Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 841
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mar Pollut Bull ; 205: 116587, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880036

RESUMO

Metal concentrations (Cu, Zn, Cr, Fe, As, Pb, Ni, V, and Co) in surface sediments were determined in the southern Caspian Sea. Sediment pollution was investigated using geochemical index such as Enrichment Factor (EF) and ecological risk indices like modified Hazard Quotient (mHQ) and Toxic Risk Index (TRI). The highest calculated geochemical index was observed in sediments near the cities of Chalus and Ramsar, which are highly polluted due to human activities. The ecological potential indices indicated that Ni contents in all the studied stations would impose harmful effects on aquatic organisms, while other metals had a low risk. Principal component and cluster analyses suggested that As and Pb emanated from anthropogenic sources, and other metals probably originated from lithogenic sources.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Sedimentos Geológicos/química , Medição de Risco , Poluentes Químicos da Água/análise , Oceanos e Mares
2.
PLoS One ; 19(6): e0304718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843266

RESUMO

Climate change is anticipated to have long-term and pervasive effects on marine ecosystems, with cascading consequences to many ocean-reliant sectors. For the marine fisheries sector, these impacts can be further influenced by future socio-economic and political factors. This raises the need for robust projections to capture the range of potential biological and economic risks and opportunities posed by climate change to marine fisheries. Here, we project future changes in the abundance of eight commercially important fish and crab species in the eastern Bering Sea and Chukchi Sea under different CMIP6 Shared Socioeconomic Pathways (SSPs) leading to contrasting future (2021-2100) scenarios of warming, sea ice concentration, and net primary production. Our results revealed contrasting patterns of abundance and distribution changes across species, time periods and climate scenarios, highlighting potential winners and losers under future climate change. In particular, the least changes in future species abundance and distribution were observed under SSP126. However, under the extreme scenario (SSP585), projected Pacific cod and snow crab abundances increased and decreased, respectively, with concurrent zonal and meridional future shifts in their centers of gravity. Importantly, projected changes in species abundance suggest that fishing at the same distance from the current major port in the Bering Sea (i.e., Dutch Harbor) could yield declining catches for highly valuable fisheries (e.g., Pacific cod and snow crab) under SSP585. This is driven by strong decreases in future catches of highly valuable species despite minimal declines in maximum catch potential, which are dominated by less valuable taxa. Hence, our findings show that projected changes in abundance and shifting distributions could have important biological and economic impacts on the productivity of commercial and subsistence fisheries in the eastern Bering and Chukchi seas, with potential implications for the effective management of transboundary resources.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Pesqueiros , Peixes , Pesqueiros/economia , Animais , Conservação dos Recursos Naturais/economia , Ecossistema , Braquiúros/fisiologia , Oceanos e Mares
3.
J Environ Manage ; 362: 121275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833932

RESUMO

The depletion of fossil energy reserves and the environmental pollution caused by these sources highlight the need to harness renewable energy sources from the oceans, such as waves and tides, due to their high potential. On the other hand, the large-scale deployment of ocean energy converters to meet future energy needs requires the use of large farms of these converters, which may have negative environmental impacts on the ocean ecosystem. In the meantime, a very important point is the volume of data produced by different methods of collecting data from the ocean for their analysis, which makes the use of advanced tools such as different machine learning algorithms even more colorful. In this article, some environmental impacts of ocean energy devices have been analyzed using machine learning and quantum machine learning. The results show that quantum machine learning performs better than its classical counterpart in terms of calculation accuracy. This approach offers a promising new method for environmental impact assessment, especially in a complex environment such as the ocean.


Assuntos
Aprendizado de Máquina , Oceanos e Mares , Ecossistema , Meio Ambiente , Algoritmos , Monitoramento Ambiental/métodos , Energia Renovável
4.
Environ Pollut ; 356: 124314, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844039

RESUMO

Marine litter caused by discharge of mismanaged plastic waste is considered to be one of the major environmental challenges by the international society. With the annual increase of plastic production, a growing number of plastic products are being used in people's daily lives. A large number of these plastics end up as waste emitted into rivers and subsequently into oceans through the effects of downpours or wind, posing a threat to the marine ecosystem. In this study, we developed a riverine plastic transport model based on catchment topography and social-economic factors. By applying reasonable compromise on the complexity of the model, this compromised simplified process-based model has the innovative capability to estimate plastic emissions effectively under the current conditions of limited data availability for model inputs. Compared to existing models, this novel model can also resolve challenges related to the contributions of various land use types and transport stages to plastic emissions into the oceans. To further explore the applicability of our results on a global scale, certain input parameter such as the proportion of mismanaged waste is crucial for users to acquire. Here, taking the S river catchment as our study area, the tourism-driven seasonal variation of land-based plastic emissions was quantified. According to our estimation, the emission flux in S river catchment in 2020 was 68 to 280 tons. 62.4% of riverine plastics reached the ocean. Although urban areas are the predominant contributors to the total emission flux, the contributions from other land use types such as forests and cultivated areas are also unignorable. For instance, forests and cultivated areas contribute 25.7% and 6.3%, respectively, even surpassing the contributions from high tourist activity (5.8%). Stricter waste collection legislations are imperatively needed particularly in these regions.


Assuntos
Monitoramento Ambiental , Plásticos , Rios , Plásticos/análise , Rios/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Fatores Socioeconômicos , Oceanos e Mares , Modelos Teóricos
6.
J Hazard Mater ; 474: 134754, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38820750

RESUMO

The ubiquitous and adverse effects of estrogens have aroused global concerns. Natural and synthetic estrogens in 255 water samples from the southern Bohai Sea were analyzed over three years. Total estrogen concentrations were 11.0-268 ng/L in river water and 1.98-99.7 ng/L in seawater, with bisphenol A (BPA) and 17α-ethynylestradiol (EE2) being the predominant estrogens, respectively. Estrogen showed the highest concentrations in summer 2018, followed by spring 2021 and spring 2019, which was consistent with the higher estrogen flux from rivers during summer. Higher estrogen concentrations in 2021 than in 2019 were driven by the higher level of BPA, an additive used in personal protective equipment. Estrogen exhibited higher concentrations in the southern coast of the Yellow River Delta and the northeastern coast of Laizhou bay due to the riverine input and aquaculture. Estrogens could disturb the normal endocrine activities of organisms and edict high ecological risks (90th simulated RQT > 1.0) to aquatic organisms, especially to fish. EE2 was the main contributor of estrogenic potency and ecological risk, which requires special concern. This is the first comprehensive study of estrogen spatiotemporal variations and risks in the Bohai Sea, providing insights into the environmental behavior of estrogens in coastal regions.


Assuntos
Monitoramento Ambiental , Estrogênios , Água do Mar , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Medição de Risco , Estrogênios/análise , Água do Mar/química , Água do Mar/análise , China , Animais , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Rios/química , Fenóis/análise , Fenóis/toxicidade , Compostos Benzidrílicos/análise , Etinilestradiol/análise , Oceanos e Mares , Estações do Ano
7.
Mar Pollut Bull ; 202: 116336, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583218

RESUMO

The main objectives of this study were to determine the mercury concentration in four species of valuable and widely consumed fish from the Caspian Sea, to assess the health risk due to their consumption. The average mercury concentrations for Chelon saliens, Chelon auratus, Acipenser persicus and Acipenser stellatus were 32.72, 39.51, 166.87 and 81.87 µg g-1 dw, respectively. There were correlations between the mercury concentrations in the muscle of Chelon saliens and morphological parameters, but these correlations were not observed in Chelon auratus. Our comparison of the mercury values obtained in all the samples with the recommended international standards, as well as the Hazard Quotients values, indicated that there is no potential risk for the health of consumers due to exposure to mercury from consuming these fish.


Assuntos
Peixes , Mercúrio , Poluentes Químicos da Água , Animais , Medição de Risco , Poluentes Químicos da Água/análise , Humanos , Mercúrio/análise , Monitoramento Ambiental , Contaminação de Alimentos/análise , Alimentos Marinhos , Oceanos e Mares , Metais/análise
8.
Sci Total Environ ; 927: 172145, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569974

RESUMO

Copper (Cu) has sparked widespread global concern as one of the most hazardous metals to aquatic animals. Ocean acidification (OA) and warming (OW) are expected to alter copper's bioavailability based on pH and temperature-sensitive effects; research on their effects on copper on marine organisms is still in its infancy. Therefore, under representative concentration pathways (RCP) 2.6, 4.5, and 8.5, we used the multiple linear regression-water quality criteria (MLR-WQC) method to assess the effects of OA and OW on the ecological risk posed by copper in the Ocean of East China (OEC), which includes the Bohai Sea, Yellow Sea, and East China Sea. The results showed that there was a positive correlation between temperature and copper toxicity, while there was a negative correlation between pH and copper toxicity. The short-term water quality criteria (WQC) values were 1.53, 1.41, 1.30 and 1.13 µg·L-1, while the long-term WQC values were 0.58, 0.48, 0.40 and 0.29 µg·L-1 for 2020, 2099-RCP2.6, 2099-RCP4.5 and 2099-RCP8.5, respectively. Cu in the OEC poses a moderate ecological risk. Under the current copper exposure situation, strict intervention (RCP2.6) only increases the ecological risk of copper exposure by 20 %, and no intervention (RCP8.5) will increase the ecological risk of copper exposure by nearly double. The results indicate that intervention on carbon emissions can slow down the rate at which OA and OW worsen the damage copper poses to marine creatures. This study can provide valuable information for a comprehensive understanding of the combined impacts of climate change and copper on marine organisms.


Assuntos
Organismos Aquáticos , Cobre , Monitoramento Ambiental , Oceanos e Mares , Água do Mar , Poluentes Químicos da Água , Cobre/toxicidade , Água do Mar/química , Organismos Aquáticos/efeitos dos fármacos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Concentração de Íons de Hidrogênio , China , Mudança Climática , Aquecimento Global , Animais , Acidificação dos Oceanos
9.
Mar Environ Res ; 197: 106446, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518406

RESUMO

Rapid technological development in agriculture and fast urbanization have increased nutrient losses in Europe. High nutrient export to seas causes coastal eutrophication and harmful algal blooms. This study aims to assess the river exports of nitrogen (N) and phosphorus (P), and identify required reductions to avoid coastal eutrophication in Europe under global change. We modelled nutrient export by 594 rivers in 2050 for a baseline scenario using the new MARINA-Nutrients model for Europe. Nutrient export to European seas is expected to increase by 13-28% under global change. Manure and fertilizers together contribute to river export of N by 35% in 2050. Sewage systems are responsible for 70% of future P export by rivers. By 2050, the top ten polluted rivers for N and P host 42% of the European population. Avoiding future coastal eutrophication requires over 47% less N and up to 77% less P exports by these polluted rivers.


Assuntos
Monitoramento Ambiental , Eutrofização , Oceanos e Mares , Rios , Proliferação Nociva de Algas , Nitrogênio/análise , Fósforo/análise , Europa (Continente) , Nutrientes
10.
Environ Res ; 251(Pt 1): 118591, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428561

RESUMO

With rapid economic development, the gradual deterioration of the natural environment has posed unprecedented challenges to human social civilization. The marine economy, as an important part of economic development, is the breakthrough of economic transformation for many coastal countries. Additionally, green development and environmental impact assessment have become the focus of research in these countries. This study employs remote sensing technology, an efficient observational method, to significantly enhance the efficiency of ocean information observation. It investigates ocean carbon emissions within the framework of carbon neutrality. First, we identified the ships along the coastline based on marine remote sensing information through the YOLO (you only look once) framework. Second, we applied the LSTM (long short-term memory) method to combine the target identification results and the historical data of carbon emissions to complete the corresponding carbon emission data fitting. Finally, carbon emission data from the past three years in the offshore area of Dalian were used to make accurate predictions. The results suggested that the recognition rate of the proposed target detection method could reach 88%, and the LSTM method has shown the best performance in terms of absolute error for the subsequent short-term carbon emission prediction. This framework not only provides essential technical support for analyzing remote sensing information within the context of carbon neutrality but also introduces innovative insights for carbon emission prediction.


Assuntos
Inteligência Artificial , Carbono , Monitoramento Ambiental , Oceanos e Mares , Tecnologia de Sensoriamento Remoto , Tecnologia de Sensoriamento Remoto/métodos , Monitoramento Ambiental/métodos , Carbono/análise , China
12.
Gac Sanit ; 38: 102355, 2024.
Artigo em Espanhol | MEDLINE | ID: mdl-38309253

RESUMO

OBJECTIVE: To provide insights into the challenges faced by women seeking abortion services in Melilla, Spain. It seeks to describe the journey these women undertake and to identify and analyze the barriers they encounter in accessing abortion care. METHOD: A qualitative research approach was employed, involving a series of eight semi-structured interviews during 2022. Three interviews were conducted with national experts in the field of abortion, while five interviews were conducted with healthcare professionals from the Melilla Health Area who are directly involved in providing abortion services and supporting women throughout the process. The study was guided by a theoretical framework that focuses on barriers to abortion access and sexual and reproductive rights. The collected data was analyzed using content analysis and categorized based on key dimensions of the study. RESULTS: The study identified several significant barriers to abortion care access in Melilla. These include conscientious objection among healthcare providers, the geographical remoteness of Melilla, the legal challenges faced by Moroccan women due to their irregular status, and the requirement of parental consent for minors aged 16 and 17. Consequently, women seeking abortion services are forced to travel to mainland Spain, continue with undesired pregnancies, or resort to unsafe clandestine abortions in Morocco, thereby endangering their lives in the worst cases. CONCLUSIONS: The barriers to abortion access identified in this study represent a violation of women's reproductive rights in Melilla. Urgent action is required to review the current process, ensuring that access is improved and the right to safe abortion is guaranteed for all women residing in Melilla.


Assuntos
Aborto Induzido , Acessibilidade aos Serviços de Saúde , Feminino , Humanos , Gravidez , Aborto Legal , Atitude do Pessoal de Saúde , Pessoal de Saúde , Oceanos e Mares , Espanha
13.
Sci Total Environ ; 914: 169981, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215845

RESUMO

The coastal zone is typically highly developed and its ocean environment is vastly exposed to the onshore activities. Land-based pollution, as the "metabolite" of terrestrial human activities, significantly impacts the ocean environment. Although numerous studies have investigated these effects, few have quantified the interactions among land-human activity-ocean across both spatial and temporal scales. In this study, we have developed a land-human activity-ocean systemic framework integrating the coupling coordination degree model and tipping point to quantify the spatiotemporal dynamic interaction mechanism among the land-based pollution, human activities, and ocean environment in China from 2001 to 2020. Our findings revealed that the overall coupling coordination degree of the China's coastal zone increased by 36.9 % over last two decades. Furthermore, the effect of human activities on China's coastal environment remained within acceptable thresholds, as no universal tipping points for coastal pollution or ocean environment has been found over the 20-year period. Notably, the lag time for algal blooms, the key indicator of ocean environment health, was found to be 0-3 years in response to the land economic development and 0-4 years in response to land-based pollution. Based on the differences in spatiotemporal interactions among land-human activity-ocean system, we employed cluster analysis to categorize China's coastal provinces into four types and to develop appropriate management measures. Quantifying the interaction mechanism within the land-human activity-ocean system could aid decision-makers in creating sustainable coastal development strategies. This enables efficient use of land and ocean resources, supports coastal conservation and restoration efforts, and fosters effective management recommendations to enhance coastal sustainability and resilience.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Poluição Ambiental , China , Oceanos e Mares
14.
Nature ; 625(7993): 85-91, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172362

RESUMO

The world's population increasingly relies on the ocean for food, energy production and global trade1-3, yet human activities at sea are not well quantified4,5. We combine satellite imagery, vessel GPS data and deep-learning models to map industrial vessel activities and offshore energy infrastructure across the world's coastal waters from 2017 to 2021. We find that 72-76% of the world's industrial fishing vessels are not publicly tracked, with much of that fishing taking place around South Asia, Southeast Asia and Africa. We also find that 21-30% of transport and energy vessel activity is missing from public tracking systems. Globally, fishing decreased by 12 ± 1% at the onset of the COVID-19 pandemic in 2020 and had not recovered to pre-pandemic levels by 2021. By contrast, transport and energy vessel activities were relatively unaffected during the same period. Offshore wind is growing rapidly, with most wind turbines confined to small areas of the ocean but surpassing the number of oil structures in 2021. Our map of ocean industrialization reveals changes in some of the most extensive and economically important human activities at sea.


Assuntos
Atividades Humanas , Indústrias , Oceanos e Mares , Imagens de Satélites , Humanos , COVID-19/epidemiologia , Aprendizado Profundo , Fontes Geradoras de Energia/estatística & dados numéricos , Abastecimento de Alimentos/estatística & dados numéricos , Sistemas de Informação Geográfica , Mapeamento Geográfico , Atividades Humanas/economia , Atividades Humanas/estatística & dados numéricos , Caça/estatística & dados numéricos , Indústrias/economia , Indústrias/estatística & dados numéricos , Navios/estatística & dados numéricos , Vento
15.
Sci Total Environ ; 915: 170169, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38244616

RESUMO

Coastal ecosystems experience large environmental variability leading to local adaptation. The key role of variability and adaptation in modulating the biological sensitivity to ocean acidification is increasingly acknowledged. Monitoring and understanding the ecological niche at the right spatio-temporal scale is key to understand the sensitivity of any organism and ecosystems. However, the role of the variability in relevant carbonate chemistry parameters as a driver is often overlooked. For example, the balance between photosynthesis and respiration over the day/night cycle is leading to high pH/pCO2 variability in seagrass beds. We hypothesized that (i) the calcifying larvae of the sea urchin Echinus esculentus exposed to seagrass-driven variability would have some physiological mechanisms to respond to such variability; and (ii) these mechanisms would reach their limit under ocean acidification. We compared the presence and absence of the seagrass Zostera marina in flow through mesocosms fed with seawater with 4 pHs. The carbonate chemistry was monitored and biological response of a sea urchin larvae was documented over 3 weeks. Growth and net calcification rates were measured twice a day to encompass diurnal variability. Our results show that larvae growth rate significantly decreased with decreasing average pHT in both absence and presence of seagrass. Moreover, sea urchin larvae showed a slower growth rate in presence of seagrass, only visible in the lowest pH conditions. In addition, larvae raised in presence of seagrass, maximized calcification during the day, and lower their calcification during the night. In contrast, no significant difference was observed between day and night for the net calcification rate in larvae raised in absence of seagrass. Our results demonstrate the limit of local adaptation to the present range of variability under ocean acidification conditions. It also demonstrates that photosynthetic ecosystems such as seagrass may not play a role of refuge against future ocean acidification.


Assuntos
Ecossistema , Água do Mar , Água do Mar/química , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Carbonatos , Dióxido de Carbono/análise , Oceanos e Mares
16.
Exp Physiol ; 109(2): 227-239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37966359

RESUMO

Studies of extreme endurance have suggested that there is an alimentary limit to energy intake (EI) of ∼2.5 × resting metabolic rate (RMR). To gain further insight, this study aimed to simultaneously measure EI, total energy expenditure (TEE) body mass and muscle mass in a large cohort of males and females of varying ages during a transatlantic rowing race. Forty-nine competitors (m = 32, f = 17; age 24-67 years; time at sea 46 ± 7 days) in the 2020 and 2021 Talisker Whisky Atlantic Challenge rowed 12-18 hday-1 for ∼3000 miles. TEE was assessed in the final week of the row using 2 H2 18 O doubly labelled water, and EI was analysed from daily ration packs over this period. Thickness of relatively active (vastus lateralis, intermedius, biceps brachaii and rectus abdominus) and inactive (gastrocnemius, soleus and triceps) muscles was measured pre (<7 days) and post (<24 h) row using ultrasound. Body mass was measured and used to calculate RMR from standard equations. There were no sex differences in males and females in EI (2.5 ± 0.5 and 2.3 ± 0.4 × RMR, respectively, P = 0.3050), TEE (2.5 ± 1.0 and 2.3 ± 0.4 × RMR, respectively, P = 0.5170), or body mass loss (10.2 ± 3.1% and 10.0 ± 3.0%, respectively, P = 0.8520), and no effect of age on EI (P = 0.5450) or TEE (P = 0.9344). Muscle loss occurred exclusively in the calf (15.7% ± 11.4% P < 0.0001), whilst other muscles remained unchanged. After 46 days of prolonged ultra-endurance ocean rowing incurring 10% body mass loss, maximal sustainable EI of ∼2.5 × RMR was unable to meet total TEE suggesting that there is indeed a physiological capacity to EI.


Assuntos
Composição Corporal , Metabolismo Energético , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Metabolismo Energético/fisiologia , Composição Corporal/fisiologia , Metabolismo Basal/fisiologia , Ingestão de Energia/fisiologia , Músculo Esquelético , Oceanos e Mares
17.
Harmful Algae ; 129: 102496, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951606

RESUMO

The diatom Pseudo-nitzschia H. Peragallo is perhaps the most intensively researched genus of marine pennate diatoms, with respect to species diversity, life history strategies, toxigenicity, and biogeographical distribution. The global magnitude and consequences of harmful algal blooms (HABs) of Pseudo-nitzschia are particularly significant because of the high socioeconomic impacts and environmental and human health risks associated with the production of the neurotoxin domoic acid (DA) among populations of many (although not all) species. This has led to enhanced monitoring and mitigation strategies for toxigenic Pseudo-nitzschia blooms and their toxins in recent years. Nevertheless, human adaptive actions based on future scenarios of bloom dynamics and proposed shifts in biogeographical distribution under climate-change regimes have not been implemented on a regional scale. In the CoCliME (Co-development of climate services for adaptation to changing marine ecosystems) program these issues were addressed with respect to past, current and anticipated future status of key HAB genera such as Pseudo-nitzschia and expected benefits of enhanced monitoring. Data on the distribution and frequency of Pseudo-nitzschia blooms in relation to DA occurrence and associated amnesic shellfish toxin (AST) events were evaluated in a contemporary and historical context over the past several decades from key northern CoCliME Case Study areas. The regional studies comprised the greater North Sea and adjacent Kattegat-Skagerrak and Norwegian Sea, eastern North Atlantic marginal seas and Arctic gateways, and the Baltic Sea. The first evidence of possible biogeographical expansion of Pseudo-nitzschia taxa into frontier eastern Arctic gateways was provided from DNA barcoding signatures. Key climate change indicators, such as salinity, temperature, and water-column stratification were identified as drivers of upwelling and advection related to the distribution of regional Pseudo-nitzschia blooms. The possible influence of changing variables on bloom dynamics, magnitude, frequency and spatial and temporal distribution were interpreted in the context of regional ocean climate models. These climate change indicators may play key roles in selecting for the occurrence and diversity of Pseudo-nitzschia species within the broader microeukaryote communities. Shifts to higher temperature and lower salinity regimes predicted for the southern North Sea indicate the potential for high-magnitude Pseudo-nitzschia blooms, currently absent from this area. Ecological and socioeconomic impacts of Pseudo-nitzschia blooms are evaluated with reference to effects on fisheries and mariculture resources and coastal ecosystem function. Where feasible, effective adaptation strategies are proposed herein as emerging climate services for the northern CoCLiME region.


Assuntos
Diatomáceas , Humanos , Ecossistema , Oceanos e Mares , Proliferação Nociva de Algas , Fatores Socioeconômicos
18.
Mar Environ Res ; 192: 106219, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37848362

RESUMO

Based on observations in China's east coastal oceans, we conducted a preliminary assessment of 16 sets of carbonic acid dissociation constants (K1* and K2*) by comparing spectrophotometrically measured pH values at 25 °C with those calculated from total alkalinity and dissolved inorganic carbon. We obtained that K1* and K2* often performed differently within different salinity ranges, and that the constants of Millero et al. (2002) (M02) demonstrated the best performance for the salinity range of 24-35. In contrast, the often recommended constants of Mehrbach et al. (1973) refit by Dickson and Millero (1987) (DM87-M) and Lucker et al. (2000) (L00) would underestimate pH at salinities of 24-30. This was mainly associated with the higher product of K1* and K2* by DM87-M and L00 than by M02 at this salinity range. Also, we found almost no differences between pH values calculated with DM87-M and L00.


Assuntos
Carbono , Ácido Carbônico , Oceanos e Mares , Carbono/análise , Salinidade , China
19.
Mar Pollut Bull ; 195: 115492, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690407

RESUMO

Caffeine is an emerging contaminant in aquatic environments. The study utilized a validated method to investigate the presence and distribution of caffeine in the surface water of the Yellow and Bohai Seas, urban rivers, and the Yantai estuary area. The analytical method conforms to EPA guidelines and exhibits a limit of quantification that is 200 times lower than that of prior investigations. The study revealed that the highest concentration of 1436.4 ng/L was found in convergence of ocean currents in the Yellow and Bohai Seas. The presence of larger populations and the process of urban industrialization have been observed to result in elevated levels of caffeine in offshore regions, confirming that caffeine can serve as a potential indicator of anthropogenic contamination. Fish larvae exhibited hypoactivity in response to caffeine exposure at environmentally relevant concentrations. The study revealed that caffeine pollution can have adverse effects on marine and offshore ecosystems. This emphasizes the importance of decreasing neurotoxic pollution in the aquatic environment.


Assuntos
Cafeína , Poluentes Químicos da Água , Animais , Cafeína/toxicidade , Larva , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Oceanos e Mares , China
20.
Environ Sci Pollut Res Int ; 30(38): 89311-89335, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37452248

RESUMO

Mangrove ecoregions of the Indian Sundarbans (IS) are highly productive ecosystems in the Bengal delta of the Indian subcontinent. These mangroves are crucial in reducing the negative consequences of extreme environmental events like excessive wave movements and periodic storm surges, in addition to serving as an important habitat for a variety of distinct flora and animals. The Bay of Bengal has been increasingly affected by climatic changes like increase in sea surface temperature (SST), salinization, and sediment loads, a decrease in freshwater intake, and sea level rise. In the last two decades (2000-2020), these climatic phenomena have increased the frequency of tropical cyclones. From 2000 to 2020, the loss of landmass has been attributed to exposure to these climate changes. According to open-source satellite imaging data, such losses in land area have also led to a decrease in the amount of mangrove vegetation. Thus, to monitor the health of mangrove vegetation, Landsat-based health indicators like normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and combined mangrove recognition index (CMRI) have been considered in this study. CMRI, as a mangrove-specific index, was measured on the basis of the difference of NDVI and normalized difference water index for remote sensing of vegetation liquid water from space (NDWI_Gao). Furthermore, datasets for abiotic variables have been extrapolated from remotely sensed data for the said period using specific formulae. Both long-term and short-term temporal trends have been considered to better envisage the impact of episodic cyclonic events on mangrove health (1990-2020). Our findings indicate that cyclones altered the habitat with respect to land area and salinization status which would possibly render the dominance of more halotolerant forms with loss of freshwater mangrove biodiversity. Even though plantation efforts have shown the recovery of mangroves in this area, sudden storm surges and concomitant salinization of habitat put the plantation efforts in vain. A combination of factors like salinization, rise in SST, rainfall reduction in pre- and post-monsoon periods and episodic cyclonic events would probably lead to further deterioration of mangrove health in this area. Since the IS is suffering the most from climatic change and intermittent cyclonic occurrences, it is crucial to consider this when making policy decisions. Appropriate actions must be taken along with stronger conservation techniques, to protect this vulnerable environment. Better conservation tactics and ongoing plantation efforts would stop the loss of mangrove vegetation and its habitat, even though the growing frequency of episodic storm occurrences cannot be stopped.


Assuntos
Tempestades Ciclônicas , Ecossistema , Animais , Tecnologia de Sensoriamento Remoto , Água , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA