/farmacologia , Neurogênese/efeitos dos fármacos , Animais , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Carbolinas/síntese química , Carbolinas/química , Humanos , Masculino , Melatonina/síntese química , Melatonina/química , Células-Tronco Neurais/efeitos dos fármacos , Ratos , Ratos Wistar
14.
Anesthesiology ; 110(3): 529-37, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19212268

RESUMO

BACKGROUND: Postischemic endogenous neurogenesis can be dose-dependently modulated by volatile anesthetics. The intravenous anesthetic propofol is used during operations with a risk of cerebral ischemia, such as neurosurgery, cardiac surgery, and vascular surgery. The effects of propofol on neurogenesis are unknown and, therefore, the object of this study. METHODS: Eighty male Sprague-Dawley rats were randomly assigned to treatment groups with propofol administration for 3 h: 36 mg x kg(-1) x h(-1) propofol with or without cerebral ischemia and 72 mg x kg(-1) x h(-1) propofol with or without cerebral ischemia. In addition, 7 rats with propofol administration for 6 h and 14 treatment-naive rats were investigated. Forebrain ischemia was induced by bilateral carotid artery occlusion and hemorrhagic hypotension. Animals received 5-bromo-2-deoxyuridine for 7 days. 5-Bromo-2-deoxyuridine-positive neurons were counted in the dentate gyrus after 9 and 28 days. Spatial learning in the Barnes maze and histopathologic damage of the hippocampus were analyzed. RESULTS: Propofol revealed no impact on basal neurogenesis. Cerebral ischemia increased the amount of new neurons. After 28 days, neurogenesis significantly increased in animals with low-dose propofol administered during cerebral ischemia compared with naive animals, whereas no significant difference was observed in animals with high-dose propofol during ischemia. Neuronal damage in the CA3 region was increased at 28 days with high-dose propofol. Postischemic deficits in spatial learning were not affected by propofol. CONCLUSIONS: Independent effects of propofol are difficult to ascertain. Peri-ischemic propofol administration may exert secondary effects on neurogenesis by modulating the severity of histopathologic injury and thereby regenerative capacity of the hippocampus.


Assuntos
Anestesia Intravenosa , Isquemia Encefálica/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Propofol/administração & dosagem , Anestesia Intravenosa/métodos , Animais , Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Masculino , Neurogênese/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA