Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 931
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 277: 116323, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38653024

RESUMO

The Kakamega gold belt's natural geological enrichment and artisanal and small-scale gold mining (ASGM) have resulted in food and environmental pollution, human exposure, and subsequent risks to health. This study aimed to characterise exposure pathways and risks among ASGM communities. Human hair, nails, urine, water, and staple food crops were collected and analysed from 144 ASGM miners and 25 people from the ASGM associated communities. Exposure to PHEs was predominantly via drinking water from mine shafts, springs and shallow-wells (for As>Pb>Cr>Al), with up to 366 µg L-1 arsenic measured in shaft waters consumed by miners. Additional exposure was via consumption of locally grown crops (for As>Ni>Pb>Cr>Cd>Hg>Al) besides inhalation of Hg vapour and dust, and direct dermal contact with Hg. Urinary elemental concentrations for both ASGM workers and wider ASGM communities were in nearly all cases above bioequivalents and reference upper thresholds for As, Cr, Hg, Ni, Pb and Sb, with median concentrations of 12.3, 0.4, 1.6, 5.1, 0.7 and 0.15 µg L-1, respectively. Urinary As concentrations showed a strong positive correlation (0.958) with As in drinking water. This study highlighted the importance of a multidisciplinary approach in integrating environmental, dietary, and public health investigations to better characterise the hazards and risks associated with ASGM and better understand the trade-offs associated with ASGM activities relating to public health and environmental sustainability. Further research is crucial, and study results have been shared with Public Health and Environmental authorities to inform mitigation efforts.


Assuntos
Monitoramento Biológico , Mineração , Saúde Pública , Humanos , Quênia , Monitoramento Ambiental/métodos , Ouro , Adulto , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Cabelo/química , Água Potável/química , Água Potável/análise , Masculino , Arsênio/análise , Arsênio/urina , Pessoa de Meia-Idade , Medição de Risco , Contaminação de Alimentos/análise , Feminino , Unhas/química , Poluentes Ambientais/análise , Poluentes Ambientais/urina , Adulto Jovem , Exposição Ocupacional/análise
2.
Nanoscale ; 16(14): 7110-7122, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38501279

RESUMO

This study was initiated due to the physically unexplainable tumor controls resulting from metal nanoparticle (MNP) experiments even under MV X-ray irradiation. A more accurate explanation of the mechanism of radiosensitization induced by MNP is warranted, considering both its physical dose enhancement and biological sensitization, as related research is lacking. Thus, we aimed to examine the intricate dynamics involved in MNP-induced radiosensitization. We conducted specifically designed clonogenic assays for the A549 lung cancer cell line with MNP irradiated by 6 MV and 300 kVp X-rays. Two types of MNP were employed: one based on iron oxide, promoting ferroptosis, and the other on gold nanoparticles known for inducing a significant dose enhancement, particularly at low-energy X-rays. We introduced the lethality enhancement factor (LEF) as the fraction in the cell killing attributed to biological sensitization. Subsequently, Monte Carlo simulations were conducted to evaluate the radial dose profiles for each MNP, corresponding to the physical enhancement. Finally, the local effect model was applied to the clonogenic assay results on real cell images. The LEF and the dose enhancement in the cytoplasm were incorporated to increase the accuracy in the average lethal events and, consequently, in the survival fraction. The results reveal an increased cell killing for both of the MNP under MV and kV X-ray irradiation. In both types of MNP, the LEF reveals a biological sensitization evident. The sensitizer enhancement ratio, derived from the calculations, exhibited only 3% and 1% relative differences compared to the conventional linear-quadratic model for gold and ferroptosis inducer nanoparticles, respectively. These findings indicate that MNPs sensitize cells via radiation through mechanisms akin to ferroptosis inducers, not exclusively relying on a physical dose enhancement. Their own contributions to survival fractions were successfully integrated into computational modeling.


Assuntos
Neoplasias Pulmonares , Nanopartículas Metálicas , Humanos , Raios X , Ouro/farmacologia , Simulação por Computador , Método de Monte Carlo
3.
AAPS PharmSciTech ; 25(3): 54, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443653

RESUMO

Chrysin is a natural flavonoid with a wide range of bioactivities. Only a few investigations have assessed the analgesic activity of chrysin. The lipophilicity of chrysin reduces its aqueous solubility and bioavailability. Hence, self-nanoemulsifying drug delivery systems (SNEDDS) were designed to overcome this problem. Kollisolv GTA, Tween 80, and Transcutol HP were selected as oil, surfactant, and cosurfactant, respectively. SNEDDS A, B, and C were prepared, loaded with chrysin (0.1%w/w), and extensively evaluated. The optimized formula (B) encompasses 25% Kollisolv GTA, 18.75% Tween 80, and 56.25% Transcutol HP was further assessed. TEM, in vitro release, and biocompatibility towards the normal oral epithelial cell line (OEC) were estimated. Brain targeting and acetic acid-induced writhing in a mouse model were studied. After testing several adsorbents, powdered SNEDDS B was formulated and evaluated. The surfactant/cosurfactant (S/CoS) ratio of 1:3 w/w was appropriate for the preparation of SNEDDS. Formula B exhibited instant self-emulsification, spherical nanoscaled droplets of 155.4 ± 32.02 nm, and a zeta potential of - 12.5 ± 3.40 mV. The in vitro release proved the superiority of formula B over chrysin suspension (56.16 ± 10.23 and 9.26 ± 1.67%, respectively). The biocompatibility of formula B towards OEC was duplicated (5.69 ± 0.03 µg/mL). The nociceptive pain was mitigated by formula B more efficiently than chrysin suspension as the writhing numbers reduced from 8.33 ± 0.96 to 0 after 60 min of oral administration. Aerosil R972 was selected as an adsorbent, and its chemical compatibility was confirmed. In conclusion, our findings prove the therapeutic efficacy of chrysin self-nanoemulsion as a potential targeting platform to combat pain.


Assuntos
Etilenoglicóis , Flavonoides , Polissorbatos , Animais , Camundongos , Flavonoides/farmacologia , Tensoativos , Ouro
4.
PLoS One ; 19(3): e0298426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452043

RESUMO

Banking and stock markets consider gold to be an important component of their economic and financial status. There are various factors that influence the gold price trend and its fluctuations. Accurate and reliable prediction of the gold price is an essential part of financial and portfolio management. Moreover, it could provide insights about potential buy and sell points in order to prevent financial damages and reduce the risk of investment. In this paper, different architectures of deep neural network (DNN) have been proposed based on long short-term memory (LSTM) and convolutional-based neural networks (CNN) as a hybrid model, along with automatic parameter tuning to increase the accuracy, coefficient of determination, of the forecasting results. An illustrative dataset from the closing gold prices for 44 years, from 1978 to 2021, is provided to demonstrate the effectiveness and feasibility of this method. The grid search technique finds the optimal set of DNNs' parameters. Furthermore, to assess the efficiency of DNN models, three statistical indices of RMSE, RMAE, and coefficient of determination (R2), were calculated for the test set. Results indicate that the proposed hybrid model (CNN-Bi-LSTM) outperforms other models in total bias, capturing extreme values and obtaining promising results. In this model, CNN is used to extract features of input dataset. Furthermore, Bi-LSTM uses CNN's outputs to predict the daily closing gold price.


Assuntos
Sistemas Computacionais , Ouro , Investimentos em Saúde , Memória de Longo Prazo , Redes Neurais de Computação
5.
J Hazard Mater ; 469: 134100, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522202

RESUMO

Contamination of oilfield chemicals (OFCs) by benzo[a]pyrene (B[a]P) is increasingly becoming a severe environmental security issue. There is an urgent need to develop a rapid and accurate method for B[a]P detection in OFCs. In this study, B[a]P hapten was designed using computer aided molecular design. A high-affinity, specific, and matrix-insensitive monoclonal antibody (mAb) with IC50 values of 6.77 ng/mL was obtained. Based on this mAb, we developed a rapid gold nanoparticle-based immunochromatographic strip assay (GICA) with double T-line mode for on-site detection of B[a]P in OFCs samples. The GICA exhibited excellent detection performance in OFCs samples with strong acidity, strong alkalinity, and deep color. Under optimal conditions, the proposed method detected B[a]P in OFCs at 0.42-300 mg/kg, and limit of detection was 0.23-1.07 mg/kg. The recovery rate was 88-106% with a coefficient of variation of 1.46-6.35%. Confirmed by natural positive OFCs samples and high-performance liquid chromatography, this GICA is accurate and reliable, with great potential for rapid and cost-effective on-site detection.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Benzo(a)pireno , Análise Custo-Benefício , Campos de Petróleo e Gás , Nanopartículas Metálicas/química , Cromatografia de Afinidade , Imunoensaio/métodos , Anticorpos Monoclonais , Limite de Detecção
6.
Environ Monit Assess ; 196(4): 395, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528293

RESUMO

This study assessed the accumulation levels and ecological risks associated with seven heavy metals (As, Pb, Cd, Hg, Cu, Cr, Zn) in the surface sediments of the Bong Mieu River in Quang Nam Province, Vietnam. The sampling encompassed 10 locations (S1-S10), considering areas both impacted and less impacted by gold mining activities. The findings revealed elevated levels of heavy metal pollution and associated ecological risks attributable to gold mining. Heavy metal content varied within specific ranges: As (70.6-341.2 mg/kg), Pb (216.3-504.1 mg/kg), Hg (0.138-0.252 mg/kg), Cd (0.91-1.51mg/kg), Cu (18.3-45.5 mg/kg), Cr (10.5-19.1 mg/kg), and Zn (49.3-84.1 mg/kg). Among these elements, Hg, Cu, Cr, Zn, and Cd adhered to the acceptable limits of VNTR 43:2017/MONRE (VNTR 43:2017/MONRE: National Technical Regulation/Ministry of Natural Resources and Environment of Vietnam). However, As and Pb content at all locations exceeded these limits significantly, with As being 4.1-20 times higher and Pb 2.3-5.5 times higher. The pollution of Pb and As was attributed to waste discharge from gold mining activities, which carry substantial amounts of these metals in various forms. The Igeo indicated heavy pollution of As and Pb in the sediments. Ecological risk factors were ranked as follows: E r i (As) > E r i (Pb) > E r i (Hg) > E r i (Cd) > E r i (Cu) > E r i (Cr) > E r i (Zn). The potential ecological risk (RI) due to combined heavy metal impact varied across locations, with S2 > S8 > S9 > S6 > S7 > S10 > S1 > S3 > S4 > S5, exhibiting low to moderate risk (RI values ranging from 73.4 to 252.8). The study area demonstrated high contamination levels for As and Pb, coupled with low to moderate potential ecological risks.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Rios , Vietnã , Cádmio , Chumbo , Medição de Risco , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Metais Pesados/análise , Ouro , China
7.
Biosens Bioelectron ; 253: 116164, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38422814

RESUMO

Exosome-based liquid biopsies possess great potential in monitoring cancer development However, current exosome detection biosensors require large exosome volumes, showing the weak detection sensitivity. Besides, these methods pay little attention to in situ analysis of exosomes, hence limiting the provision of more accurate clinically-relevant information. Herein, we develop an innovative label-free biosensor combining the low-cost thermophoretic enrichment method with the surface-enhanced Raman spectroscopy (SERS) detection. Based on the thermophoretic enrichment strategy, exosomes and gold nanoparticles can be enriched together into a small area with a scale of 500 µm within 10 min. The Raman signals of various exosomes derived from normal, cancerous cell lines and human serum are dynamically monitored in situ, with the limit of detection of 102-103 particles per microliter, presenting higher sensitivity compared with the similar label-free SERS detection. The spectral data set of different exosomes is applied to train for multivariate classification of cell types and to estimate how the normal exosome data resemble cancer cell exosome. The reliable classification and identification of different exosomes can be realized. The current biosensor is convenient, low-cost and requires small exosome volumes (∼3 µL), and if validated in larger cohorts may contribute to the tumor prediction and diagnosis.


Assuntos
Técnicas Biossensoriais , Exossomos , Nanopartículas Metálicas , Humanos , Ouro , Análise Espectral Raman
8.
J Hazard Mater ; 468: 133782, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387175

RESUMO

Determining the priority control source and pollutant is the key for the eco-health protection and risk management around gold smelting area. To this end, a case study was conducted to explore the pollution characteristics, source apportionment, ecological risk and human health risk of toxic metals (TMs) in agricultural soils surrounding a gold smelting enterprise. Three effective receptor models, including positive matrix factorization model (PMF), ecological risk assessment (ERA), and probabilistic risk assessment (PRA) have been combined to apportion eco-human risks for different targets. More than 95.0% of samples had a Nemerow pollution index (NPI) > 2 (NPImean=4.27), indicating moderately or highly soil TMs contamination. Four pollution sources including gold smelting activity, mining source, agricultural activity and atmosphere deposition were identified as the major sources, with the contribution rate of 17.52%, 44.16%, 13.91%, and 24.41%, respectively. For ecological risk, atmosphere deposition accounting for 30.8% was the greatest contributor, which was mainly loaded on Hg of 51.35%. The probabilistic health risk assessment revealed that Carcinogenic risks and Non-carcinogenic risks of all population were unacceptable, and children suffered from a greater health risk than adults. Gold smelting activity (69.2%) and mining source (42.0%) were the largest contributors to Carcinogenic risks and Non-carcinogenic risks, respectively, corresponding to As and Cr as the target pollutants. The priority pollution sources and target pollutants were different for the eco-health protection. This work put forward a new perspective for soil risk control and management, which is very beneficial for appropriate soil remediation under limited resources and costs.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Ouro , Monitoramento Ambiental , Metais Pesados/toxicidade , Metais Pesados/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Solo , Medição de Risco , China
9.
Molecules ; 29(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38338421

RESUMO

Food and fish adulteration is a major public concern worldwide. Apart from economic fraud, health issues are in the forefront mainly due to severe allergies. Sardines are one of the most vulnerable-to-adulteration fish species due to their high nutritional value. Adulteration comprises the substitution of one fish species with similar species of lower nutritional value and lower cost. The detection of adulteration, especially in processed fish products, is very challenging because the morphological characteristics of the tissues change, making identification by the naked eye very difficult. Therefore, new analytical methods and (bio)sensors that provide fast analysis with high specificity, especially between closely related fish species, are in high demand. DNA-based methods are considered as important analytical tools for food adulteration detection. In this context, we report the first DNA sensors for sardine species identification. The sensing principle involves species recognition, via short hybridization of PCR-amplified sequences with specific probes, capture in the test zone of the sensor, and detection by the naked eye using gold nanoparticles as reporters; thus, avoiding the need for expensive instruments. As low as 5% adulteration of Sardina pilchardus with Sardinella aurita was detected with high reproducibility in the processed mixtures simulating canned fish products.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Reprodutibilidade dos Testes , DNA/genética , Produtos Pesqueiros
10.
J Virol Methods ; 325: 114889, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290650

RESUMO

A substantial percentage of kidney transplant recipients show transplant failure due to BK virus-induced nephropathy. This can be clinically controlled by the rapid and timely detection of BK virus infection in immune-compromised patients. We report a rapid (two hours from sample collection, processing, and detection), cost-effective (< 2$), highly sensitive and BKV-specific nanoLAMP (loop-mediated isothermal amplification) diagnostic methodology using novel primers and gold nanoparticles complex-based visual detection. The standardized nanoLAMP showed an analytical sensitivity of 25 copies/µl and did not cross-react with closely related JC and SV40 viruses. This nanoLAMP showed diagnostic sensitivity and specificity as 91% and 96%, respectively, taking 50 BK virus-negative (confirmed by qPCR from the plasma of healthy donors) and 57 positive BKV patient samples (confirmed by clinical parameters and qPCR assay). This simple two-step, low-cost, and quick (1-2 h/test) detection would be advantageous over the currently used diagnostic methodology. It may change the paradigm for polyomavirus infection-based failure of renal transplant.


Assuntos
Vírus BK , Nanopartículas Metálicas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Humanos , Vírus BK/genética , Ouro , Análise Custo-Benefício , Infecções por Polyomavirus/diagnóstico , Infecções Tumorais por Vírus/diagnóstico , DNA Viral
11.
Analyst ; 149(4): 1081-1089, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38204338

RESUMO

Gastrointestinal bleeding (GIB) is a serious medical condition, which requires immediate attention to establish the cause of the bleeding. Here, we present the development of a miniaturised electrochemical impedance spectroscopy (EIS) device for the detection of GIB. The device performs EIS measurements up to 100 kHz. Following the development of an immunosensor for haemoglobin (Hb) on screen printed electrodes, the EIS device was used for detecting Hb as an early indication of bleeding. The sensor was able to detect Hb in a redox solution in a linear range between 5 µg mL-1 and 60 µg mL-1, with a limit of detection of 13.3 µg mL-1. It was also possible to detect Hb in simulated intestinal fluid, without the need for a redox solution, within a range of 10 µg mL-1 to 10 mg mL-1 with a limit of detection of 2.31 mg mL-1. The miniature EIS device developed in this work is inexpensive, with an estimated cost per unit of £30, and has shown a comparable performance to existing commercial tools, demonstrating its potential to be used in the future as an ingestible sensor to detect GIB. All these measurements were carried out in a purpose built flow cell with supporting hardware electronics outside the cell. Integration of the hardware and the sensing electrodes was demonstrated in pill form. This pill after integration sampling fluidics has potential to be used in detecting gastrointestinal bleeding.


Assuntos
Técnicas Biossensoriais , Hemoglobina Falciforme , Humanos , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Espectroscopia Dielétrica , Hemorragia Gastrointestinal/induzido quimicamente , Hemorragia Gastrointestinal/diagnóstico , Eletrodos , Limite de Detecção , Técnicas Eletroquímicas/métodos , Ouro/química
12.
Methods ; 221: 12-17, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006950

RESUMO

This research aims to develop a robust and quantitative method for measuring creatinine levels by harnessing the enhanced Tyndall effect (TE) phenomenon. The envisioned sensing assay is designed for practical deployment in resource-limited settings or homes, where access to advanced laboratory facilities is limited. Its primary objective is to enable regular and convenient monitoring of renal healthcare, particularly in cases involving elevated creatinine levels. The creatinine sensing strategy is achieved based on the aggregation of gold nanoparticles (AuNPs) triggered via the direct crosslinking reaction between creatinine and AuNPs, where an inexpensive laser pointer was used as a handheld light source and a smartphone as a portable device to record the TE phenomenon enhanced by the creatinine-induced aggregation of AuNPs. After evaluation and optimization of parameters such as AuNP concentrations and TE measurement time, the subsequent proof-of-concept experiments demonstrated that the average gray value change of TE images was linearly related to the logarithm of creatinine concentrations in the range of 1-50 µM, with a limit of detection of 0.084 µM. Meanwhile, our proposed creatinine sensing platform exhibited highly selective detection in complex matrix environments. Our approach offers a straightforward, cost-effective, and portable means of creatinine detection, presenting an encouraging signal readout mechanism suitable for point-of-care (POC) applications. The utilization of this assay as a POC solution exhibits potential for expediting timely interventions and enhancing healthcare outcomes among individuals with renal health issues.


Assuntos
Nanopartículas Metálicas , Smartphone , Humanos , Creatinina , Ouro , Urinálise , Colorimetria/métodos
13.
Anal Bioanal Chem ; 416(2): 497-508, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38001372

RESUMO

Pesticides that linger in the environment and ecosystems for an extended period can cause severe and dangerous health problems in humans. To detect pesticides in foods, the development of high-sensitivity and quick screening technologies was required. This research investigated the performance of Au@Ag NPs with varying thicknesses of the silver shell for detecting trace quantities of thiabendazole (TBZ) in apples using surface-enhanced Raman spectroscopy (SERS). The Au@Ag NPs were synthesized by coating 32 nm gold seeds with different thicknesses of silver shell ranging from 2.4 to 8.7 nm, achieved by adjusting the incorporation of AgNO3 and ascorbic acid. The optimized Au@Ag NPs with a 7.3 nm silver shell demonstrated outstanding SERS activity, high sensitivity, and a detection limit of 0.05 µg/mL for TBZ. The R2 values, representing the goodness of fit, were found to be 0.990 and 0.986 for standard and real TBZ samples, respectively, indicating a strong correlation between the measured signal and the TBZ concentration. The recovery analysis showed a reliable and accurate detection capability (96 to 105%), suggesting good reliability and accuracy of the SERS-based detection using the optimal Au@Ag NPs. Overall, this research highlights the potential of SERS with optimal Au@Ag NPs for rapid and effective monitoring of pesticides in the food industry.


Assuntos
Malus , Nanopartículas Metálicas , Praguicidas , Humanos , Malus/química , Tiabendazol/análise , Prata/química , Reprodutibilidade dos Testes , Ecossistema , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Praguicidas/análise , Ouro/química
14.
Biomed Phys Eng Express ; 10(2)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38113641

RESUMO

This comment highlights two methodological issues with the recent article by Velten et al [Biomed Phys Eng Express 2023;9:045004]: First, the approach taken in this work with a local effect model (LEM) in 2D leads to a significant overstimation of the number of radiation-induced lesions. This results in order of magnitude smaller predicted survival rates compared to the conventional LEM. Second, the dose without nanoparticles is used as the 'macroscopic dose' against which cell survival is plotted. However, for the considered gold concentrations, the average absorbed dose under secondary particle equilibrium is between 2 and 20 times higher with nanoparticles than without.


Assuntos
Nanopartículas Metálicas , Método de Monte Carlo , Sobrevivência Celular , Reprodutibilidade dos Testes , Ouro
15.
BMJ Glob Health ; 8(12)2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38103896

RESUMO

INTRODUCTION: Social determinants of health, such as living and working conditions, economical and environmental context and access to care, combine to impact the health of individuals and communities. In French Guiana (FG), the persons working in informal artisanal and small-scale gold mining in the rainforest are a particularly vulnerable population which lives in precarious conditions and far from the health system. Previous studies have demonstrated their high morbidity due to infectious diseases. This study aims to describe the social determinants of health in this specific population. METHODS: This international multicentre cross-sectional survey included people working on the informal FG gold mines at the crossing points located at both borders with Suriname and Brazil. After collecting written informed consent, a structured questionnaire was administered. RESULTS: From September to December 2022, 539 gold miners were included. These poorly educated migrants, mainly from Brazil (99.1%) did not have access to drinkable water (95.4%), lived in close contact with wild fauna by hunting, eating bushmeat or being bitten and were exposed to mercury by inhalation (58.8%) or ingestion (80.5%). They report frequent accidents (13.5%) and chronic treatment interruptions (26.6% of the 11.9% reporting chronic treatment). Half of them considered themselves in good health (56.4%). CONCLUSION: This study shows a singular combination of adverse exposures of gold miners working in FG such as zoonoses, heavy metal poisoning, aggression of wild fauna. For ethical as well as public health reasons, actions towards health equity must be considered at different levels: individual, community, environmental, systemic and global level. As end users of minerals, we must assume our responsibilities for the well-being of the extractors by including health in political decisions to engage together in global health. TRIAL REGISTRATION NUMBER: NCT05540470.


Assuntos
Ouro , Determinantes Sociais da Saúde , Humanos , Estudos Transversais , Guiana Francesa/epidemiologia , Mineração
16.
Mikrochim Acta ; 191(1): 52, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147136

RESUMO

Coconut cadang-cadang viroid (CCCVd) is an infectious single-stranded RNA (ssRNA) pathogen, which leads directly to the death of a large number of coconut palm trees and heavy economic loss to coconut farmers. Herein, a novel electrochemical impedance RNA genosensor is presented based on highly stable gold nanoparticles (AuNPs) decorated phosphorene (BP) nanohybrid with graphene (Gr) for highly sensitive, low-cost, and label-free detection of CCCVd. BP-AuNPs are environmentally friendly prepared by ultrasonic-assisted liquid-phase exfoliation of black phosphorus, accompanying direct reduction of chloroauric acid. Gr/BP-AuNPs are facilely prepared by the in situ growth of AuNPs onto the BP surface and its nanohybrid with Gr to improve environmental stability of BP. Gr/BP-AuNP-based RNA genosensor is fabricated by immobilizing the thiol-functionalized single-stranded DNA (ssDNA) oligonucleotide probe onto the surface of Gr/BP-AuNP-modified glassy carbon electrode via gold-thiol interactions, which served as an electrochemical genosensing platform for the label-free impedance detection of CCCVd by hybridization between the functionalized ssDNA probe and the complementary CCCVd ssRNA sequence in a wide linear range from 1.0 × 10-11 to 1.0 × 10-7 M with a low limit of detection of 2.8 × 10-12 M. This work supplies an experimental support and theoretical direction for the fabrication of RNA biosensors based on graphene-like materials and potential application for a specific diagnosis of plant RNA viral disease in Arecaceae planting industry.


Assuntos
Grafite , Nanopartículas Metálicas , Ouro , DNA de Cadeia Simples , Compostos de Sulfidrila
17.
Artigo em Inglês | MEDLINE | ID: mdl-38131718

RESUMO

Sub-Saharan Africa is rich in natural resources but also faces widespread poverty. The United Nations' Sustainable Development Goals brought increased attention to resource extraction projects, emphasizing their development potential in extraction regions. While mining companies are required to conduct environmental impact assessments, their effect on the project-affected communities' health mostly lacks systematic management, and their consideration of community perspectives is insufficient. Between March and May 2019, qualitative research was conducted at three industrial gold mines in Burkina Faso. Thirty-six participants, including community leaders, healthcare providers, and mining officials, were interviewed through key informant interviews about their perceptions on the impacts of mining operations on health, health determinants, and health service delivery. Disparities in perceptions were a key focus of the analysis. Mining officials reported mainly positive effects, while healthcare providers and community leaders described enhancing and adverse health impacts without clear trends observed regarding the extent of the impacts on health determinants. The perception of predominantly positive health impacts by mining officials represents a potential risk for insufficient acknowledgement of stakeholders' concerns and mining-related effects on community health in affected populations. Overall, this study enhances comprehension of the complex interplay between mining operations and health, emphasizing the need for comprehensive assessments, stakeholder involvement, and sustainable practices to mitigate negative impacts and promote the well-being of mining communities.


Assuntos
Ouro , Saúde Pública , Humanos , Burkina Faso , Mineração , Serviços de Saúde
18.
Biosensors (Basel) ; 13(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38131774

RESUMO

The World Health Organization (WHO) declared in a May 2023 announcement that the COVID-19 illness is no longer categorized as a Public Health Emergency of International Concern (PHEIC); nevertheless, it is still considered an actual threat to world health, social welfare and economic stability. Consequently, the development of a convenient, reliable and affordable approach for detecting and identifying SARS-CoV-2 and its emerging new variants is crucial. The fingerprint and signal amplification characteristics of surface-enhanced Raman spectroscopy (SERS) could serve as an assay scheme for SARS-CoV-2. Here, we report a machine learning-based label-free SERS technique for the rapid and accurate detection and identification of SARS-CoV-2. The SERS spectra collected from samples of four types of coronaviruses on gold nanoparticles film, fabricated using a Langmuir-Blodgett self-assembly, can provide more spectroscopic signatures of the viruses and exhibit low limits of detection (<100 TCID50/mL or even <10 TCID50/mL). Furthermore, the key Raman bands of the SERS spectra were systematically captured by principal component analysis (PCA), which effectively distinguished SARS-CoV-2 and its variant from other coronaviruses. These results demonstrate that the combined use of SERS technology and PCA analysis has great potential for the rapid analysis and discrimination of multiple viruses and even newly emerging viruses without the need for a virus-specific probe.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , Análise Espectral Raman/métodos , SARS-CoV-2 , Nanopartículas Metálicas/química , Análise de Componente Principal , Ouro/química , COVID-19/diagnóstico
19.
Molecules ; 28(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38138623

RESUMO

In this work, a simple and cost-efficient aptasensor strip is developed for the rapid detection of OTA in food samples. The biosensor is based on the lateral flow assay concept using an OTA-specific aptamer for biorecognition of the target analyte. The strip consists of a sample pad, a conjugate pad, a nitrocellulose membrane (NC) and an absorbent pad. The conjugate pad is loaded with the OTA-specific aptamer conjugated with gold nanoparticles (AuNPs). The test line of the NC membrane is loaded with a specific OTA-aptamer probe and the control line is loaded with a control probe. The assay is based on a competitive format, where the OTA present in the sample combines with the OTA aptamer-AuNP conjugate and prevents the interaction between the specific probe immobilized on the test line and the OTA aptamer-AuNP conjugates; therefore, the color intensity of the test line decreases as the concentration of OTA in the sample increases. Qualitative detection of OTA is performed visually, while quantification is performed by reflectance colorimetry using a commercial scanner and image analysis. All the parameters of the assay are investigated in detail and the analytical features are established. The visual limit of detection (LOD) of the strip is 0.05 ng mL-1, while the LOD for semi-quantitative detection using reflectance colorimetry is 0.02 ng mL-1. The lateral flow strip aptasensor is applied to the detection of OTA in wine, beer, apple juice and milk samples with recoveries in the range from 91 to 114%. The assay exhibits a satisfactory selectivity for OTA with respect to other mycotoxins and lasts 20 min. Therefore, the lateral flow strip aptasensor could be useful for the rapid, low-cost and fit-for-purpose on-site detection of OTA in food samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Ocratoxinas , Ouro , Ocratoxinas/análise , Técnicas Biossensoriais/métodos , Limite de Detecção
20.
PLoS One ; 18(11): e0288762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37963128

RESUMO

The emergence of the covid-19 health crisis, in this advanced technological era where connections between markets, nations, and economies have grown stronger than ever before, the shock of the COVID-19 pandemic quickly had an impact on both physical and digital financial assets. The Chinese financial market experienced the first consequences of the covid-19 pandemic, then spilled over to other financial markets, including those for cryptocurrencies and the precious metals. This study examines the impact of the covid-19 pandemic on the volatilities of the dynamics of bitcoin and gold. Both assets share some characteristics, such as online trading platforms, however, gold is a tangible financial asset unlike bitcoin, which is digitally generated without any physical form. This study argues that the similarities and differences between bitcoin and gold play major roles in how the covid-19 crisis affected their respective dynamics. Using daily data ranging from 9/22/2014 to 1/31/2023 and employing ARMA as the mean equation for GARCH model, the impact of the health crisis (covid-19) is examined on the volatilities of the prices and volumes of bitcoin and gold. Empirical evidence points out that, the pandemic has a symmetric impact on the volatilities of bitcoin and gold price returns, causing them to be more volatile. The impact of the covid-19 observed on the volume returns of the assets, however, is asymmetrical. The empirical results give evidence to the role that the vital differences existing between these assets played during the covid-19 pandemic.


Assuntos
COVID-19 , Ouro , Humanos , Pandemias , Declarações Financeiras , Exame Físico , COVID-19/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA