Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 112(4): 58, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594479

RESUMO

This study investigated the species, density, biomass and physicochemical factors of benthic macroinvertebrates in Hongze Lake from 2016 to 2020. Redundancy analysis (RDA) was used to analyze the relationship between physicochemical parameters and the community structure of macroinvertebrates. Macroinvertebrate-based indices were used to evaluate the water quality conditions in Hongze Lake. The results showed that a total of 50 benthic species (10 annelids, 21 arthropods and 19 mollusks) were collected. The community structure of benthic macroinvertebrates varied in time and space. The dominant species were Limnodrilus hoffmeisteri (L.hoffmeisteri), Corbicula fluminea (C.fluminea), Nephtys oligobranchia (N.oligobranchia). In 2016, arthropods such as Grandidierella sp. were the dominant species of benthos in Hongze Lake while annelids and mollusks dominated from 2017 to 2020, such as L.hoffmeisteri, N.oligobranchia, C.fluminea. The benthic fauna of Chengzi Lake and Lihewa District were relatively abundant and showed slight variation, while the benthic macroinvertebrates of the Crossing the water area were few and varied greatly. RDA showed that changes in benthic macroinvertebrate structure were significantly correlated with dissolved oxygen (DO), Pondus Hydrogenii (pH) and transparency (SD). The Shannon Wiener, Pielou, and Margalef indices indicate that Hongze Lake is currently in a moderately polluted state. Future studies should focus on the combined effects of various physicochemical indicators and other environmental factors on benthic communities.


Assuntos
Artrópodes , Oligoquetos , Animais , Invertebrados , Lagos , Qualidade da Água , Moluscos , Monitoramento Ambiental , Ecossistema
2.
Environ Sci Process Impacts ; 26(5): 814-823, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345076

RESUMO

Marine mesoscale studies with sandworms (Alitta virens) were conducted to isolate important processes governing the exposure and bioaccumulation of polychlorinated biphenyls (PCBs) at contaminated sediment sites. Ex situ equilibrium sampling with silicone-coated jars, and in situ passive sampling with low-density polyethylene (LDPE) were used to determine the performance of an activated carbon (AC) amendment remedy applied to the bed sediment. A quantitative thermodynamic exposure assessment ('QTEA') was performed, showing that PCB concentrations in polymers at equilibrium with the surficial sediment were suited to measure and assess the remedy effectiveness with regard to PCB bioaccumulation in worms. In practice, monitoring the performance of sediment remedies should utilize a consistent and predictive form of polymeric sampling of the sediment. The present study found that ex situ equilibrium sampling of the surficial sediment was the most useful for understanding changes in bioaccumulation potential as a result of the applied remedy, during bioturbation and ongoing sediment and contaminant influx processes. The ultrathin silicone coatings of the ex situ sampling provided fast equilibration of PCBs between the sediment interstitial water and the polymer, and the multiple coating thicknesses were applied to confirm equilibrium and the absence of surface sorption artifacts. Overall, ex situ equilibrium sampling of surficial sediment could fit into existing frameworks as a robust and cost-effective tool for contaminated sediment site assessment.


Assuntos
Carvão Vegetal , Sedimentos Geológicos , Bifenilos Policlorados , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Sedimentos Geológicos/química , Animais , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Termodinâmica , Monitoramento Ambiental/métodos , Oligoquetos/metabolismo , Recuperação e Remediação Ambiental/métodos
3.
Environ Sci Pollut Res Int ; 31(11): 17275-17288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340303

RESUMO

Minimal research exists on polychlorinated biphenyl (PCB) exposure from traditional Chinese medicines (TCMs), despite their significant contributions to domestic and international health protection. This study is the first to investigate the levels, profiles, and health risks of PCB residue in Pheretima, a typical TCM produced from earthworm. Seventy-seven Pheretima samples from different regions of China were analyzed for 45 PCB congeners. PCBs were found in all samples exhibiting species-dependent discrepancies. ∑45PCBs was ranging from 0.532 to 25.2 µg/kg (mean 4.46 µg/kg), with CB-11 being the most abundant congener contributing 71.8% ± 10.8% to ∑45PCBs, followed by CB-47, which were all non-Aroclor congeners called unintentionally produced PCBs (UP-PCBs). The average estimated daily intake of ∑45PCBs, ∑7ID-PCBs (indicative polychlorinated biphenyls), and CB-11 were 0.71, 0.04, and 0.51 ng/kg bw/d, respectively. The ∑HQ of PCBs in Pheretima samples was 2.97 × 10-4-2.46 × 10-2 (mean 2.77 × 10-3, 95th 4.21 × 10-3), while the ∑RQ ranged from 1.19 × 10-8 to 2.88 × 10-6 (mean 4.87 × 10-7, 95th 2.31 × 10-6). These findings indicate that Pheretima ingestion does not pose significant non-carcinogenic risks. However, certain individual samples exhibit an acceptable level of potential risks, particularly when considering that PCBs are recognized as endocrine disruptors and classified as probable carcinogens. These results contribute to the safety evaluation of traditional medicines and suggest the potential use of Pheretima as a bioindicator for PCB pollution. It is advisable to monitor UP-PCBs as indicator congeners and gather additional toxicological data.


Assuntos
Oligoquetos , Bifenilos Policlorados , Animais , Bifenilos Policlorados/análise , Carcinógenos , Medição de Risco , China , Medicina Tradicional Chinesa
4.
Sci Total Environ ; 922: 171214, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408672

RESUMO

In this work, an accurate analytical method was developed for the simultaneous analysis of twenty-seven antimicrobials (AMs) in earthworms using liquid chromatography coupled to a triple quadrupole mass spectrometry detector (UHPLC-MS/MS). Adequate apparent recoveries (80-120 %) and limits of quantification (LOQ) (1 µg·kg-1 - 10 µg·kg-1) were obtained, with the exception of norfloxacin (34 µg·kg-1). The method was applied to evaluate the accumulation of sulfamethazine (SMZ) and tetracycline (TC) in earthworms after performing OECD-207 toxicity test, in which Eisenia fetida (E. fetida) organisms were exposed to soils spiked with 10 mg·kg-1, 100 mg·kg-1 or 1000 mg·kg-1 of SMZ and TC, individually. The results confirmed the bioaccumulation of both AMs in the organisms, showing a greater tendency to accumulate SMZ since higher bioconcentration factor values were obtained for this compound at the exposure concentrations tested. In addition, the degradation of both AMs in both matrices, soils and earthworms was studied using liquid chromatography coupled to a q-Orbitrap high resolution mass spectrometry detector. Thirteen transformation products (TPs) were successfully identified, eight of them being identified for the first time in soil/earthworm (such as 4-Amino-3-chloro-n-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide or 4-(dimethylamino)-1,11,12a-trihydroxy-6,6-dimethyl-3,7,10,12-tetraoxo-3,4,4a,5,5a,6,7,10,12,12a-decahydrotetracene-2-carboxamide, among others) and their formation/degradation trend over time was also studied. Regarding the biological effects, only SMZ caused changes in earthworm growth, evidenced by weight loss in earthworms exposed to concentrations of 100 mg·kg-1 and 1000 mg·kg-1. Riboflavin decreased at all concentrations of SMZ, as well as at the highest concentration of TC. This indicates that these antibiotics can potentially alter the immune system of E. fetida. This research represents a significant advance in improving our knowledge about the contamination of soil by AM over time. It investigates the various ways in which earthworms are exposed to AMs, either by skin contact or ingestion. Furthermore, it explores how these substances accumulate in earthworms, the processes by which earthworms break them down or metabolise them, as well as the resulting TPs. Finally, it examines the potential effects of these substances on the environment.


Assuntos
Anti-Infecciosos , Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Espectrometria de Massas em Tandem , Poluentes do Solo/análise , Anti-Infecciosos/toxicidade , Anti-Infecciosos/metabolismo , Sulfametazina/análise , Antibacterianos/farmacologia , Solo/química , Tetraciclina/análise
5.
Chemosphere ; 352: 141412, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336035

RESUMO

This study examined the multifaceted impacts of fluorene exposure on Tubifex tubifex, encompassing acute (survival analysis and behavioral responses) and subchronic exposure regimens (antioxidant enzyme response and histopathology), molecular docking studies, and generalized read-across analysis. Survival analysis revealed concentration-dependent increases in toxicity over varying time intervals, with LC50 values decreasing from 30.072 mg/L at 24 h to 12.365 mg/L at 96 h, emphasizing the time-sensitive and concentration-responsive nature of the stressor. Behavioral responses were both concentration- and duration-dependent. While Erratic Movement and Clumping Tendency exhibited earlier responses (within 24 h) at lower concentrations, the wrinkling effect and mucus secretion) exhibited delayed onset, suggesting intricate regulatory mechanisms underlying adaptability to environmental challenges; moreover, the wrinkling effect was consistently induced at higher concentrations, indicating greater sensitivity to the toxic effects of fluorene. With sublethal environmentally relevant concentrations-1.24 mg/l and 2.47 mg/L i.e., 10% and 20% 96 h, respectively-the antioxidant enzyme response (i.e., upregulation of SOD, CAT, and GST) with increasing fluorene concentration, revealing a nonlinear, hormetic response, suggested adaptive protection at lower doses but inhibition at higher concentrations. Histopathological examination indicated that higher fluorene concentrations caused cellular proliferation, inflammation, and severe tissue damage in the digestive tract and body wall. Molecular docking studies demonstrated robust interactions between fluorene and major stress biomarker enzymes, disrupting their functions and inducing oxidative stress. Interactions with cytochrome c oxidase suggested interference with cellular energy production. Generalized Read-Across (GenRA) analysis unveiled shared toxicity mechanisms among fluorene and its analogs, involving the formation of reactive epoxides and the influence of cytochrome P450 enzymes. The diverse functional groups of these analogs, particularly chlorine-containing compounds, were implicated in toxicity through lipid peroxidation and membrane damage. Adverse outcome pathways and broader consequences for aquatic ecosystem health are discussed.


Assuntos
Oligoquetos , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Ecossistema , Simulação de Acoplamento Molecular , Biomarcadores/metabolismo , Fluorenos/toxicidade , Fluorenos/metabolismo , Poluentes Químicos da Água/metabolismo
6.
Environ Sci Pollut Res Int ; 31(9): 13141-13154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240981

RESUMO

Copper (Cu) toxicity is a pressing concern for several soils, especially in organic viticulture. The objective of this work was to assess Cu toxicity on the non-target organism Eisenia fetida, employing both traditional and novel tools for early identification of Cu-induced damages. In addition to traditional tests like avoidance and reproductive toxicity experiments, other tests such as the single cell gel electrophoresis (SCGE) and gut microbiome analysis were evaluated to identify early and more sensitive pollution biomarkers. Four sub-lethal Cu concentrations were studied, and the results showed strong dose-dependent responses by the earthworm avoidance test and the exceeding of habitat threshold limit at the higher Cu doses. An inverse proportionality was observed between reproductive output and soil Cu concentration. Bioaccumulation was not detected in earthworms; soil concentrations of potentially bioavailable Cu were not affected by E. fetida presence or by time. On the contrary, the SCGE test revealed dose-dependent genotoxicity for the 'tail length' parameter already at the second day of Cu exposition. Gut microbiome analysis a modulation of microbial composition, with the most aboundant families being Pectobateriaceae, Comamonadaceae and Microscillaceae. Bacillaceae increased over time and showed adaptability to copper up to 165 mg/kg, while at the highest dose even the sensitive Acetobacteriaceae family was affected. The research provided new insights into the ecotoxicity of Cu sub-lethal doses highlighting both alterations at earthworms' cellular level and changes in their gut microbiota.


Assuntos
Oligoquetos , Poluentes do Solo , Humanos , Animais , Cobre/toxicidade , Cobre/análise , Solo , Oligoquetos/fisiologia , Fazendas , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Testes de Mutagenicidade
7.
Chemosphere ; 350: 141118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199501

RESUMO

The use of long-residual herbicides can have adverse effects on terrestrial ecosystems. This study assessed the acute and chronic toxicity and avoidance behavior of Eisenia andrei earthworms exposed to nominal concentrations of clomazone, indaziflam, and sulfentrazone, using recommended commercial formulations for sugarcane cultivation. The formulations included Gamit® 360 CS (360 g L-1 of the active ingredient - a.i. - clomazone), Boral® 500 SC (500 g L-1 of a.i. sulfentrazone), and Alion® (500 g L-1 of a.i. indaziflam). Boral® 500 SC induced avoidance at concentrations as low as 1 mg kg-1, while Gamit® 360 CS and Alion® exhibited higher avoidance at 50-75 mg kg-1 and 75-100 mg a.i. kg-1, respectively. Reproduction tests showed significant impacts from Gamit® 360 CS (EC50: 0.572 mg kg-1, EC10: 0.2144 mg kg-1) and Boral® 500 SC (EC50: 0.3941 mg kg-1, EC10: 0.134 mg kg-1). Acute toxicity tests indicated moderate toxicity for Gamit® 360 CS (LC50: 184.12 mg kg-1) and Boral® 500 SC (LC50: 1000 mg kg-1). Gamit® 360 CS reduced biomass at all concentrations, while Boral® 500 SC influenced only at higher levels (500 and 1000 mg kg-1). Results suggest significant acute risks with Gamit® 360 CS, while chronic exposure raises concerns for both Gamit® 360 CS and Boral® 500 SC, indicating potential long-term risks. Alion®'s acute effects were inconclusive, but chronic exposure hints at a possible risk. These findings provide crucial insights for environmental agencies establishing protective limits against herbicide exposure to non-target soil invertebrates.


Assuntos
Herbicidas , Indenos , Oligoquetos , Poluentes do Solo , Sulfonamidas , Triazinas , Triazóis , Animais , Herbicidas/toxicidade , Ecossistema , Poluentes do Solo/toxicidade
8.
Methods Mol Biol ; 2753: 331-338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285348

RESUMO

Aqueous extracts from green seaweeds Chaetomorpha antennina and Ulva flexuosa (SWE) had considerable impacts on the growth and development of tomato plants; it was evident that SWE could be widely applied as agricultural biostimulants as one among a promising strategy of sustainable agriculture. With a higher probability of SWE to replace synthetic agrochemicals, we describe a procedure here to perform an ecotoxicological assessment of liquid SWE on the earthworm, Eudrilus eugeniae Kinb with respect to their growth, survivability, and reproduction.


Assuntos
Clorófitas , Oligoquetos , Alga Marinha , Animais , Verduras , Agricultura
9.
J Environ Manage ; 352: 120032, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38184874

RESUMO

The biogas plant plays a dual role: it directly provides energy and indirectly promotes organic farming through outlet slurry. However, agricultural biomass wastes such as rice straws (RS) and pressmud (PM), which can't be used as fertilizers on their own, were vermicomposted (60 days) with biogas slurry (BS), using earthworm, into four blends: T1(BS, 100%), T2(3:2, BS: RS), T3(3:2, BS: PM), and T4(3:1:1, BS: RS: PM). The characterization, elemental analysis, and toxicological risk assessment of derived vermimanure were carried out using various analytical tools, such as an organic elemental analyzer such as CHNS, FT-IR, FESEM-EDXA, XPS, and ICP-OES. The pH, electrical conductivity, and C/N values were within 7.1-7.8, 3.2-6.0 dSm-1, and 12-15, respectively, for all treatments. The proportions of N (38%), P (70%), K (58%), Mg (67%), Ca (42%), and ash (44%), increased significantly (P < 0.05) over the initial feedstocks. The ecological risks of heavy metals (Zn, Cu, Ni, Pb, Cd, and Cr) in all feedstocks were found to be under WHO-permitted levels. The growth performance of earthworms was also considerably higher (P < 0.05) over the control feedstock group. The analytical methods verified that feedstock T4 (3:1:1, BS: RS: PM) was more porous, containing NH4+, PO43-, K+, and other nutrients. Pellets of all vermimanure groups keep 65-75% of the original volume. As well, when these pellets have been employed for agronomy and dispersed in the field, they will cause less dust than traditional or powdered compost or manure. In comparison to the control group, the synergistic approach of RS, PM, and BS in vermimanure significantly (P < 0.05) enhanced seed germination (83%), vigour index (42.5%), and decreased mean germination time by 27%. Furthermore, pot trials with Abelmoschus esculentus seed indicated that seedlings cultivated with 40% vermimanure of T4 (3:1:1, BS: RS: PM) mixed soil showed high growth in shoot, root, and plant yield.


Assuntos
Oligoquetos , Oryza , Animais , Biocombustíveis/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Solo/química , Esterco/análise , Medição de Risco
10.
Pestic Biochem Physiol ; 196: 105639, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945220

RESUMO

In the present study, Clothianidin [(E) - 1-(2 - chloro-1,3 - thiazol - 5-ylmethyl) - 3-methyl - 2- nitroguanidine] (CLO) was selected as a soil pollutant and earthworm was employed as a test organism. The various responses like biochemical and detoxification process of earthworm Metaphire posthuma towards Clothianidin at lethal and sublethal doses were studied using OECD-standardized toxicological guidelines. The present study examined the toxicity of CLO to earthworms after 28 days of exposure at conc. 0, 1.5, 3, 6, 12 and 24 mg kg-1 in a soil mixture. Biochemical markers including Guaiacol peroxidase (POD), Superoxide dismutase (SOD), Catalase (CAT), Glutathione S-transferase (GST) and content of Malondialdehyde (MDA) in earthworms were measured. Acute toxicity tests revealed that CLO caused a concentration-dependent increase in mortality with LC50 (Lethal concentration) values of 10.960 and 8.201 mg kg-1 for 7th and 14th day respectively. The earthworms were exposed to CLO contaminated soil for 56 days and reflecting the significant decrease in earthworm growth, cocoon and hatchling production. Moreover, enzyme activities such as CAT, SOD, POD and MDA content were significantly enhanced with the increased concentration and exposure period of CLO. Molecular docking studies indicated that CLO primarily interacts to the junction site of SOD and in active centres of CAT, POD and GST. As a result, the current findings imply that the sub chronic CLO exposure can induce variations in physiology and avoidance behaviour of earthworms, oxidative stress as well as alterations in enzyme activities.


Assuntos
Inseticidas , Oligoquetos , Poluentes do Solo , Animais , Inseticidas/toxicidade , Simulação de Acoplamento Molecular , Catalase , Glutationa Transferase , Malondialdeído , Estresse Oxidativo , Solo , Superóxido Dismutase , Poluentes do Solo/toxicidade
11.
Biol Open ; 12(12)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014991

RESUMO

Oligochaetes are the most abundant benthic taxa in aquatic ecosystems that play an important role in food webs. The present study aims to assess the diversity and origin of Eiseniella tetraedra as a non-native species in the Lar National Park of Iran and also its response to current and future climate change. We obtained the specimen from rivers and sequenced the mitochondrial gene Cytochrome Oxidase subunit I (COI) and combined them with 117 sequences from the Jajroud and Karaj rivers in Iran and native regions from GenBank (NCBI). We also ran Species Distribution Modelings (SDMs) using an ensemble model approach that was estimated according to two shared socio-economic pathways (SSPs): 126 and 585 of the MRI-ESM2 based on CMIP6. According to the results, all the samples examined in the current study originated from Spanish rivers, and no unique haplotype was found in the Lar National Park. Moreover, the results also show high haplotype diversity that can positively affect the success of this non-native species in different freshwater. Also, the results of SDMs depict that climate change would remarkably affect the distribution of E. tetraedra and it verifies the invasion power of E. tetraedra in Iran's freshwater ecosystems over time.


Assuntos
Mudança Climática , Oligoquetos , Animais , Ecossistema , Irã (Geográfico) , Água Doce
12.
Nat Commun ; 14(1): 5713, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752110

RESUMO

Earthworms are critical soil ecosystem engineers that support plant growth in numerous ways; however, their contribution to global agricultural production has not been quantified. We estimate the impacts of earthworms on global production of key crops by analyzing maps of earthworm abundance, soil properties, and crop yields together with earthworm-yield responses from the literature. Our findings indicate that earthworms contribute to roughly 6.5% of global grain (maize, rice, wheat, barley) production and 2.3% of legume production, equivalent to over 140 million metric tons annually. The earthworm contribution is especially notable in the global South, where earthworms contribute 10% of total grain production in Sub-Saharan Africa and 8% in Latin America and the Caribbean. Our findings suggest that earthworms are important drivers of global food production and that investment in agroecological policies and practices to support earthworm populations and overall soil biodiversity could contribute greatly to sustainable agricultural goals.


Assuntos
Oligoquetos , Animais , Ecossistema , Investimentos em Saúde , Verduras , Produtos Agrícolas , Grão Comestível
13.
Environ Sci Pollut Res Int ; 30(48): 105202-105219, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37710064

RESUMO

Knowledge on the mechanism of earthworm-induced removal of polycyclic aromatic hydrocarbons (PAH) in vermicomposting systems and interaction with nutrient mineralization and microbial growth is scarce in literature. Moreover, the PAH accumulation capacity of Eudrilus eugeniae has not been studied. This research, therefore, investigates the apportionment dynamics of 13 PAH compounds in aerobic composting and vermicomposting (Eisenia fetida and E. eugeniae) systems using novel budget equations. The PAH removal efficiency of vermicomposting was significantly higher (2-threefold) than composting with concurrent microbial augmentation (p < 0.01). However, the 4-6 ring compounds reduced more significantly (30-50%) than the 3-ring PAHs (p < 0.01), and E. eugeniae was an equally competitive PAH-accumulator compared to E. fetida. The budget equations revealed that although the bioaccumulation capabilities of earthworms were retarded due to PAH exposure, earthworms facilitated PAH-immobilization in decomposed feedstock. A marked increase in bacterial, fungal, and actinomycetes proliferation in PAH-spiked vermibeds with parallel removal of the PAHs indicated that earthworm-induced microbial enrichment plays a vital role in PAH detoxification during vermicomposting. Correlation analyses strongly implied that earthworm-driven mineralization-humification balancing and microbial enrichment could be the critical mechanism of PAH remediation under vermicomposting.


Assuntos
Compostagem , Oligoquetos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Solo
14.
Sci Total Environ ; 905: 167276, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37741384

RESUMO

Passive sampling technology is widely used to evaluate the bioavailability of pollutants. However, relatively few studies have used passive sampling membranes (PSMs) to evaluate the environmental risks of pollutants in soil, particularly pesticides. Here, the bioavailability of difenoconazole to earthworms (Eisenia fetida) was evaluated using an oleic acid-embedded cellulose acetate membrane (OECAM) for the first time. Difenoconazole reached 94 % equilibrium (T94%) within 1 d in OECAM. For soil pore water, the freely dissolved concentration (Cfree) of difenoconazole was determined using OECAM (R2 = 0.969). In the soil system, a strong linear correlation between the difenoconazole concentration in OECAM and earthworms was observed (R2 = 0.913). The bioavailability of difenoconazole was affected by the soil type and biochar content. The higher the content of soil organic matter and biochar, the lower the concentration of difenoconazole in earthworms, OECAM, and soil pore water. The concentrations of difenoconazole in pore water, earthworms, and OECAM decreased by 65.3, 42.0, and 41.6 %, respectively, when 0.5 % biochar was added. Difenoconazole mainly enters OECAM and earthworms through passive diffusion with similar uptake pathways. Therefore, the bioavailability of difenoconazole to earthworms in different soils can be evaluated using the OECAM.


Assuntos
Poluentes Ambientais , Oligoquetos , Poluentes do Solo , Animais , Solo , Oligoquetos/metabolismo , Ácido Oleico/metabolismo , Disponibilidade Biológica , Poluentes do Solo/análise , Poluentes Ambientais/metabolismo , Água/metabolismo
15.
Environ Res ; 236(Pt 2): 116855, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567380

RESUMO

Biochar-derived dissolved organic matter (DOM) contains toxic substances that are first released into the soil after biochar application. However, the ecological risks of biochar-derived DOM on soil invertebrate earthworms are unclear. Therefore, this study investigated the ecological risks and toxic mechanisms of sewage sludge biochar (SSB)-derived DOM on the earthworm Eisenia fetida (E. fetida) via microcosm experiments. DOM exposure induced earthworm death, growth inhibition, and cocoon decline. Moreover, DOM, especially the 10% DOM300 (derived from SSB prepared at 300 °C) treatments, disrupted the antioxidant defense response and lysosomal stability in earthworms. Integrated biomarker response v2 (IBRv2) analysis was performed to assess the comprehensive toxicity of DOM in E. fetida, and the results revealed that DOM300 might exert more hazardous effects on earthworms than DOM500 (prepared at 500 °C) and DOM700 (prepared at 700 °C), as revealed by increases in the IBRv2 value of 3.48-18.21. Transcriptome analysis revealed that 10% DOM300 exposure significantly disrupted carbohydrate and protein digestion and absorption and induced endocrine disorder. Interestingly, 10% DOM300 exposure also significantly downregulated the expression of genes involved in signaling pathways, e.g., the P13K-AKT, cGMP-PKG, and ErbB signaling pathways, which are related to cell growth, survival, and metabolism, suggesting that DOM300 might induce neurotoxicity in E. fetida. Altogether, these results may contribute to a better understanding of the toxicity and defense mechanisms of biochar-derived DOM on earthworms, especially during long-term applications, and thus provide guidelines for using biochar as a soil amendment.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Matéria Orgânica Dissolvida , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo , Esgotos
16.
J Environ Manage ; 344: 118535, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399620

RESUMO

Periurban agriculture in Argentina is carried out by farmers without adequate control. The indiscriminate agrochemical application for productivity improvement negatively impacts the environment. The objective of this work was to test the quality of periurban agricultural soils by performing bioassays with Eisenia andrei as an indicator. Soils belonging to two orchards with intensive production (S: strawberry/broccoli crop plot and G: tomato/pepper crop greenhouse - Moreno District, Buenos Aires, Argentina) were sampled during 2015 and 2016. As subcellular biomarkers, cholinesterases (ChE), carboxylesterases (CaE), and glutathione-S-transferases (GST) activities were analysed in E. andrei (7-day exposure). While no effect on ChE activities was observed, CaE activities were significantly reduced 18% (S-2016 soil). GST activities were increased 35% and 30% by S-2016 and G-2016, respectively. CaE decrease together with GST increase could be indicative of a negative disturbance. Concerning whole organism biomarkers, reproduction (56-day exposure), avoidance (3-day exposure), and feeding activity (bait-lamina test, 3-day exposure) were analysed. A reduced cocoons' viability (50%), hatchability (55%), accompanied by a low number of juveniles (50%) were observed in all cases. Additionally, the earthworms exhibited significant avoidance responses to S-2015, S-2016 and G-2016 whereas G-2015 soil induced migration. No significant effect on the feeding activity was registered in any case. Most of the E. andrei biomarkers tested could constitute an early warning of harmful effects produced by polluted periurban soils, even if the agrochemical treatment applied remains unknown. The results reveal the need to develop an action plan to avoid further deterioration of the productive soil.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Solo/química , Oligoquetos/fisiologia , Agricultura , Biomarcadores/análise , Agroquímicos/análise , Agroquímicos/farmacologia , Poluentes do Solo/análise
17.
Sci Total Environ ; 892: 164541, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37263435

RESUMO

In this study, environmental behavior and toxicity of cyflumetofen (CYF) enantiomers were evaluated comprehensively in a soil-earthworm system. In the earthworm (Eisenia foetida), (+)-CYF was preferentially accumulated, and acute toxicity of Rac-CYF was greater than that of (+)-CYF and (-)-CYF, indicating that the combination of CYF enantiomers increased the toxicity. As a measure of chronic toxicity, compared with (-)-CYF-treated earthworms, malondialdehyde accumulation was higher in (+)-CYF-treated earthworms, indicating a more severe oxidative stress response. In a DNA comet plot, the trailing distance in the (+)-CYF treatment was 1.97 times greater than that in the (-)-CYF-treated, revealing more severe genotoxicity with (+)-CYF. However, (-)-CYF was more likely than (+)-CYF to activate the earthworm detoxification enzyme pathway. With (+)-CYF treatment, the number of differentially expressed genes (DEGs) involved in the pathogenic pathway increased significantly, whereas with (-)-CYF-treatment, more DEGs were involved in P450 and glutathione S-transferase (GST) detoxification metabolic pathways, including high expression of the genes chi-III, GST-S-1, and GST-alpha-5. The main metabolites of the CYF enantiomers were A-2, A-12, B-1, AB-1, AB-7, and B-3, which exhibited potential ecotoxicity. In general, CYF was stereoselective in the soil-earthworm ecosystem, with (+)-CYF causing a higher genotoxicity risk than that of (-)-CYF. The study provides insight into the selective toxicity mechanisms of chiral CYF and contributes to a theoretical basis for risk assessment of low-risk pesticides.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Ecossistema , Bioacumulação , Poluentes do Solo/análise , Solo
18.
Environ Geochem Health ; 45(8): 6713-6726, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37368174

RESUMO

Eisenia fetida is an earthworm species often used to assess the toxicity of contaminants in soils. Several studies indicated that its response can be unpredictable because it depends both on total concentrations of contaminants and also on their forms that differ in susceptibility to be released from soil solid phase. The issue is complex because two various uptake routes are concurrently involved, dermal and ingestion in guts, where the bioavailability of contaminants can considerably change. The aim of this study was to analyze the toxicity of arsenic (As) in various strongly contaminated meadow and forest soils, representative for former As mining and processing area, to earthworms E. fetida and its accumulation in their bodies. An attempt was made to find relationships between the response of earthworms and chemical extractability of As. In the bioassay, carried out according to the standard ISO protocol, different endpoints were applied: earthworm survival, fecundity measured by the numbers of juveniles and cocoons, earthworm weight and As accumulation in the bodies. The results proved that E. fetida can tolerate extremely high total As concentrations in soils, such as 8000 mg/kg, however, the individual endpoints were not correlated and showed different patterns. The most sensitive one was the number of juveniles. No particular soil factor was identified that would indicate an exceptionally high As susceptibility to the release from one of soils, however, we have demonstrated that the sum of non-specifically and specifically bound As (i.e. fractions F1 + F2 in sequential extraction according to Wenzel) could be a good chemical indicator of arsenic toxicity to soil invertebrates.


Assuntos
Intoxicação por Arsênico , Arsênio , Oligoquetos , Poluentes do Solo , Animais , Arsênio/análise , Solo , Oligoquetos/fisiologia , Poluentes do Solo/análise
19.
Zootaxa ; 5256(2): 125-138, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37045234

RESUMO

A new Qinghai-Tibet Plateau species, Rhyacodrilus tanggulaensis Jiang & Cui sp. nov. (Annelida, Clitellata, Naididae, Rhyacodrilinae), is described, and its phylogenetic relationships within the genus is assessed on the basis of both mitochondrial (16S rDNA, COⅠ gene) and nuclear (ITS2) markers. Data from 32 species of Naididae, representing 7 subfamilies and 25 genera are used. Ten species were chosen as outgroup taxa. The molecular data were analyzed by Bayesian inference. The new species is distinguished from other species of Rhyacodrilus by the following combination of characters: dorsal and ventral chaetae with distal tooth 2-3 times longer than proximal, spermathecal and penial chaetae present, atria long and tubular, atrial duct conspicuous. The analyses of the combined molecular data corroborate the close relationship between Naidinae and the rhyacodriline genera Rhyacodrilus, Monopylephorus, and Ainudrilus, and show that the new species is more closely related to R. falciformis, R pigueti, R. okamikae and R. subterraneus, than to R. sinicus, another Chinese species, R. hiemalis and R. coccineus.


Assuntos
Anelídeos , Oligoquetos , Animais , Filogenia , Teorema de Bayes , Rios , Tibet , Anelídeos/genética
20.
J Hazard Mater ; 452: 131300, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37002996

RESUMO

Cyflumetofen was widely applied in agriculture with its excellent acaricidal effect. However, the impact of cyflumetofen on the soil non-target organism earthworm (Eisenia fetida) is unclear. This study aimed to elucidate the bioaccumulation of cyflumetofen in soil-earthworm systems and the ecotoxicity of earthworms. The highest concentration of cyflumetofen enriched by earthworms was found on the 7th day. Long-term exposure of earthworms to the cyflumetofen (10 mg/kg) could suppress protein content and increases Malondialdehyde content leading to severe peroxidation. Transcriptome sequencing analysis demonstrated that catalase and superoxide-dismutase activities were significantly activated while genes involved in related signaling pathways were significantly upregulated. In terms of detoxification metabolic pathways, high concentrations of cyflumetofen stimulated the number of Differentially-Expressed-Genes involved in the detoxification pathway of the metabolism of glutathione. Identification of three detoxification genes (LOC100376457, LOC114329378, and JGIBGZA-33J12) had synergistic detoxification. Additionally, cyflumetofen promoted disease-related signaling pathways leading to higher disease risk, affecting the transmembrane capacity and cell membrane composition, ultimately causing cytotoxicity. Superoxide-Dismutase in oxidative stress enzyme activity contributed more to detoxification. Carboxylesterase and glutathione-S-transferase activation play a major detoxification role in high-concentration treatment. Altogether, these results contribute to a better understanding of toxicity and defense mechanisms involved in long-term cyflumetofen exposure in earthworms.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Solo , Oligoquetos/metabolismo , Superóxidos/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Poluentes do Solo/metabolismo , Malondialdeído/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA