Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 10(9)2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34572139

RESUMO

Eutrophication is a leading problem in water bodies all around the world in which nitrate is one of the major contributors. The present study was conducted to study the effects of various concentrations of nitrate on two eukaryotic green microalgae, Chlamydomonas sp. MACC-216 and Chlorella sp. MACC-360. For this purpose, both microalgae were grown in a modified tris-acetate-phosphate medium (TAP-M) with three different concentrations of sodium nitrate, i.e., 5 mM (TAP-M5), 10 mM (TAP-M10) and 15 mM (TAP-M15), for 6 days and it was observed that both microalgae were able to remove nitrate completely from the TAP-M5 medium. Total amount of pigments decreased with the increasing concentration of nitrate, whereas protein and carbohydrate contents remained unaffected. High nitrate concentration (15 mM) led to an increase in lipids in Chlamydomonas sp. MACC-216, but not in Chlorella sp. MACC-360. Furthermore, Chlamydomonas sp. MACC-216 and Chlorella sp. MACC-360 were cultivated for 6 days in synthetic wastewater (SWW) with varying concentrations of nitrate where both microalgae grew well and showed an adequate nitrate removal capacity.


Assuntos
Chlamydomonas/fisiologia , Chlorella/fisiologia , Recuperação e Remediação Ambiental , Nitratos/isolamento & purificação , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Nitratos/análise , Poluentes Químicos da Água/análise
2.
Nature ; 588(7839): 625-630, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328640

RESUMO

Growing populations and agricultural intensification have led to raised riverine nitrogen (N) loads, widespread oxygen depletion in coastal zones (coastal hypoxia)1 and increases in the incidence of algal blooms.Although recent work has suggested that individual wetlands have the potential to improve water quality2-9, little is known about the current magnitude of wetland N removal at the landscape scale. Here we use National Wetland Inventory data and 5-kilometre grid-scale estimates of N inputs and outputs to demonstrate that current N removal by US wetlands (about 860 ± 160 kilotonnes of nitrogen per year) is limited by a spatial disconnect between high-density wetland areas and N hotspots. Our model simulations suggest that a spatially targeted increase in US wetland area by 10 per cent (5.1 million hectares) would double wetland N removal. This increase would provide an estimated 54 per cent decrease in N loading in nitrate-affected watersheds such as the Mississippi River Basin. The costs of this increase in area would be approximately 3.3 billion US dollars annually across the USA-nearly twice the cost of wetland restoration on non-agricultural, undeveloped land-but would provide approximately 40 times more N removal. These results suggest that water quality improvements, as well as other types of ecosystem services such as flood control and fish and wildlife habitat, should be considered when creating policy regarding wetland restoration and protection.


Assuntos
Conservação dos Recursos Naturais/métodos , Nitratos/isolamento & purificação , Nitratos/metabolismo , Áreas Alagadas , Agricultura , Animais , Conservação dos Recursos Naturais/economia , Política Ambiental/economia , Política Ambiental/tendências , Recuperação e Remediação Ambiental/economia , Recuperação e Remediação Ambiental/métodos , Eutrofização , Inundações/prevenção & controle , Mapeamento Geográfico , Rios , Estados Unidos , Qualidade da Água
3.
Artigo em Inglês | MEDLINE | ID: mdl-31328626

RESUMO

Four low-cost materials, oyster shells, pumice stone, sand and zeolite were employed as adsorbents in an adsorption batch assays investigating the removal of ammonia, phosphate and nitrate from an aqueous solution. These compounds were chosen as they represent typical compounds found in landfill leachate (LFL). Assay performance was evaluated by the Langmuir and Freundlich adsorption isotherms. The top two materials, oyster shells and pumice stone, were employed as adsorbents in a fixed-bed column trial examining the effect of bed height and flow rate on the treatment of a synthetic LFL. The trial concluded that the highest rates of adsorption were achieved using bed heights of 20 cm with a flow rate of 5 mL min-1. After optimization, the system was employed for the treatment of LFL from Powerstown landfill, Carlow, Ireland. Ammonia and nitrate were effectively removed by both adsorption materials resulting in a reduction of influent ammonia and nitrate concentrations to below the national discharge limits set for these compounds of ≤4 mg L-1 and ≤50 mg L-1, respectively. In contrast, although similar high removal efficiencies were observed for phosphate, these rates were not maintained during the test period with overall results indicating reduced phosphate adsorption in comparison to the other compounds tested.


Assuntos
Amônia/isolamento & purificação , Nitratos/isolamento & purificação , Fosfatos/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Amônia/química , Exoesqueleto/química , Animais , Irlanda , Nitratos/química , Fosfatos/química , Silicatos/química , Eliminação de Resíduos Líquidos/economia , Poluentes Químicos da Água/química , Poluentes Químicos da Água/economia
4.
Sci Total Environ ; 655: 720-729, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30476852

RESUMO

The discharge from food production greenhouses (greenhouse effluent) contains high nutrient and salt concentrations, which, if directly released, can have adverse effects on the environment. Wood-chip bioreactors are increasingly popular passive water treatment systems favoured for their economical denitrification in treating agricultural field tile drainage. Microbial communities are central to denitrification; however little is known about the maturation of microbial communities in wood-chip bioreactors treating greenhouse effluents. In this study, multiple subsurface flow wood-chip bioreactors, each vegetated with a different plant species, together with an unplanted unit, received synthetic greenhouse effluent with elevated nitrate concentrations. The hybrid bioreactors were operated for over 2 years, during which time water samples were collected from the inlet, outlet and within the reactors. The increasing denitrification rate in the bioreactor planted with Typha angustifolia (narrowleaf cattail) correlated with increasing microbial activity and metabolic richness, measured by the carbon utilization patterns in Biolog® EcoPlates. Increased denitrifying gene (nirS) copies (determined by quantitative polymerase chain reaction, qPCR), and near-complete nitrate removal were observed in the T. angustifolia and unplanted reactors after 16 and 23 months of operation respectively. The findings suggested that an acclimation period of at least one year can be expected in unseeded bioreactors planted with T. angustifolia, while bioreactors without vegetation may require a longer time to maximize their denitrification capacity. These results are important for the design and operation of wood-chip bioreactors, which are expected to be more commonly applied in the future.


Assuntos
Reatores Biológicos/microbiologia , Desnitrificação , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Purificação da Água/métodos , Madeira/metabolismo , Biodegradação Ambiental , Desnitrificação/genética , Microbiota/fisiologia , Nitratos/isolamento & purificação , Nitratos/metabolismo , Oxirredução , Águas Residuárias/química , Madeira/classificação
5.
J Environ Manage ; 230: 245-254, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30292013

RESUMO

This study aims to investigate the effects of alternating current (AC) and direct current (DC) for nitrate removal and its operating costs by using a continuous electrocoagulation (CEC) process. For this purpose, two series of 31 experiments, which were designed by response surface method (RSM), were carried out in both cases of the AC and the DC modes. In each series, the effect of selected parameters, namely, initial nitrate concentration, inlet flow rate, current density and initial pH along with their interactions on the nitrate removal efficiency as well as its operating costs, as responses, were investigated separately. According to the analysis of variance (ANOVA), there is a reasonable agreement between achieving results and the experimental data for both responses. The nitrate removal in the AC mode was slightly more efficient than that of the DC mode. In addition, the average operating costs of the DC mode, including the energy and the electrode consumption for the CEC process were achieved 54 US$/(kg nitrate removed); whereas this amount was calculated 29 US$/(kg nitrate removed) for the AC mode. Therefore, the average of the operating costs was improved more than 40% using the AC mode, which was mainly related to reduction of aluminum electrode consumption.


Assuntos
Nitratos/isolamento & purificação , Alumínio , Eletricidade , Eletrodos , Concentração de Íons de Hidrogênio , Óxidos de Nitrogênio/química
6.
Environ Sci Pollut Res Int ; 24(6): 5898-5907, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28064394

RESUMO

The photocatalytic removal of nitrate with simultaneous hydrogen generation was demonstrated using zero-valent nano-copper-modified titania (P25) as photocatalyst in the presence of UV-A-Vis radiation. Glycerol, a by-product in biodiesel production, was chosen as a hole scavenger. Under the adopted experimental conditions, a nitrate removal efficiency up to 100% and a simultaneous hydrogen production up to 14 µmol/L of H2 were achieved (catalyst load = 150 mg/L, initial concentration of nitrate = 50 mg/L, initial concentration of glycerol = 0.8 mol/L). The reaction rates were independent of the starting glycerol concentration. This process allows accomplishing nitrate removal, with the additional benefit of producing hydrogen under artificial UV-A radiation. A kinetic model was also developed and it may represent a benchmark for a detailed understanding of the process kinetics. A set of acute and chronic bioassays (Vibrio fischeri, Raphidocelis subcapitata, and Daphnia magna) was performed to evaluate the potential ecotoxicity of the nitrate/by-product mixture formed during the photocatalytic process. The ecotoxicological assessment indicated an ecotoxic effect of oxidation intermediates and by-products produced during the process.


Assuntos
Cobre/química , Hidrogênio/química , Nanopartículas Metálicas/química , Nitratos/isolamento & purificação , Titânio/química , Poluentes Químicos da Água/isolamento & purificação , Aliivibrio fischeri/efeitos dos fármacos , Animais , Catálise , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Ecotoxicologia , Glicerol/química , Cinética , Nitratos/química , Nitratos/farmacologia , Oxirredução , Tamanho da Partícula , Processos Fotoquímicos , Soluções , Raios Ultravioleta , Poluentes Químicos da Água/química , Poluentes Químicos da Água/farmacologia
7.
Bioresour Technol ; 101(15): 5852-61, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20335031

RESUMO

A full-scale combined biological system is used for the treatment of treated wastewater discharged from a pharmaceutical industrial park. This treated water is rich in NH(4)(+)-N (average in 86.4 mg/L), low in COD/NH(4)(+)-N (average in 3.4) and low in BOD(5)/COD ratio (average in 0.24) with pH varying from 7.16 to 7.78. The final effluent of the combined treatment process was stably below 100mg/L COD and 20mg/L NH(4)(+)-N, separately, with organic loading rate of 4954 kg COD/d and 92.5 kg NH(4)(+)-N/d. It is found that the BOD(5)/COD ratio could be raised from 0.24 to 0.35, and the production of total VFAs account for 9.57% of the total COD via the treatment of hydrolysis/acidification. MBBR and oxidation ditch represent 35.4% and 60.7% of NH(4)(+)-N removal, 30.2% and 61.5% of COD removal, separately, of the total treatment process. PCR-DGGE is used for microbial community analysis of MBBR and oxidation ditch.


Assuntos
Fenômenos Fisiológicos Bacterianos , Reatores Biológicos/microbiologia , Indústria Farmacêutica/instrumentação , Resíduos Industriais/prevenção & controle , Nitratos/metabolismo , Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Nitratos/isolamento & purificação , Nitrogênio/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação
8.
Bioresour Technol ; 101(14): 5712-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20202829

RESUMO

A riparian wetland (RW) was constructed in a river bend to study the effect of the addition of Bacillus subtilis FY99-01 on nitrate removal. Nitrate was removed more efficiently in the summer than in the winter owing to integrated hydraulic, microbial and environmental effects. The maximal nitrate removal and the mean nitrate loss rate in the RW were 36.1% and 50.5 g/m(2)/yr, respectively. Statistic analyses indicated that the redox potential was very significant to denitrification while organic matter in the outflow, temperature and nitrate in the inflow significantly affected nitrate removal. These results suggest that an RW can be a cost-effective approach to enhance microbial nitrate removal and can potentially be extended to similar river bends.


Assuntos
Bacillus subtilis/metabolismo , Biotecnologia/métodos , Nitratos/química , Nitratos/isolamento & purificação , Áreas Alagadas , Análise Custo-Benefício , Geografia , Concentração de Íons de Hidrogênio , Hidrólise , Nitrogênio/química , Compostos Orgânicos/química , Oxirredução , RNA Ribossômico 16S/química , Análise de Regressão , Temperatura
9.
J Environ Monit ; 12(1): 218-24, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20082016

RESUMO

Increases in corn cultivation for biofuels production, due to the Energy Independence and Security Act of 2007, are likely to lead to increases in nitrate concentrations in both surface and groundwater resources in the United States. These increases might trigger the requirement for additional energy consumption for water treatment to remove the nitrates. While these increasing concentrations of nitrate might pose a human health concern, most water resources were found to be within current maximum contaminant level (MCL) limits of 10 mg L(-1) NO(3)-N. When water resources exceed this MCL, energy-intensive drinking water treatment is required to reduce nitrate levels below 10 mg L(-1). Based on prior estimates of water supplies currently exceeding the nitrate MCL, we calculate that advanced drinking water treatment might require an additional 2360 million kWh annually (for nitrate affected areas only)--a 2100% increase in energy requirements for water treatment in those same areas--to mitigate nitrate contamination and meet the MCL requirement. We predict that projected increases in nitrate contamination in water may impact the energy consumed in the water treatment sector, because of the convergence of several related trends: (1) increasing cornstarch-based ethanol production, (2) increasing nutrient loading in surface water and groundwater resources as a consequence of increased corn-based ethanol production, (3) additional drinking water sources that exceed the MCL for nitrate, and (4) potentially more stringent drinking water standards for nitrate.


Assuntos
Agricultura/estatística & dados numéricos , Biocombustíveis , Conservação de Recursos Energéticos/tendências , Nitratos/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Zea mays/crescimento & desenvolvimento , Conservação de Recursos Energéticos/métodos , Monitoramento Ambiental , Etanol/química , Etanol/isolamento & purificação , Geografia , Nitratos/química , Nitratos/isolamento & purificação , Saúde Pública , Medição de Risco , Estados Unidos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/economia , Purificação da Água/estatística & dados numéricos , Abastecimento de Água/normas , Zea mays/química
10.
Bioresour Technol ; 101(5): 1440-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19914827

RESUMO

Electro-Fenton denitrification of a model wastewater was studied using platinized titanium electrodes in a batch electrochemical reactor. The model wastewater was prepared from components based on the real aquaculture effluent with nitrate concentrations varying from 200 to 800 mg L(-1). The technical as well as scientific feasibility of the method was assessed by the relationship between the most significant process variables such as various Fenton's reagent to hydrogen peroxide ratios (1:5; 1:20 and 1:50) and current densities (0.17 mA cm(-2), 0.34 mA cm(-2) and 0.69 mA cm(-2)) and their response on denitrification efficiency in terms of nitrate degradation using central composite Box-Behnken experimental design was determined. The goodness of the model was checked by the coefficient of determination R(2) (0.9775), the corresponding analysis of variance P>F and a parity plot. The ANOVA results indicated that the proposed model was significant and therefore can be used to optimize denitrification of a model wastewater. The optimum reaction conditions were found to be 1:20 Fenton's reagent/hydrogen peroxide ratio, 400 mg L(-1) initial nitrate concentration and 0.34 mA cm(-2) current density. Treatment costs in terms of electricity expenditure at 0.17, 0.34 and 0.69 mA cm(-2) was 7.6, 16 and 41.8 euro, respectively, per kilogram of nitrates and 1, 2 and 4 euro, respectively, per cubic meter of wastewater.


Assuntos
Biotecnologia/métodos , Eletroquímica/métodos , Peróxido de Hidrogênio/química , Ferro/química , Modelos Químicos , Nitratos/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Análise de Variância , Biotecnologia/economia , Análise por Conglomerados , Eletroquímica/economia , Reprodutibilidade dos Testes , Propriedades de Superfície
11.
J Environ Manage ; 88(3): 467-78, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17462814

RESUMO

This paper describes the development of a methodology to theoretically assess the stormwater pollutant removal performances of structural best management practices (BMPs). The method combines the categorisation of the relative importance of the primary removal processes within 15 different BMPs with an evaluation of the ability of each process to remove a pollutant in order to generate a value representing the pollutant removal potential for each BMP. The methodology is demonstrated by applying it separately to a set of general water quality indicators (total suspended solids, biochemical and chemical oxygen demand, nitrates, phosphates and faecal coliforms) to produce a ranked list of BMP pollutant removal efficiencies. Given the limited amount of available monitoring data relating to the differential pollutant removal capabilities of BMPs, the resulting prioritization will support stakeholders in making urban drainage decisions from the perspective of pollutant removal. It can also provide inputs to existing urban hydrology models, which aim to predict the treatment performances of BMPs. The level of resilience of the proposed approach is tested using a sensitivity analysis and the limitations in terms of BMP design and application are discussed.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/isolamento & purificação , Adsorção , Algoritmos , Benchmarking , Biodegradação Ambiental , Precipitação Química , Filtração , Modelos Teóricos , Nitratos/isolamento & purificação , Fosfatos/isolamento & purificação , Fotólise , Plantas/metabolismo , Volatilização , Microbiologia da Água
12.
Water Sci Technol ; 55(7): 155-61, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17506433

RESUMO

Several different types of constructed wetland systems are being used as decentralized treatment systems including surface-flow, subsurface-flow, vertical-flow, and hybrid systems. Archetypical wetland systems have design strengths and weaknesses, and therefore it should be possible to design combined (integrated) systems to optimize a number of important treatment processes. This study provides comparative efficacy data for two integrated wetland treatment systems (IWTS) designed to enhance treatment of medium strength wastewater generated from a pilot-scale intensive fish farm. Results from the twenty eight months study included consistently high removal of COD (84% +) and ammonia nitrogen (93%) in both systems. Initially, phosphorus removal was also high (>90%) in both systems, but removal efficacy declined significantly over time. Nitrate removal was significantly better in the system that provided sequential aerobic and anoxic environments. Short hydraulic retention times coupled with sustained removal of COD and ammonia indicate that the ReCip components could be a least-cost wastewater treatment technology in the decentralized market sector.


Assuntos
Purificação da Água/economia , Purificação da Água/instrumentação , Áreas Alagadas , Desenho de Equipamento , Nitratos/isolamento & purificação , Nitrogênio/isolamento & purificação , Oxigênio , Poaceae/química , Esgotos , Água/normas , Purificação da Água/normas
13.
Sci Total Environ ; 366(1): 12-20, 2006 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-16464489

RESUMO

Use of a pilot-scale fixed-film bioreactor was investigated for remediation of bromate contamination within groundwater. Bromate reduction with stoichiometric production of bromide was observed, providing supporting evidence for complete reduction of bromate with no production of stable intermediates. Reduction of 87-90% bromate from an influent concentration of 1.1 mg L(-1) was observed with retention times of 40-80 h. Lower retention times led to decreases in bromate reduction capability, with 11.5% removal at a 10 h retention time. Nitrate reduction of 76-99% from a 30.7 mg L(-1) as NO(3)(-) influent was observed at retention times of 10-80 h, although an increase in nitrite production to 2.7 mg L(-1) occurred with a 10 h retention time. Backwashing was not required, with the large plastic packing media able to accommodate biomass accumulation without decreases in operational efficiency. This study has provided proof of concept and demonstrated the potential of biological bromate reduction by fixed-film processes for remediation of a bromate contaminated groundwater source.


Assuntos
Reatores Biológicos , Bromatos/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Abastecimento de Água , Biomassa , Bromatos/metabolismo , Nitratos/isolamento & purificação , Nitratos/metabolismo , Gestão de Riscos , Poluentes do Solo/metabolismo , Fatores de Tempo , Poluentes Químicos da Água/metabolismo
14.
Water Sci Technol ; 52(4): 9-17, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16235741

RESUMO

In recent years a completely autotrophic nitrogen removal process based on Anammox biomass has been tested in a few European countries in order to treat anaerobic supernatant and to increase the COD/N ratio in municipal wastewater. This work reports experimental results on a possible technical solution to upgrade the S. Colombano treatment plant which treats wastewater from the Florentine urban area. The idea is to use 50% of the volume of the anaerobic digester in order to treat external sewage sludge (as septic tank sludge) together with waste activated sludge and to treat the resulting effluent on a SHARON-ANAMMOX process in order to remove nitrogen from the anaerobic supernatant. Anaerobic co-digestion, tested in a 200 L pilot plant, enables low cost treatment of septic tank sludge and increases biogas production; however, it also increases the nitrogen load re-circulated to the WWTP, where nitrogen removal efficiency is already low (<50%), due to the low COD/N ratio, which limits predenitrification efficiency. Experimental results from a SHARON process tested in a lab-scale pilot plant show that nitrite oxidising bacteria are washed-out and steady nitrite production can be achieved at retention times in the range 1 - 1.5 days, at 35 degrees C. In a lab-scale SBR reactor, coupled with a nitration bioreactor, maximum specific nitrogen removal rate under nitrite-limiting conditions (with doubling time equal to about 26 days at 35 degrees C) was equal to 0.22 kgN/kgSSV/d, about 44 times the rate measured in inoculum Anammox sludge. Finally, a cost analysis of the proposed upgrade is reported.


Assuntos
Nitrogênio/isolamento & purificação , Nitrogênio/metabolismo , Purificação da Água/instrumentação , Purificação da Água/métodos , Bactérias Anaeróbias/metabolismo , Custos e Análise de Custo , Itália , Nitratos/análise , Nitratos/isolamento & purificação , Nitritos/análise , Nitritos/isolamento & purificação , Compostos de Amônio Quaternário/análise , Compostos de Amônio Quaternário/isolamento & purificação , Esgotos/química , Purificação da Água/economia
15.
Water Res ; 36(19): 4801-10, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12448523

RESUMO

In this study, a multi-cathode biofilm-electrode reactor (BER) combined with microfiltration (MF) was investigated using a laboratory-scale experimental apparatus for treatment of nitrate-contaminated water. The multi-cathode electrodes were composed of multiple-granular activated carbons (GACs). GACs attached to each cathode to enlarge surface area of electrodes and to attach bacteria quickly and firmly. In BER, H2 gas is produced by applying electric current, which serves as an electron donor in biological reduction of nitrate to N2 gas. Since some suspended solids were escaping from BER, MF membrane with plate modules and a pore size of 0.2 microm was placed after BER. Experimental results demonstrated that it was possible to operate the multi-cathode BER with high denitrification rates and hydraulic retention time (HRT) as low as HRT = 20 min. The denitrification rate was enhanced by 3-60 times in comparison with former studies. MF membrane successfully rejected the bacteria escaping from BER, so that the effluent concentration of SS was kept below 1 mg SS/l throughout the experiment. It was also possible to operate MF membrane at flux 2-9 times higher and pressure 2.5-31 times smaller than in former studies. This higher performance was mainly brought about by using biofilm and H2 gas as an electron donor. Also, an economic evaluation of BER/MF was included, showing the feasibility of this process. The present BER/MF process is considered advantageous for the enhanced treatment of nitrate-polluted groundwater.


Assuntos
Biofilmes , Reatores Biológicos , Nitratos/isolamento & purificação , Purificação da Água/métodos , Carbono/química , Eletrodos , Filtração , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA