Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34098129

RESUMO

Decapod crustaceans show variable degrees of euryhalinity and osmoregulatory capacity, by responding to salinity changes through anisosmotic extracellular regulation and/or cell volume regulation. Cell volume regulatory mechanisms involve exchange of inorganic ions between extra- and intra-cellular (tissue) compartments. Here, this interplay of inorganic ions between both compartments has been evaluated in four decapod species with distinct habitats and osmoregulatory strategies. The marine/estuarine species Litopenaeus vannamei (Lv) and Callinectes danae (Cd) were submitted to reduced salinity (15‰), after acclimation to 25 and 30‰, respectively. The freshwater Macrobrachium acanthurus (Ma) and Aegla schmitti (As) were submitted to increased salinity (25‰). The four species were salinity-challenged for both 5 and 10 days. Hemolymph osmolality, sodium, chloride, potassium, and magnesium were assayed. The same inorganic ions were quantified in muscle samples. Muscle hydration (MH) and ninhydrin-positive substances (NPS) were also determined. Lv showed slight hemolymph dilution, increased MH and no osmotically-relevant decreases in muscle osmolytes; Cd displayed hemolymph dilution, decreased muscular NaCl and stable MH; Ma showed hypo-regulation and steady MH, with no change in muscle ions; As conformed hemolymph sodium but hypo-regulated chloride, had stable MH and increased muscle NPS and ion levels. Hemolymph and muscle ions (especially chloride) of As were highly correlated (Pearson, +0.83). Significant exchanges between hemolymph and muscle ionic pools were more evident in the two species with comparatively less AER regulatory power, C. danae and A. schmitti. Our findings endorse that the interplay between extracellular and tissue ionic pools is especially detectable in euryhaline species with relatively lower osmoregulatory strength.


Assuntos
Decápodes/fisiologia , Íons/metabolismo , Osmorregulação , Palaemonidae/metabolismo , Penaeidae/fisiologia , Animais , Cádmio/metabolismo , Hemolinfa , Magnésio/química , Concentração Osmolar , Potássio/química , Salinidade , Cloreto de Sódio/química , Especificidade da Espécie , Equilíbrio Hidroeletrolítico/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-29698766

RESUMO

Understanding the physiological responses of fishes to salinity changes and aquatic hypoxia is essential for the conservation of marine species. Salinity changes affect the osmotic gradient across the gill epithelium, while hypoxia increases gill ventilation and the flow of water over the gills. Both processes affect the diffusive movement of ions and water across the gill epithelium, and the rate of active ion transport required for maintaining osmotic homeostasis. Consequently, salinity and hypoxia may affect the energetic cost of osmoregulation, and consequently the energy available for other physiological functions such as migration, growth, and reproduction. Historically, studies have assessed the costs of osmoregulation and ventilation in fishes via standard metabolic rate (SMR); however, few studies have used a multi-stressor approach that fully accounts for the osmorespiratory compromise. Here, we determined the combined effects of salinity and hypoxia on SMR, routine metabolic rate (RMR), and plasma ion concentrations in red drum (Sciaenops ocellatus) acclimated to salinities ranging from freshwater to hypersalinity. Surprisingly, there was no significant change in any parameter as a consequence of salinity or hypoxia, including the relatively extreme scenario of combined hypersalinity and hypoxia exposure. We conclude that changes in the osmotic gradient across the gill epithelium and the flow of water over the gills have a negligible effect on the whole animal energy budget of S. ocellatus, suggesting that the cost of osmoregulation is a minor component of basal metabolism regardless of oxygenation status.


Assuntos
Peixes/fisiologia , Hiperventilação/fisiopatologia , Hipóxia/fisiopatologia , Osmorregulação/fisiologia , Consumo de Oxigênio/fisiologia , Salinidade , Aclimatação/fisiologia , Animais , Metabolismo Energético , Estuários , Peixes/metabolismo , Brânquias/fisiologia
3.
Sci Rep ; 8(1): 3739, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487313

RESUMO

Sloughing maintains the skins integrity and critical functionality in amphibians. Given the behavioural, morphological and osmoregulatory changes that accompany sloughing, this process is likely to be physiologically costly. Chytridiomycosis, a cutaneous disease of amphibians caused by the fungus Batrachochytrium dendrobatidis (Bd), disrupts skin function and increases sloughing rates. Moreover, mortality rates from chytridiomycosis are significantly higher in juveniles and so we hypothesised that smaller individuals maybe more susceptible to chytridiomycosis because of allometric scaling effects on the energetic and osmoregulatory costs of sloughing. We measured in-vivo cutaneous ion loss rates and whole animal metabolic rate (MR) of Green tree frogs, Litoria caerulea, over a range of body sizes both infected and uninfected frogs during sloughing. Infected animals had a greater rate of ion loss and mass-specific MR during non-sloughing periods but there were no additional effects of sloughing on either of these parameters. There were also significant interactions with body size and Bd load indicating that smaller animals with higher Bd loads have greater rates of ion loss and higher energetic demands. Our results shed light on why smaller Bd-infected anurans often exhibit greater physiological disruption than larger individuals.


Assuntos
Doenças dos Animais/microbiologia , Anuros/anatomia & histologia , Anuros/metabolismo , Tamanho Corporal , Quitridiomicetos/fisiologia , Suscetibilidade a Doenças , Micoses/veterinária , Osmorregulação , Animais , Anuros/microbiologia , Metabolismo Energético , Íons/metabolismo
4.
Sci Total Environ ; 613-614: 611-618, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28930695

RESUMO

The presence of pharmaceutically active compounds in aquatic environments has become a major concern over the past 20years. Elucidation of their mode of action and effects in non-target organisms is thus now a major ecotoxicological challenge. Diclofenac (DCF) is among the pharmaceutical compounds of interest based on its inclusion in the European Union Water Framework Directive Watch List. In this study, our goal was to investigate the potential of a metabolomic approach to acquire information without any a priori hypothesis about diclofenac effects on marine mussels. For this purpose, mussel's profiles were generated by liquid chromatography combined with high resolution mass spectrometry. Two main metabolic pathways were found to be impacted by diclofenac exposure. The tyrosine metabolism was mostly down-modulated and the tryptophan metabolism was mostly up-modulated following exposure. To our knowledge, such DCF effects on mussels have never been described despite being of concern for these organisms: catecholamines and serotonin may be involved in osmoregulation, and in gamete release in mollusks. Our results suggest potential impairment of mussel osmoregulation and reproduction following a DCF exposure.


Assuntos
Diclofenaco/efeitos adversos , Metabolômica , Mytilus/efeitos dos fármacos , Poluentes Químicos da Água/efeitos adversos , Animais , Mar Mediterrâneo , Mytilus/fisiologia , Osmorregulação/efeitos dos fármacos , Reprodução/efeitos dos fármacos
5.
J Intern Med ; 282(4): 284-297, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28649750

RESUMO

Vasopressin (AVP) plays a major role in the regulation of water and sodium homeostasis by its antidiuretic action on the kidney, mediated by V2 receptors. AVP secretion is stimulated by a rise in plasma osmolality, a decline in blood volume or stress. V1a receptors are expressed in vascular smooth muscle cells, but the role of vasopressin in blood pressure regulation is still a matter of debate. AVP may also play a role in some metabolic pathways, including gluconeogenesis, through its action on V1a receptors expressed in the liver. It is now understood that thirst and arginine vasopressin (AVP) release are regulated not only by the classical homeostatic, intero-sensory plasma osmolality negative feedback, but also by novel, extero-sensory, anticipatory signals. AVP measurement is time-consuming, and AVP level in the blood in the physiological range is often below the detection limit of the assays. Recently, an immunoassay has been developed for the measurement of copeptin, a fragment of the pre-provasopressin molecule that is easier to measure. It has been shown to be a good surrogate marker of AVP.


Assuntos
Osmorregulação/fisiologia , Vasopressinas/fisiologia , Animais , Ingestão de Líquidos/fisiologia , Ingestão de Alimentos/fisiologia , Glicopeptídeos/sangue , Glicopeptídeos/fisiologia , Humanos , Ilhotas Pancreáticas/fisiologia , Rim/fisiologia , Fígado/fisiologia , Receptores de Vasopressinas/fisiologia , Sede/fisiologia
6.
Sci Rep ; 7: 45778, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361996

RESUMO

Anadromy is a distinctive life-history strategy in fishes that has evolved independently many times. In an evolutionary context, the benefits of anadromy for a species or population must outweigh the costs and risks associated with the habitat switch. The migration of fish across the freshwater-ocean boundary coincides with potentially energetically costly osmoregulatory modifications occurring at numerous levels of biological organization. By integrating whole animal and sub-cellular metabolic measurements, this study presents significant findings demonstrating how an anadromous salmonid (i.e. rainbow trout, Oncorhynchus mykiss) is able to transform from a hyper- to hypo-osmoregulatory state without incurring significant increases in whole animal oxygen consumption rate. Instead, underlying metabolic mechanisms that fuel the osmoregulatory machinery at the organ level (i.e. intestine) are modulated, as mitochondrial coupling and anaerobic metabolism are increased to satisfy the elevated energetic demands. This may have positive implications for the relative fitness of the migrating individual, as aerobic capacity may be maintained for locomotion (i.e. foraging and predator avoidance) and growth. Furthermore, the ability to modulate mitochondrial metabolism in order to maintain osmotic balance suggests that mitochondria of anadromous fish may have been a key target for natural selection, driving species adaptations to different aquatic environments.


Assuntos
Mitocôndrias/metabolismo , Oncorhynchus mykiss/metabolismo , Osmorregulação , Aclimatação , Anaerobiose , Migração Animal , Animais , Feminino , Mucosa Intestinal/metabolismo , Masculino , Consumo de Oxigênio , Água do Mar
7.
Proc Natl Acad Sci U S A ; 113(26): 7059-64, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27303045

RESUMO

Bacteria cells use osmoregulatory proteins as emergency valves to respond to changes in the osmotic pressure of their external environment. The existence of these emergency valves has been known since the 1960s, but they have never been used as the basis of a viability assay to tell dead bacteria cells apart from live ones. In this paper, we show that osmoregulation provides a much faster, label-free assessment of cell viability compared with traditional approaches that rely on cell multiplication (growth) to reach a detectable threshold. The cells are confined in an evaporating droplet that serves as a dynamic microenvironment. Evaporation-induced increase in ionic concentration is reflected in a proportional increase of the droplet's osmotic pressure, which in turn, stimulates the osmoregulatory response from the cells. By monitoring the time-varying electrical conductance of evaporating droplets, bacterial cells are identified within a few minutes compared with several hours in growth-based methods. To show the versatility of the proposed method, we show detection of WT and genetically modified nonhalotolerant cells (Salmonella typhimurium) and dead vs. live differentiation of nonhalotolerant (such as Escherichia coli DH5α) and halotolerant cells (such as Staphylococcus epidermidis). Unlike the growth-based techniques, the assay time of the proposed method is independent of cell concentration or the bacteria type. The proposed label-free approach paves the road toward realization of a new class of real time, array-formatted electrical sensors compatible with droplet microfluidics for laboratory on a chip applications.


Assuntos
Escherichia coli/química , Osmorregulação , Salmonella typhimurium/química , Staphylococcus epidermidis/química , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Viabilidade Microbiana , Pressão Osmótica , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/fisiologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/fisiologia
8.
Foodborne Pathog Dis ; 12(6): 529-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25928035

RESUMO

Foodborne bacteria are the leading cause of food spoilage and other related diseases. In the present study, the antibacterial activity of bio-oil (BO) manufactured by fast pyrolysis of pinewood sawdust (Pinus densiflora Siebold and Zucc.) against two disease-causing foodborne pathogens (Bacillus cereus and Listeria monocytogenes) was evaluated. BO at a concentration of 1000 µg/disc was highly active against both B. cereus (10.0-10.6 mm-inhibition zone) and L. monocytogenes (10.6-12.0-mm inhibition zone). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values of BO were 500 and 1000 µg/mL, respectively, for both pathogens. At the MIC concentration, BO exhibited an inhibitory effect on the viability of the bacterial pathogens. The mechanism of action of BO revealed its strong impairing effect on the membrane integrity of bacterial cells, which was confirmed by a marked release of 260-nm absorbing material, leakage of electrolytes and K(+) ions, and reduced capacity for osmoregulation under high salt concentration. Scanning electron microscopy clearly showed morphological alteration of the cell membrane due to the effect of BO. Overall, the results of this study suggest that BO exerts effective antibacterial potential against foodborne pathogens and can therefore potentially be used in food processing and preservation.


Assuntos
Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Pinus/química , Óleos de Plantas/farmacologia , Madeira/química , Antibacterianos/economia , Antibacterianos/isolamento & purificação , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/patogenicidade , Bacillus cereus/ultraestrutura , Biocombustíveis/economia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Indústria da Construção/economia , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Temperatura Alta , Humanos , Resíduos Industriais/análise , Resíduos Industriais/economia , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/patogenicidade , Listeria monocytogenes/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Microscopia Eletrônica de Varredura , Osmorregulação/efeitos dos fármacos , Óleos de Plantas/economia , Óleos de Plantas/isolamento & purificação , República da Coreia , Madeira/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA