Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 247: 125954, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32069725

RESUMO

Landfill leachate is challenging to treat due to its complex composition. Advanced oxidation processes such as Fenton process can be effective to treat leachate. Herein, a previously developed membrane electrochemical reactor (MER) was coupled with Fenton oxidation through providing synergistic benefits with the low solution pH, reduced organics, and ammonia removal/recovery. This two-stage coupled system reduced the leachate COD by 88%, much higher than that from the standalone Fenton process treating raw leachate. In addition, the usage of chemical reagents has been greatly reduced. At a dimensionless oxidant dose of 1.0, the coupled MER-Fenton system reduced the consumption of both FeSO4⋅7H2O and H2O2 by 39%, H2SO4 by 100%, and NaOH by 55%. Consequently, the sludge production was reduced by 51% in weight and 12% in volume. Despite electricity consumption by the MER, the coupled system cost $4.76 per m3 leachate less than the standalone Fenton treatment. More notably, direct Fenton oxidation removed only 21% of ammonia; in comparison the MER-Fenton system removed ammonia by 98% with the possibility for recovery at a rate of 30.6-55.2 kg N m-3 reactor d-1. Those results demonstrate that coupling MER with Fenton process could mitigate some inherent drawbacks of Fenton oxidation such as ineffective ammonia removal, high acid and chemical reagents dose requirements, and a large amount of sludge generation. This system may be moved towards practical applications by addressing a few challenges such as using renewable energy to power MER.


Assuntos
Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Amônia/isolamento & purificação , Ferro/química , Oxidantes/química , Oxirredução , Esgotos , Poluentes Químicos da Água/análise , Purificação da Água/economia
2.
Chemosphere ; 247: 125848, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31958648

RESUMO

A Monitored Natural Attenuation (MNA) assessment approach typically used for contaminant remediation feasibility assessment was developed here for remediation-reagent delivery assessment. Subsurface delivery of oxidants, such as aqueous ozone (O3) for in situ chemical oxidation (ISCO) of groundwater contaminants, is naturally attenuated by oxidant demand and reactivity. We compared mixed reactor kinetic experiments, sand column tracer transport experiments, and reactive transport modeling and assessment methods to quantify natural attenuation kinetics, aqueous O3 solute transport, oxidant demand kinetics, and ISCO reagent delivery limitations. Sorption of aqueous O3 to quartz sand was observed during transport of O3 through water-saturated porous media. Pseudo 1st order decomposition rate constants of O3 bulk attenuation with transport were comparable to mixed reactor experiments without transport, and reactive transport modeling of miscible-displacement column experiments was used to quantify each attenuation process. Aqueous ionic strength was correlated with O3 decomposition rate constants, which was the dominant reagent delivery attenuation process. These results suggest that aqueous O3 decomposition and oxidant delivery attenuation can be predictable upon characterization of the sediment oxidant demand and dispersion, and increasing groundwater velocity during aqueous O3 injection can maximize transport distance for reagent delivery.


Assuntos
Recuperação e Remediação Ambiental/métodos , Ozônio/química , Poluentes Químicos da Água/química , Água Subterrânea/química , Cinética , Oxidantes/química , Oxirredução , Porosidade , Soluções , Água/química , Poluentes Químicos da Água/análise
3.
Chemosphere ; 218: 299-307, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30476761

RESUMO

Diclofenac was frequently found in various waters, indicating conventional wastewater treatment methods ineffective in its removal. In this study, LaFeO3 (LFO) was synthesized and its catalytic activity of LFO as the activator of different oxidants such as persulfate (PS), hydrogen peroxide and peroxylmonosulfate (PMS) was evaluated in terms of DCF degradation. The influence of calcination temperature was examined on the catalytic activity of LFO. The effects of various parameters including pH levels, PMS concentration, LFO dose and initial DCF concentration were investigated on DCF degradation rate. The marginal effects of PMS concentration and LFO dose were compared. Langmuir-Hinshelwood (LH) model was used to quantitatively describe DCF degradation reaction in LFO/PMS system. The two constants, k (Limiting reaction rate at maximum coverage) and K (Equilibrium adsorption constant), were determined on the basis of LH model. The performance of LFO/PMS process was also estimated in the presence of various inorganic anions. The potential toxicity of LFO and PMS were evaluated using phytoplankton and the toxicity evolution during DCF degradation was also investigated using luminescent bacteria. This contribution provides a basic study regarding the potential application of heterogeneous PMS activation by perovskite LFO for both DCF removal and toxicity elimination.


Assuntos
Diclofenaco/química , Óxidos/química , Peróxidos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Adsorção , Compostos de Cálcio/química , Catálise , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética , Oxidantes/química , Oxirredução , Óxidos/toxicidade , Peróxidos/toxicidade , Photobacterium/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Temperatura , Titânio/química , Testes de Toxicidade Aguda
4.
Sci Total Environ ; 652: 1051-1061, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30586792

RESUMO

This research reports for the first time the full-scale application of different homogeneous Advanced Oxidation Processes (AOPs) (H2O2/UV-C, PMS/UV-C and PMS/Fe(II)/UV-C) for the removal of antibiotics (ABs) and antibiotic resistance genes (ARGs) from wastewater effluent at Estiviel wastewater treatment plant (WWTP) (Toledo, Spain). AOPs based on the photolytic decomposition of H2O2 and peroxymonosulfate tested at low dosages (0.05-0.5 mM) and with very low UV-C contact time (4-18 s) demonstrated to be more efficient than UV-C radiation alone on the removal of the analyzed ABs. PMS (0.5 mM) combined with UV-C (7 s contact time) was the most efficient treatment in terms of AB removal: 7 out of 10 ABs detected in the wastewater were removed more efficiently than using the other oxidants. In terms of ARGs removal efficiency, UV-C alone seemed the most efficient treatment, although H2O2/UV-C, PMS/UV-C and PMS/Fe(II)/UV-C were supposed to generate higher concentrations of free radicals. The results show that treatments with the highest removal of ABs and ARGs did not coincide, which could be attributed to the competition between DNA and oxidants in the absorption of UV photons, reducing the direct photolysis of the DNA. Whereas the photolytic ABs removal is improved by the generation of hydroxyl and sulfate radicals, the opposite behavior occurs in the case of ARGs. These results suggest that a compromise between ABs and ARGs removal must be achieved in order to optimize wastewater treatment processes.


Assuntos
Antibacterianos/análise , Oxidantes/química , Raios Ultravioleta , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Antibacterianos/efeitos da radiação , Catálise , Peróxido de Hidrogênio/química , Oxirredução , Peróxidos/química , Fotólise , Espanha , Poluentes Químicos da Água/efeitos da radiação
5.
Water Res ; 144: 64-75, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30014980

RESUMO

Oxidation processes are impacted by the type, concentration and reactivity of the dissolved organic matter (DOM). In this study, the reactions between various types of DOM (Suwannee River fulvic acid (SRFA), Nordic Reservoir NOM (NNOM) and Pony Lake fulvic acid (PLFA)) and two oxidants (ozone and chlorine) were studied in the pH range 2-9 by using a combination of optical measurements and electron donating capacities. The relationships between residual electron donating capacity (EDC) and residual absorbance showed a strong pH dependence for the ozone-DOM reactions with phenolic functional groups being the main reacting moieties. Relative EDC and absorbance abatements (UV254 or UV280) were similar at pH 2. At pH 7 or 9, the relative abatement of EDC was more pronounced than for absorbance, which could be explained by the formation of UV-absorbing products such as benzoquinone from the transformation of phenolic moieties. An increase in fluorescence abatement with increasing pH was also observed during ozonation. The increase in fluorescence quantum yields could not be attributed to formation of benzoquinone, but related to a faster abatement of phenolic moieties relative to fluorophores with low ozone reactivity. The overall •OH yields as a result of DOM-induced ozone consumption increased significantly with increasing pH, which could be related to the higher reactivity of phenolic moieties at higher pH. The •OH yields for SRFA and PLFA were proportional to the phenolic contents, whereas for NNOM, the •OH yield was about 30% higher. During chlorination of DOM at pH 7 an efficient relative EDC abatement was observed whereas the relative absorbance abatement was much less pronounced. This is due to the formation of chlorophenolic moieties, which exert a significant absorbance, and partly lose their electron donating capacity. Pre-ozonation of SRFA leads to a decrease of chloroform and haloacetic acid formation, however, only after a threshold of > ∼50% abatement of the EDC and under conditions which are not precursor limited. The decrease in chloroform and haloacetic acid formation after the threshold EDC abatement was proportional to the relative residual EDC.


Assuntos
Cloro/química , Oxidantes/química , Ozônio/química , Purificação da Água/métodos , Benzopiranos/química , Clorofenóis/química , Elétrons , Água Doce/química , Halogenação , Concentração de Íons de Hidrogênio , Radical Hidroxila , Oxirredução
6.
Annu Rev Chem Biomol Eng ; 9: 341-364, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29595999

RESUMO

Substantial natural gas liquids recovery from tight shale formations has produced a significant boon for the US chemical industry. As fracking technology improves, shale liquids may represent the same for other geographies. As with any major industry disruption, the advent of shale resources permits both the chemical industry and the community an excellent opportunity to have open, foundational discussions on how both public and private institutions should research, develop, and utilize these resources most sustainably. This review summarizes current chemical industry processes that use ethane and propane from shale gas liquids to produce the two primary chemical olefins of the industry: ethylene and propylene. It also discusses simplified techno-economics related to olefins production from an industry perspective, attempting to provide a mutually beneficial context in which to discuss the next generation of sustainable olefin process development.


Assuntos
Alcenos/química , Etilenos/química , Gás Natural , Alcenos/síntese química , Alcenos/economia , Indústria Química , Metabolismo Energético , Etilenos/síntese química , Etilenos/economia , Gás Natural/economia , Oxidantes/química , Termodinâmica
7.
Free Radic Biol Med ; 106: 329-338, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28242229

RESUMO

The genetically encoded probes roGFP2-Orp1 and Grx1-roGFP2 have been designed to be selectively oxidized by hydrogen peroxide (H2O2) and glutathione disulfide (GSSG), respectively. Both probes have demonstrated such selectivity in a broad variety of systems and conditions. In this study, we systematically compared the in vitro response of roGFP2, roGFP2-Orp1 and Grx1-roGFP2 to increasing amounts of various oxidant species that may also occur in biological settings. We conclude that the previously established oxidant selectivity is highly robust and likely to be maintained under most physiological conditions. Yet, we also find that hypochlorous acid, known to be produced in the phagocyte respiratory burst, can lead to non-selective oxidation of roGFP2-based probes at concentrations ≥2µM, in vitro. Further, we confirm that polysulfides trigger direct roGFP2 responses. A side-by-side comparison of all three probes can be used to reveal micromolar amounts of hypochlorous acid or polysulfides.


Assuntos
Dissulfeto de Glutationa/química , Proteínas de Fluorescência Verde/genética , Peróxido de Hidrogênio/isolamento & purificação , Oxidantes/química , Ácido Peroxinitroso/metabolismo , Glutarredoxinas/química , Glutationa/química , Glutationa/metabolismo , Dissulfeto de Glutationa/isolamento & purificação , Proteínas de Fluorescência Verde/química , Peróxido de Hidrogênio/química , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxidantes/metabolismo , Oxirredução , Ácido Peroxinitroso/química , Fagócitos/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Bioresour Technol ; 228: 89-98, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28056373

RESUMO

The aim of this study is to find potential utilization practice of rice straw in India from an environmental perspective. Life cycle assessment (LCA) is conducted for four most realistic utilization practices of straw including: (1) incorporation into the field as fertilizer (2) animal fodder (3) electricity (4) biogas. The results show that processing of 1 ton straw to electricity and biogas resulted in net reduction of 1471 and 1023kg CO2 eq., 15.0 and 3.4kg SO2 eq. and 6.7 and 7.1kg C2H6 eq. emissions in global warming, acidification and photochemical oxidation creation potential respectively. Electricity production from straw replaces the coal based electricity and resulted in benefits in most of the environmental impacts whereas use as an animal fodder resulted in eutrophication benefits. The burning of straw is a harmful practice of managing straw in India which can be avoided by utilizing straw for bioenergy.


Assuntos
Oryza/química , Resíduos/análise , Ácidos/química , Agricultura , Animais , Biocombustíveis/análise , Eletricidade , Eutrofização , Fertilizantes/análise , Aquecimento Global , Índia , Oxidantes/química , Processos Fotoquímicos
9.
Arch Toxicol ; 91(1): 163-177, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27060086

RESUMO

Oxidative stress has increasingly been demonstrated as playing a key role in the biological response induced by nanoparticles (NPs). The acellular cytochrome c oxidation assay has been proposed to determine the intrinsic oxidant-generating capacity of NPs. Yet, there is a need to improve this method to allow a rapid screening to classify NPs in terms of toxicity. We adapted the cytochrome c assay to take into account NP interference, to improve its sensitivity and to develop a high-throughput method. The intrinsic oxidative ability of a panel of NPs (carbon black, Mn2O3, Cu, Ag, BaSO4, CeO2, TiO2 and ZnO) was measured with this enhanced test and compared to other acellular redox assays. To assess whether their oxidative potential correlates with cellular responses, we studied the effect of insoluble NPs on the human bronchial epithelial cell line NCI-H292 by measuring the cytotoxicity (WST-1 assay), pro-inflammatory response (IL-8 cytokine production and expression) and antioxidant defense induction (SOD2 and HO-1 expression). The adapted cytochrome c assay had a greatly increased sensitivity allowing the ranking of NPs in terms of their oxidative potential by using the developed high-throughput technique. Besides, a high oxidative potential revealed to be predictive for toxic effects as Mn2O3 NPs induced a strong oxidation of cytochrome c and a dose-dependent cytotoxicity, pro-inflammatory response and antioxidant enzyme expression. BaSO4, which presented no intrinsic oxidative potential, had no cellular effects. Nevertheless, CeO2 and TiO2 NPs demonstrated no acellular oxidant-generating capacity but induced moderate cellular responses. In conclusion, the novel cytochrome c oxidation assay could be used for high-throughput screening of the intrinsic oxidative potential of NPs. However, acellular redox assays may not be sufficient to discriminate among low-toxicity NPs, and additional tests are thus needed.


Assuntos
Citocromos c/química , Ensaios de Triagem em Larga Escala , Indicadores e Reagentes/química , Nanopartículas Metálicas/toxicidade , Oxidantes/toxicidade , Testes de Toxicidade , Animais , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Brônquios/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Cavalos , Humanos , Nanopartículas Metálicas/química , Oxidantes/química , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Propriedades de Superfície
10.
Oxid Med Cell Longev ; 2016: 1480463, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313823

RESUMO

Objective. We quantitatively assessed the influence of oxidants on antigen-antibody-binding activity. Methods. We used several immunological detection methods, including precipitation reactions, agglutination reactions, and enzyme immunoassays, to determine antibody activity. The oxidation-reduction potential was measured in order to determine total serum antioxidant capacity. Results. Certain concentrations of oxidants resulted in significant inhibition of antibody activity but had little influence on total serum antioxidant capacity. Conclusions. Oxidants had a significant influence on interactions between antigen and antibody, but minimal effect on the peptide of the antibody molecule.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Oxidantes/metabolismo , Adulto , Aglutinação , Anticorpos Antivirais/imunologia , Complexo Antígeno-Anticorpo/química , Antioxidantes/análise , Técnicas Eletroquímicas , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Feminino , Antígenos de Superfície da Hepatite B/imunologia , Humanos , Imunoprecipitação , Masculino , Oxidantes/química
11.
Chemosphere ; 150: 294-303, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26915591

RESUMO

Various chemical oxidation techniques, such as potassium permanganate (KMnO4), sodium persulfate (Na2S2O8), Fenton (H2O2/Fe(2+)), and the modified persulfate and Fenton reagents (activated by ferrous complexes), were carried out to treat marine sediments that were contaminated with polycyclic aromatic hydrocarbons (PAHs) and dredged from Kaohsiung Harbor in Taiwan. Experimental results revealed that KMnO4 was the most effective of the tested oxidants in PAH degradation. Owing to the high organic matter content in the sediment that reduced the efficiencies of Na2S2O8 and regular Fenton reactions, a large excess of oxidant was required. Nevertheless, KH2PO4, Na4P2O7 and four chelating agents (EDTA, sodium citrate, oxalic acid, and sodium oxalate) were utilized to stabilize Fe(II) in activating the Na2S2O8 and Fenton oxidations, while Fe(II)-citrate remarkably promoted the PAH degradation. Increasing the molecular weight and number of rings of PAH did not affect the overall removal efficiencies. The correlation between the effectiveness of the oxidation processes and the physicochemical properties of individual PAH was statistically analyzed. The data implied that the reactivity of PAH (electron affinity and ionization potential) affected its treatability more than did its hydrophobicity (Kow, Koc and Sw), particularly using experimental conditions under which PAHs could be effectively oxidized.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Permanganato de Potássio/química , Sedimentos Geológicos/química , Compostos de Manganês , Oxidantes/química , Oxirredução , Óxidos , Hidrocarbonetos Policíclicos Aromáticos/química , Compostos de Sódio , Sulfatos , Taiwan
12.
Water Res ; 88: 671-680, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26575476

RESUMO

This study, for the first time, demonstrated a continuously accelerated Fe(0) corrosion driven by common oxidants (i.e., NaClO, KMnO4 or H2O2) and thereby the rapid and efficient removal of heavy metals (HMs) by zero-valent iron (ZVI) under the experimental conditions of jar tests and column running. ZVI simply coupled with NaClO, KMnO4 or H2O2 (0.5 mM) resulted in almost complete As(V) removal within only 10 min with 1000 µg/L of initial As(V) at initial pH of 7.5(±0.1) and liquid solid ratio of 200:1. Simultaneous removal of 200 µg/L of initial Cd(II) and Hg(II) to 2.4-4.4 µg/L for Cd(II) and to 4.0-5.0 µg/L for Hg(II) were achieved within 30 min. No deterioration of HM removal was observed during the ten recycles of jar tests. The ZVI columns activated by 0.1 mM of oxidants had stably treated 40,200 (NaClO), 20,295 (KMnO4) and 40,200 (H2O2) bed volumes (BV) of HM-contaminated drinking water, but with no any indication of As breakthrough (<10 µg/L) even at short empty bed contact time (EBCT) of 8.0 min. The high efficiency of HMs removal from both the jar tests and column running implied a continuous and stable activation (overcoming of iron passivation) of Fe(0) surface by the oxidants. Via the proper increase in oxidant dosing, the ZVI/oxidant combination was applicable to treat highly As(V)-contaminated wastewater. During Fe(0) surface corrosion accelerated by oxidants, a large amount of fresh and reactive iron oxides and oxyhydroxides were continuously generated, which were responsible for the rapid and efficient removal of HMs through multiple mechanisms including adsorption and co-precipitation. A steady state of Fe(0) surface activation and HM removal enabled this simply coupled system to remove HMs with high speed, efficiency and perdurability.


Assuntos
Ferro/química , Metais Pesados/química , Oxidantes/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Corrosão , Peróxido de Hidrogênio/química , Permanganato de Potássio/química , Hipoclorito de Sódio/química , Eliminação de Resíduos Líquidos/economia , Águas Residuárias/análise , Purificação da Água/economia
13.
Free Radic Biol Med ; 89: 1049-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26524402

RESUMO

Peroxynitrite (the physiological mixture of ONOOH and its anion, ONOO(-)) is a powerful biologically-relevant oxidant capable of oxidizing and damaging a range of important targets including sulfides, thiols, lipids, proteins, carbohydrates and nucleic acids. Excessive production of peroxynitrite is associated with several human pathologies including cardiovascular disease, ischemic-reperfusion injury, circulatory shock, inflammation and neurodegeneration. This study demonstrates that low-molecular-mass selenols (RSeH), selenides (RSeR') and to a lesser extent diselenides (RSeSeR') react with peroxynitrite with high rate constants. Low molecular mass selenols react particularly rapidly with peroxynitrite, with second order rate constants k2 in the range 5.1 × 10(5)-1.9 × 10(6)M(-1)s(-1), and 250-830 fold faster than the corresponding thiols (RSH) and many other endogenous biological targets. Reactions of peroxynitrite with selenides, including selenosugars are approximately 15-fold faster than their sulfur homologs with k2 approximately 2.5 × 10(3)M(-1)s(-1). The rate constants for diselenides and sulfides were slower with k2 0.72-1.3 × 10(3)M(-1)s(-1) and approximately 2.1 × 10(2)M(-1)s(-1) respectively. These studies demonstrate that both endogenous and exogenous selenium-containing compounds may modulate peroxynitrite-mediated damage at sites of acute and chronic inflammation, with this being of particular relevance at extracellular sites where the thiol pool is limited.


Assuntos
Oxidantes/química , Ácido Peroxinitroso/química , Compostos de Selênio/química , Compostos de Enxofre/química , Humanos , Cinética , Oxidantes/metabolismo , Ácido Peroxinitroso/metabolismo , Compostos de Selênio/metabolismo , Compostos de Enxofre/metabolismo
14.
Chemosphere ; 119 Suppl: S81-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24745559

RESUMO

This study compared the UVC/S2O8(2-) system with the more commonly used AOP in water industry, UVC/H2O2, and examined whether the first one can be an economically feasible alternative technology. Atrazine and 4 volatile compounds (methyl tert-butyl ether, cis-dichlorethen, 1,4-dioxane and 1,1,1-trichloroethane) were chosen as model contaminants because they exhibit different susceptibility to UVC photolysis and AOPs. A collimated beam apparatus was utilized for the majority of the experiments (controlled environment, without mass transfer phenomena), while selected experiments were performed in a flow-through reactor to simulate industrial applications. Initial experiments on the activation of oxidants with a LP lamp indicated that S2O8(2-) is photolysed about 2.3 times faster than H2O2 and that the applied treatment times were not sufficient to utilize the majority of the oxidant. The effect of oxidants' concentrations were tested with atrazine alone and in the micropollutants' mixture and it was decided to use 11.8 mg L(-1) S2O8(2-) and 14.9 mg L(-1) H2O2 for further testing since is closer to industrial applications and to minimize the residual oxidant concentration. Changes of the matrix composition of the treated water were investigated with the addition of chloride, bicarbonate and humic acids at concentrations relevant to a well-water-sample, the results showed that the system least affected was UVC/H2O2. Only when bicarbonate was used, UVC/S2O8(2-) performed better. Overall, testing these systems with the mixture of micropollutants gave better insights to their efficiency than atrazine alone and UVC/S2O8(2-) is recommended for selective oxidation of challenging matrices.


Assuntos
Peróxido de Hidrogênio/química , Oxidantes/química , Compostos de Sódio/química , Sulfatos/química , Raios Ultravioleta , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Bicarbonatos/química , Cloretos/química , Custos e Análise de Custo , Água Subterrânea/química , Substâncias Húmicas , Oxirredução , Purificação da Água/economia , Purificação da Água/métodos
15.
Chemosphere ; 119 Suppl: S115-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25011641

RESUMO

The performance of S2O8(2-)/UV-C and H2O2/UV-C treatments was investigated for the degradation and detoxification of Bisphenol A (BPA). The acute toxicity of BPA and its degradation products was examined with the Vibrio fischeri bioassay, whereas changes in estrogenic activity were followed with the Yeast Estrogen Screen (YES) assay. LC and LC-MS/MS analyses were conducted to determine degradation products evolving during photochemical treatment. In addition, BPA-spiked real freshwater samples were also subjected to S2O8(2-)/UV-C and H2O2/UV-C treatment to study the effect of a real water matrix on BPA removal and detoxification rates. BPA removal in pure water was very fast (⩽7 min) and complete via both H2O2/UV-C and S2O8(2-)/UV-C treatment, accompanied with rapid and significant mineralization rates ranging between 70% and 85%. V.fischeri bioassay results indicated that degradation products being more toxic than BPA were formed at the initial stages of H2O2/UV-C whereas a rapid and steady reduction in toxicity was observed during S2O8(2-)/UV-C treatment in pure water. UV-C treatment products exhibited a higher estrogenic activity than the original BPA solution while the estrogenicity of BPA was completely removed during H2O2/UV-C and S2O8(2-)/UV-C treatments parallel to its degradation. 3-methylbenzoic and 4-sulfobenzoic acids, as well as the ring opening products fumaric, succinic and oxalic acids could be identified as degradation products. BPA degradation required extended treatment periods (>20 min) and TOC removals were considerably retarded (by 40%) in the raw freshwater matrix most probably due to its natural organic matter content (TOC=5.1 mg L(-1)). H2O2/UV-C and S2O8(2-)/UV-C treatment in raw freshwater did not result in toxic degradation products.


Assuntos
Compostos Benzidrílicos , Estrogênios , Peróxido de Hidrogênio/química , Fenóis , Compostos de Sódio/química , Sulfatos/química , Raios Ultravioleta , Poluentes Químicos da Água , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/metabolismo , Compostos Benzidrílicos/química , Compostos Benzidrílicos/efeitos da radiação , Compostos Benzidrílicos/toxicidade , Ácidos Carboxílicos/química , Cromatografia Líquida , Receptor alfa de Estrogênio/metabolismo , Estrogênios/química , Estrogênios/efeitos da radiação , Estrogênios/toxicidade , Água Doce , Oxidantes/química , Fenóis/química , Fenóis/efeitos da radiação , Fenóis/toxicidade , Saccharomyces cerevisiae/genética , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-25325777

RESUMO

Aflatoxicosis has repeatedly affected Kenyans, particularly in the eastern region, due to consumption of contaminated maize. However, save for the cases of acute toxicity, the levels of sub-lethal exposure have not been adequately assessed. It is believed that this type of exposure does exist even during the seasons when acute toxicity does not occur. This study, therefore, was designed to assess the exposure of households to aflatoxins through consumption of maize and maize products. Twenty samples each of maize kernels, muthokoi and maize meal were randomly sampled from households in Kibwezi District of Makueni County in Eastern Kenya and analysed for aflatoxin contamination. The samples were quantitatively analysed for aflatoxin contamination using HPLC. The uncertainty and variability in dietary exposure was quantitatively modelled in Ms Excel using Monte Carlo simulation in @Risk software. Aflatoxins were found in 45% of maize kernels at between 18 and 480 µg kg⁻¹, 20% of muthokoi at between 12 and 123 µg kg⁻¹, and 35% of maize meal at between 6 and 30 µg kg⁻¹. The mean dietary exposure to aflatoxin in maize kernels was 292 ± 1567 ng kg⁻¹ body weight day⁻¹, while the mean dietary exposure to aflatoxin in maize meal and muthokoi were 59 ± 62 and 27 ± 154 ng kg⁻¹ body weight day⁻¹ respectively. The results showed that the amount and frequency of consumption of the three foods is the more important contributing factor than the mean aflatoxin concentration levels, to the risk of dietary exposure to aflatoxins.


Assuntos
Aflatoxinas/toxicidade , Carcinógenos Ambientais/toxicidade , Dieta/efeitos adversos , Contaminação de Alimentos , Manipulação de Alimentos , Sementes/química , Zea mays/química , Adulto , Aflatoxinas/análise , Aflatoxinas/antagonistas & inibidores , Sulfato de Amônio/química , Carcinógenos Ambientais/análise , Carcinógenos Ambientais/química , Criança , Estudos Transversais , Países em Desenvolvimento , Dieta/etnologia , Monitoramento Ambiental , Características da Família , Contaminação de Alimentos/prevenção & controle , Conservantes de Alimentos/química , Humanos , Quênia , Método de Monte Carlo , Oxidantes/química , Medição de Risco , Sementes/microbiologia , Zea mays/microbiologia
17.
Environ Sci Technol ; 48(10): 5652-9, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24678692

RESUMO

To quantify the effects of an advanced iron photochemistry scheme, the chemical aqueous-phase radical mechanism (CAPRAM 3.0i) has been updated with several new Fe(III)-carboxylate complex photolysis reactions. Newly introduced ligands are malonate, succinate, tartrate, tartronate, pyruvate, and glyoxalate. Model simulations show that more than 50% of the total Fe(III) is coordinated by oxalate and up to 20% of total Fe(III) is bound in the newly implemented 1:1 complexes with tartronate, malonate, and pyruvate. Up to 20% of the total Fe(III) is found in hydroxo and sulfato complexes. The fraction of [Fe(oxalate)2](-) and [Fe(pyruvate)](2+) is significantly higher during nighttime than during daytime, which points toward a strong influence of photochemistry on these species. Fe(III) complex photolysis is an important additional sink for tartronate, pyruvate, and oxalate, with a complex photolysis contribution to overall degradation of 46, 40, and 99%, respectively, compared to all possible sink reactions with atmospheric aqueous-phase radicals, such as (•)OH, NO3(•), and SO4(•) (-). Simulated aerosol particles have a much lower liquid water content than cloud droplets, thus leading to high concentrations of species and, consequently, an enhancement of the photolysis sink reactions in the aerosol particles. The simulations showed that Fe(III) photochemistry should not be neglected when considering the fate of carboxylic acids, which constitute a major part of aqueous secondary organic aerosol (aqSOA) in tropospheric cloud droplets and aqueous particles. Failure to consider this loss pathway has the potential to result in a significant overestimate of aqSOA production.


Assuntos
Ácidos Carboxílicos/química , Radicais Livres/química , Ferro/química , Modelos Teóricos , Material Particulado/química , Aerossóis/química , Simulação por Computador , Ligantes , Oxidantes/química , Processos Fotoquímicos , Fotólise , Água/química
18.
Sci Total Environ ; 481: 335-42, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24607397

RESUMO

Nanoscale zero-valent iron (nZVI) particles are efficient for the remediation of aquifers polluted by trichloroethylene (TCE). But for on-site applications, their reactivity can be affected by the presence of common inorganic co-pollutants, which are equally reduced by nZVI particles. The aim of this study was to assess the potential positive effects of nZVI surface modification and concentration level on TCE removal in the concomitant presence of two strong oxidants, i.e., Cr(VI) and NO3(-). A design of experiments, testing four factors (i.e. nZVI concentration, nZVI surface modification, Cr(VI) concentration and NO3(-) concentration), was used to select the best trials for the identification of the main effects of the factors and of the factors interactions. The effects of these factors were studied by measuring the following responses: TCE removal rates at different times, degradation kinetic rates, and the transformation products formed. As expected, TCE degradation was delayed or inhibited in most of the experiments, due to the presence of inorganics. The negative effects of co-pollutants can be palliated by combining surface modification with a slight increase in nZVI concentration. Encouragingly, complete TCE removal was achieved for some given experimental conditions. Noteworthily, nZVI surface modification was found to promote the efficient degradation of TCE. When degradation occurred, TCE was mainly transformed into innocuous non-chlorinated transformation products, while hazardous chlorinated transformation products accounted for a small percentage of the mass-balance.


Assuntos
Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Ferro/química , Nanopartículas Metálicas/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Halogenação , Cinética , Modelos Químicos , Oxidantes/química , Propriedades de Superfície , Tricloroetileno/análise , Poluentes Químicos da Água/análise
19.
J Environ Manage ; 134: 145-52, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24486468

RESUMO

The objective of this study is to evaluate the operating costs of treating slaughterhouse wastewater (SWW) using combined biological and advanced oxidation processes (AOPs). This study compares the performance and the treatment capability of an anaerobic baffled reactor (ABR), an aerated completely mixed activated sludge reactor (AS), and a UV/H2O2 process, as well as their combination for the removal of the total organic carbon (TOC). Overall efficiencies are found to be up to 75.22, 89.47, 94.53, 96.10, 96.36, and 99.98% for the UV/H2O2, ABR, AS, combined AS-ABR, combined ABR-AS, and combined ABR-AS-UV/H2O2 processes, respectively. Due to the consumption of electrical energy and reagents, operating costs are calculated at optimal conditions of each process. A cost-effectiveness analysis (CEA) is performed at optimal conditions for the SWW treatment by optimizing the total electricity cost, H2O2 consumption, and hydraulic retention time (HRT). The combined ABR-AS-UV/H2O2 processes have an optimal TOC removal of 92.46% at an HRT of 41 h, a cost of $1.25/kg of TOC removed, and $11.60/m(3) of treated SWW. This process reaches a maximum TOC removal of 99% in 76.5 h with an estimated cost of $2.19/kg TOC removal and $21.65/m(3) treated SWW, equivalent to $6.79/m(3) day.


Assuntos
Matadouros , Reatores Biológicos , Peróxido de Hidrogênio/química , Raios Ultravioleta , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água , Aerobiose , Anaerobiose , Carbono/metabolismo , Análise Custo-Benefício , Oxidantes/química , Oxirredução , Águas Residuárias , Poluentes da Água/química , Poluentes da Água/metabolismo , Poluentes da Água/efeitos da radiação
20.
J Biol Chem ; 289(9): 5580-95, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24436331

RESUMO

Oxidants derived from myeloperoxidase (MPO) contribute to inflammatory diseases. In vivo MPO activity is commonly assessed by the accumulation of 3-chlorotyrosine (3-Cl-Tyr), although 3-Cl-Tyr is formed at low yield and is subject to metabolism. Here we show that MPO activity can be assessed using hydroethidine (HE), a probe commonly employed for the detection of superoxide. Using LC/MS/MS, (1)H NMR, and two-dimensional NOESY, we identified 2-chloroethidium (2-Cl-E(+)) as a specific product when HE was exposed to hypochlorous acid (HOCl), chloramines, MPO/H2O2/chloride, and activated human neutrophils. The rate constant for HOCl-mediated conversion of HE to 2-Cl-E(+) was estimated to be 1.5 × 10(5) M(-1)s(-1). To investigate the utility of 2-Cl-E(+) to assess MPO activity in vivo, HE was injected into wild-type and MPO-deficient (Mpo(-/-)) mice with established peritonitis or localized arterial inflammation, and tissue levels of 2-Cl-E(+) and 3-Cl-Tyr were then determined by LC/MS/MS. In wild-type mice, 2-Cl-E(+) and 3-Cl-Tyr were detected readily in the peritonitis model, whereas in the arterial inflammation model 2-Cl-E(+) was present at comparatively lower concentrations (17 versus 0.3 pmol/mg of protein), and 3-Cl-Tyr could not be detected. Similar to the situation with 3-Cl-Tyr, tissue levels of 2-Cl-E(+) were decreased substantially in Mpo(-/-) mice, indicative of the specificity of the assay. In the arterial inflammation model, 2-Cl-E(+) was absent from non-inflamed arteries and blood, suggesting that HE oxidation occurred locally in the inflamed artery. Our data suggest that the conversion of exogenous HE to 2-Cl-E(+) may be a useful selective and sensitive marker for MPO activity in addition to 3-Cl-Tyr.


Assuntos
Peróxido de Hidrogênio/química , Oxidantes/química , Peroxidase/química , Fenantridinas/química , Animais , Arterite/enzimologia , Arterite/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Peritonite/enzimologia , Peritonite/genética , Peroxidase/genética , Peroxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA