Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Planta ; 245(4): 819-833, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28054148

RESUMO

MAIN CONCLUSION: Different nitrogen forms affect different metabolic pathways in lichens. In particular, the most relevant changes in protein expression were observed in the fungal partner, with NO 3- mostly affecting the energetic metabolism and NH 4+ affecting transport and regulation of proteins and the energetic metabolism much more than NO 3- did. Excess deposition of reactive nitrogen is a well-known agent of stress for lichens, but which symbiont is most affected and how, remains a mystery. Using proteomics can expand our understanding of stress effects on lichens. We investigated the effects of different doses and forms of reactive nitrogen, with and without supplementary phosphorus and potassium, on the proteome of the lichen Cladonia portentosa growing in a 'real-world' simulation of nitrogen deposition. Protein expression changed with the nitrogen treatments but mostly in the fungal partner, with NO3- mainly affecting the energetic metabolism and NH4+ also affecting the protein synthesis machinery. The photobiont mainly responded overexpressing proteins involved in energy production. This suggests that in response to nitrogen stress, the photobiont mainly supports the defensive mechanisms initiated by the mycobiont with an increased energy production. Such surplus energy is then used by the cell to maintain functionality in the presence of NO3-, while a futile cycle of protein production can be hypothesized to be induced by NH4+ excess. External supply of potassium and phosphorus influenced differently the responses of particular enzymes, likely reflecting the many processes in which potassium exerts a regulatory function.


Assuntos
Líquens/metabolismo , Nitrogênio/metabolismo , Amônia/metabolismo , Respiração Celular/fisiologia , Clorofila/metabolismo , Clorofila A , Eletroforese em Gel Bidimensional , Metabolismo Energético/fisiologia , Líquens/fisiologia , Espectrometria de Massas , Nitratos/metabolismo , Nitrogênio/fisiologia , Fotossíntese , Proteômica
3.
Ecol Lett ; 14(2): 91-100, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21073643

RESUMO

The leaf economics spectrum describes biome-invariant scaling functions for leaf functional traits that relate to global primary productivity and nutrient cycling. Here, we develop a comprehensive framework for the origin of this leaf economics spectrum based on venation-mediated economic strategies. We define a standardized set of traits - density, distance and loopiness - that provides a common language for the study of venation. We develop a novel quantitative model that uses these venation traits to model leaf-level physiology, and show that selection to optimize the venation network predicts the mean global trait-trait scaling relationships across 2548 species. Furthermore, using empirical venation data for 25 plant species, we test our model by predicting four key leaf functional traits related to leaf economics: net carbon assimilation rate, life span, leaf mass per area ratio and nitrogen content. Together, these results indicate that selection on venation geometry is a fundamental basis for understanding the diversity of leaf form and function, and the carbon balance of leaves. The model and associated predictions have broad implications for integrating venation network geometry with pattern and process in ecophysiology, ecology and palaeobotany.


Assuntos
Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Carbono/fisiologia , Modelos Biológicos , Nitrogênio/fisiologia , Fotossíntese
4.
New Phytol ; 185(2): 514-28, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19895671

RESUMO

*The potential for elevated [CO(2)]-induced changes to plant carbon (C) storage, through modifications in plant production and allocation of C among plant pools, is an important source of uncertainty when predicting future forest function. Utilizing 10 yr of data from the Duke free-air CO(2) enrichment site, we evaluated the dynamics and distribution of plant C. *Discrepancy between heights measured for this study and previously calculated heights required revision of earlier allometrically based biomass determinations, resulting in higher (up to 50%) estimates of standing biomass and net primary productivity than previous assessments. *Generally, elevated [CO(2)] caused sustained increases in plant biomass production and in standing C, but did not affect the partitioning of C among plant biomass pools. Spatial variation in net primary productivity and its [CO(2)]-induced enhancement was controlled primarily by N availability, with the difference between precipitation and potential evapotranspiration explaining most interannual variability. Consequently, [CO(2)]-induced net primary productivity enhancement ranged from 22 to 30% in different plots and years. *Through quantifying the effects of nutrient and water availability on the forest productivity response to elevated [CO(2)], we show that net primary productivity enhancement by elevated [CO(2)] is not uniform, but rather highly dependent on the availability of other growth resources.


Assuntos
Biomassa , Dióxido de Carbono/fisiologia , Carbono/fisiologia , Nitrogênio/fisiologia , Fotossíntese/fisiologia , Árvores/fisiologia , Água/fisiologia , Transpiração Vegetal , Chuva , Árvores/crescimento & desenvolvimento
5.
Med Sci Sports Exerc ; 42(6): 1054-61, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19997032

RESUMO

UNLABELLED: An increasing number of recreational self-contained underwater breathing apparatus (SCUBA) divers use trimix of oxygen, helium, and nitrogen for dives deeper than 60 m of sea water. Although it was seldom linked to the development of pulmonary edema, whether SCUBA diving affects the extravascular lung water (EVLW) accumulation is largely unexplored. METHODS: Seven divers performed six dives on consecutive days using compressed gas mixture of oxygen, helium, and nitrogen (trimix), with diving depths ranging from 55 to 80 m. The echocardiographic parameters (bubble grade, lung comets, mean pulmonary arterial pressure (PAP), and left ventricular function) and the blood levels of the N-terminal part of pro-brain natriuretic peptide (NT-proBNP) were assessed before and after each dive. RESULTS: Venous gas bubbling was detected after each dive with mean probability of decompression sickness ranging from 1.77% to 3.12%. After each dive, several ultrasonographically detected lung comets rose significantly, which was paralleled by increased pulmonary artery pressure (PAP) and decreased left ventricular contractility (reduced ejection fraction at higher end-systolic and end-diastolic volumes) as well as the elevated NT-proBNP. The number of ultrasound lung comets and mean PAP did not return to baseline values after each dive. CONCLUSIONS: This is the first report that asymptomatic SCUBA dives are associated with accumulation of EVLW with concomitant increase in PAP, diminished left ventricular contractility, and increased release of NT-proBNP, suggesting a significant cardiopulmonary strain. EVLW and PAP did not return to baseline during repetitive dives, indicating possible cumulative effect with increasing the risk for pulmonary edema.


Assuntos
Mergulho/efeitos adversos , Água Extravascular Pulmonar/diagnóstico por imagem , Hélio/efeitos adversos , Nitrogênio/efeitos adversos , Oxigênio/efeitos adversos , Disfunção Ventricular Esquerda/etiologia , Adulto , Pressão Sanguínea , Doença da Descompressão/sangue , Doença da Descompressão/diagnóstico por imagem , Mergulho/fisiologia , Ecocardiografia , Água Extravascular Pulmonar/fisiologia , Hélio/fisiologia , Humanos , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/sangue , Nitrogênio/fisiologia , Oxigênio/fisiologia , Fragmentos de Peptídeos/sangue , Artéria Pulmonar , Volume Sistólico/fisiologia , Disfunção Ventricular Esquerda/diagnóstico por imagem
6.
J Theor Biol ; 244(4): 714-21, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17070850

RESUMO

The adaptive value of the bright colours of leaves in autumn is still debated. It is possible that autumn colours are an adaptation to protect the tree against photoinibition and photooxidation, which allows a more efficient recovery of nutrients. It has been proposed that the preference of aphids for trees that retranslocate nitrogen more efficiently can explain the high diversity of aphids on tree species with bright autumn colours. This scenario however does not take into account the impact of insects on the fitness of the trees and has not been analysed theoretically. Its assumptions and predictions, therefore, remain uncertain. I show with a model of insect-tree interaction that the system can actually evolve under particular conditions. I discuss the differences with the coevolution theory of autumn colours, available evidence and possible tests.


Assuntos
Afídeos/fisiologia , Alimentos , Pigmentação , Folhas de Planta/fisiologia , Estações do Ano , Árvores , Adaptação Fisiológica , Animais , Evolução Biológica , Luz , Matemática , Modelos Biológicos , Nitrogênio/fisiologia , Fenômenos Fisiológicos Vegetais
7.
J Anim Sci ; 83(9): 2235-42, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16100079

RESUMO

To compare the performance of steer calves managed under different stocking rates (SR; 3.7, 6.2, 8.6, and 11.1 steers/ha for 140 d; chi(I1)) and N fertilization rates (112, 224, and 336 kg of N/ha; chi(I2)) in May 1996, 1997, and 1998, 72 steer calves (BW = 231 +/- 2.5 kg) were assigned randomly to one of 12 0.81-ha dallisgrass (51%)/common bermudagrass (32%) pastures. One-third of the fertilizer was applied in the form of ammonium nitrate in May, June, and August to achieve the prescribed totals. Treatments were separated using a polynomial regression equation: gammai = beta0 + beta1chi(I1) + beta2chi(I2) + beta(11)chi2(I1) + beta(12)chi2(I2) + beta(12)chi(i1)chi(i2) + epsilonI, with years as replicates. Within the range of the data, ADG and BW gain per steer were greatest at a stocking rate of 3.7 steers/ha and 336 kg/ha of N. Body weight gain per hectare peaked at 701 kg when cattle were stocked at 8.9 steers/ha and the pasture was fertilized with 336 kg/ha of N. The least cost of production was at a stocking rate of 3.7 steers/ha, with 112 kg/ha of fertilizer N applied, and the greatest cost of production was at a stocking rate of 11.1 steers/ha with 336 kg/ha of fertilizer N applied. Fertilization at 336 kg/ha of N produced the most profitable stocking rate at 7.3 steers/ha and returned 355.64 dollars. The optimal stocking rate for net return was 79, 81, and 82% of that for maximum BW gain per hectare for 112, 224, and 336 kg/ha of N, respectively. Under the assumptions made in the financial analysis, these data show that the economically optimal carrying capacity of similar pastures can be increased with N fertilizer up to at least 336 kg/ha annually.


Assuntos
Criação de Animais Domésticos/métodos , Bovinos/crescimento & desenvolvimento , Fertilizantes , Paspalum , Aumento de Peso/fisiologia , Análise de Variância , Criação de Animais Domésticos/economia , Animais , Análise dos Mínimos Quadrados , Masculino , Nitrogênio/fisiologia , Densidade Demográfica , Chuva , Distribuição Aleatória , Estações do Ano , Temperatura
8.
Plant Physiol ; 137(1): 383-95, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15618429

RESUMO

Patterns of synthesis and breakdown of carbon (C) and nitrogen (N) stores are relatively well known. But the role of mobilized stores as substrates for growth remains less clear. In this article, a novel approach to estimate C and N import into leaf growth zones was coupled with steady-state labeling of photosynthesis ((13)CO(2)/(12)CO(2)) and N uptake ((15)NO(3)(-)/(14)NO(3)(-)) and compartmental modeling of tracer fluxes. The contributions of current C assimilation/N uptake and mobilization from stores to the substrate pool supplying leaf growth were then quantified in plants of a C(3) (Lolium perenne) and C(4) grass (Paspalum dilatatum Poir.) manipulated thus to have contrasting C assimilation and N uptake rates. In all cases, leaf growth relied largely on photoassimilates delivered either directly after fixation or short-term storage (turnover rate = 1.6-3.3 d(-1)). Long-term C stores (turnover rate < 0.09 d(-1)) were generally of limited relevance. Hence, no link was found between the role of stores and C acquisition rate. Short-term (turnover rate = 0.29-0.90 d(-1)) and long-term (turnover rate < 0.04 d(-1)) stores supplied most N used in leaf growth. Compared to dominant (well-lit) plants, subordinate (shaded) plants relied more on mobilization from long-term N stores to support leaf growth. These differences correlated well with the C-to-N ratio of growth substrates and were associated with responses in N uptake. Based on this, we argue that internal regulation of N uptake acts as a main determinant of the importance of mobilized long-term stores as a source of N for leaf growth.


Assuntos
Carbono/fisiologia , Lolium/fisiologia , Nitrogênio/fisiologia , Paspalum/fisiologia , Folhas de Planta/fisiologia , Carbono/metabolismo , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Modelos Biológicos , Nitrogênio/metabolismo , Paspalum/crescimento & desenvolvimento , Paspalum/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Fatores de Tempo
9.
Tree Physiol ; 21(9): 617-24, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11390306

RESUMO

Twenty-four temperate tree species were classified into three groups based on cluster analysis of relative growth rate, nitrogen concentration, nitrogen-production efficiency, nitrogen-distribution ratio and nitrogen-use efficiency as follows: Group I (Asteridae and Rosidae), Group II (Dilleniidae and Hamamelidae) and Group III (Coniferopsidae). Relative growth rate (RGR) was high in Group II, moderate in Group I and low in Group III. The regression coefficient for the relationship between RGR and leaf nitrogen concentration was higher in Group II than in Group I, and no relationship was observed in Group III. Parameter analysis of RGR indicated that RGR per unit leaf nitrogen was important for all three groups, but that the allocation of nitrogen to leaves was particularly important in Groups I and II. The ratio of dark respiratory rate (R) to net photosynthetic rate (A) was higher in Group I than in Group II. Neither A nor R was measured in the Group III species. A linear relationship was observed between leaf nitrogen concentration and A in Group II, but this relationship was not evident in Group I.


Assuntos
Nitrogênio/fisiologia , Árvores/fisiologia , Abies/metabolismo , Abies/fisiologia , Betulaceae/metabolismo , Betulaceae/fisiologia , Fabaceae/metabolismo , Fabaceae/fisiologia , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Pinaceae/metabolismo , Pinaceae/fisiologia , Prunus/metabolismo , Prunus/fisiologia , Salicaceae/metabolismo , Salicaceae/fisiologia , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
10.
ScientificWorldJournal ; 1 Suppl 2: 784-90, 2001 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-12805829

RESUMO

Today, finding data on agricultural nitrogen balances is quite easy. Calculations of such balances are carried out by most of the European countries as an indicator of environmental pollution attributable to the agricultural sector. In France, average values of agricultural nitrogen balances show an excess of 1.5 to 2 million tons of nitrogen. This excess is enormous. What would the balance of a country be if agricultural activity were stopped? In the following article, a country (France is used as an example) without agriculture is studied in order to assess its nitrogen balance. Using a previously published model describing nitrogen input and output of a given country, nitrogen flows are identified. Inputs include deposition, fixation, and products not intended for agricultural use. Outputs are reduced to zero if agriculture disappears (in France, agriculture is the only sector exporting products containing nitrogen). All flows are calculated considering the hypothesis of disappearance of agriculture. Nitrogen requirements to feed people and pets in France are estimated based on medical and veterinary data (recommended daily amounts for proteins and/or usual average consumption). Indeed, most of the food that nourishes the French population is produced nationally. If agriculture stops, it will be necessary to import food from foreign countries. Results show an unexpectedly high excess (for a country without agriculture having a structure similar to France: number of human beings and pets) of 1.5 million tons of nitrogen. An attempt to calculate an agricultural balance with the same data gives a result close to 3 million tons. Differences in French agricultural balances found in the literature can mainly be explained by values taken into account for deposition and fixation (values used here are at least 300,000 tons higher than values used by the Organisation for Economic Co-operation and Development). In conclusion, nitrogen excess in agriculture is partly due to social demand; agriculture does not only produce food but also includes many other functions (landscape management, employment, and preservation of culture, for example). As a consequence, efforts that do not involve suppressing agriculture should be made to figure out alternative ways of production.


Assuntos
Agricultura , Modelos Teóricos , Fixação de Nitrogênio/fisiologia , Nitrogênio/fisiologia , Indústria Alimentícia , Humanos , Nitrogênio/química , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA