Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Ind Health ; 40(5): 272-291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38523547

RESUMO

Perchloroethylene (PCE) is used as a solvent and chemical intermediate. Following chronic inhalation exposure, PCE selectively induced liver tumors in mice. Understanding the mode of action (MOA) for PCE carcinogenesis in mice is important in defining its possible human cancer risk. The proposed MOA is based on the extensive examination of the peer-reviewed studies that have assessed the mouse liver effects of PCE and its major oxidative metabolite trichloroacetic acid (TCA). Similar to PCE, TCA has also been demonstrated to liver tumors selectively in mice following chronic exposure. The Key Events (KE) of the proposed PCE MOA involve oxidative metabolism of PCE to TCA [KE 1]; activation of the peroxisome proliferator-activated receptor alpha (PPARα) [KE 2]; alteration in hepatic gene expression including cell growth pathways [KE 3]; increase in cell proliferation [KE 4]; selective clonal expansion of hepatic preneoplastic foci [KE 5]; and formation of hepatic neoplasms [KE 6]. The scientific evidence supporting the PPARα MOA for PCE is strong and satisfies the requirements for a MOA analysis. The PPARα liver tumor MOA in rodents has been demonstrated not to occur in humans; thus, human liver cancer risk to PCE is not likely.


Assuntos
Neoplasias Hepáticas , Tetracloroetileno , Camundongos , Humanos , Animais , Tetracloroetileno/toxicidade , Tetracloroetileno/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/farmacologia , Neoplasias Hepáticas/induzido quimicamente , Fígado , Oxirredução , Medição de Risco
2.
Toxicol Sci ; 192(1): 15-29, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36629480

RESUMO

HFPO-DA (ammonium, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate) is a short-chain polyfluorinated alkyl substance (PFAS) used in the manufacture of some types of fluorinated polymers. Like many PFAS, toxicity studies with HFPO-DA indicate the liver is the primary target of toxicity in rodents following oral exposure. Due to the structural diversity of PFAS, the mode of action (MOA) can differ between PFAS for the same target tissue. There is significant evidence for involvement of peroxisome proliferator-activated receptor alpha (PPARα) activation based on molecular and histopathological responses in the liver following HFPO-DA exposure, but other MOAs have also been hypothesized based on limited evidence. The MOA underlying the liver effects in mice exposed to HFPO-DA was assessed in the context of the Key Events (KEs) outlined in the MOA framework for PPARα activator-induced rodent hepatocarcinogenesis. The first 3 KEs (ie, PPARα activation, alteration of cell growth pathways, and perturbation of cell growth/survival) are supported by several lines of evidence from both in vitro and in vivo data available for HFPO-DA. In contrast, alternate MOAs, including cytotoxicity, PPARγ and mitochondrial dysfunction are generally not supported by the scientific literature. HFPO-DA-mediated liver effects in mice are not expected in humans as only KE 1, PPARα activation, is shared across species. PPARα-mediated gene expression in humans produces only a subset (ie, lipid modulating effects) of the responses observed in rodents. As such, the adverse effects observed in rodent livers should not be used as the basis of toxicity values for HFPO-DA for purposes of human health risk assessment.


Assuntos
Fluorocarbonos , Neoplasias Hepáticas , Humanos , Camundongos , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Fluorocarbonos/toxicidade , Fígado , Neoplasias Hepáticas/metabolismo , Roedores/metabolismo
3.
Mol Divers ; 27(6): 2867-2885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36544031

RESUMO

Peroxisome proliferator-activated receptors (PPAR)-α, a ligand-activated transcription factor stands out to be a valuable protein target against cancer. Given that ligand binding is the crucial process for the activation of PPAR-α, fibrate class of synthetic compounds serves as potent agonist for the receptor. However, their serious side effects limit the long-term application in cancer. This emphasizes the dire need to identify new candidates that would exert desired activation by abrogating the adverse effects caused by synthetic agonists. Natural dietary products serve as an important source of drug discovery. Hence, the present study encompasses the investigation of the role of natural plant phenolic compounds: kaempferol, resveratrol, and quercetin and their 8708 derivatives by the means of computational pipeline comprising molecular docking and molecular dynamic (MD) simulation techniques. Docking calculations shortlisted potential candidates, namely 6-cinnamylchrysin (6-CC), resveratrol potassium-4-sulfate (RPS) and 6-[2-(3,4-Dihydroxyphenyl)-5-hydroxy-4-oxochromen-7-yl]oxyhexyl nitrate (DHOON), and derivatives of kaempferol, resveratrol, and quercetin, respectively. 6-CC, RPS, and DHOON manifested better affinities of - 32.83 kcal/mol (Ala333, Lys358, His440), - 27.22 kcal/mol (Tyr314, Met355), and - 30.18 kcal/mol (Ser280, Tyr314, Ala333), respectively, and were found to act as good stimulants for PPAR-α. Among these three compounds, 6-CC caused relatively least deviations and fluctuations analyzed through MD simulation which judiciously held responsible to attain most favorable interaction with PPAR-α. Followed by the binding free energy (ΔG) calculations using MM-GBSA confirmed the key role of 6-CC toward PPAR-α. The compound 6-CC also achieved high drug-likeness and pharmacokinetic properties. Thus, these findings stipulate new drug leads for PPAR-α receptor which abets a way to develop new anti-cancer drugs.


Assuntos
Neoplasias , Quercetina , Simulação de Acoplamento Molecular , Resveratrol/farmacologia , Quercetina/farmacologia , PPAR alfa/agonistas , PPAR alfa/metabolismo , Ligantes , Quempferóis/farmacologia , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico
4.
Biomolecules ; 12(7)2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35883529

RESUMO

Lycopene is a carotenoid found in tomatoes that has potent antioxidant activity. The Mediterranean diet is particularly rich in lycopene, which has well-known beneficial effects on cardiovascular health. We tested the effects of lycopene extract in a group of 20 ApoE knockout mice, fed with a high fat western diet for 14 weeks. Starting from week 3 and up to week 14, the mice were randomly divided into two groups that received lycopene (n = 10) by oral suspension every day at the human equivalent dose of 60 mg/day (0.246 mg/mouse/day), or the vehicle solution (n = 10). The lycopene administration reduced triglycerides and cholesterol blood levels starting from week 6 and continuing through to the end of the experiment (p < 0.001). This reduction was mediated by an enhanced liver expression of PPAR-α and AMPK-α and reduced SREBP levels (p < 0.0001). As a histological red-out, the extent of atherosclerotic plaques and the intima−media thickness in the aorta were significantly reduced by lycopene. In this context, lycopene augmented the Nrf-2 positivity staining in the endothelium, thereby confirming that its antioxidant activity was mediated by this nuclear factor. The positive results obtained in this pre-clinical model further support the use of lycopene extracts to reduce atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Espessura Intima-Media Carotídea , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Humanos , Licopeno/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/metabolismo , Placa Aterosclerótica/metabolismo
5.
Nutrients ; 14(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35745260

RESUMO

There is a consensus that ferulic acid (FA), the most prominent phenolic acid in whole grains, displays a protective effect in non-alcoholic fatty liver disease (NAFLD), though its underlying mechanism not fully elucidated. This study aimed to investigate the protective effect of FA on high-fat diet (HFD)-induced NAFLD in mice and its potential mechanism. C57BL/6 mice were divided into the control diet (CON) group, the HFD group, and the treatment (HFD+FA) group, fed with an HFD and FA (100 mg/kg/day) by oral gavage for 12 weeks. Hematoxylin and eosin (H&E) staining and Oil Red O staining were used to evaluate liver tissue pathological changes and lipid accumulation respectively. It was demonstrated that FA supplementation prevented HFD-induced NAFLD, which was evidenced by the decreased accumulation of lipid and hepatic steatosis in the HFD+FA group. Specifically, FA supplementation decreased hepatic triacylglycerol (TG) content by 33.5% (p < 0.01). Metabolic cage studies reveal that FA-treated mice have elevated energy expenditure by 11.5% during dark phases. Mechanistically, FA treatment increases the expression of rate-limiting enzymes of fatty acid oxidation and ketone body biosynthesis CPT1A, ACOX1 and HMGCS2, which are the peroxisome proliferator-activated receptors α (PPARα) targets in liver. In conclusion, FA could effectively prevent HFD-induced NAFLD possibly by activating PPARα to increase energy expenditure and decrease the accumulation of triacylglycerol in the liver.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Ácidos Cumáricos , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Ácidos Graxos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , PPAR alfa/metabolismo , Triglicerídeos/metabolismo
6.
Adv Sci (Weinh) ; 9(2): e2102949, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34747141

RESUMO

Adipose thermogenesis plays a pivotal role in whole-body metabolic homeostasis. Although transcriptional mechanisms that promote thermogenesis are extensively studied, the negative regulatory network is still poorly understood. Here, a Krüppel-associated box (KRAB) domain-containing zinc finger protein, ZFP961, as a potent repressor of the thermogenic program is identified. ZFP961 expression is induced by cold and ß3-adrenergic agonist in adipose tissue. ZFP961 represses brown fat-selective gene expression and mitochondrial respiration without any effect on general adipogenesis in cultured adipocytes. Adipose-specific knockdown and overexpression of ZFP961 produce remarkable and opposite phenotypes of white fat remodeling. ZFP961 knockout mice display robust inguinal white adipose tissue browning, which is abolished by reexpression of full-length ZFP961, but not by KRAB domain-deleted ZFP961 mutant. ZFP961-deficient mice are cold tolerant and resistant to high-fat diet-induced obesity, hyperglycemia, and hepatic steatosis. ZFP961 suppresses thermogenic gene expression by directly interacting with PPARα and blocking its transcriptional activity, which can be completely negated by the PPARα agonist. The findings uncover ZFP961 as a critical physiological brake that limits adipose thermogenesis and provides insights into the regulatory mechanisms that maintain energy balance and tissue homeostasis.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo Energético/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Termogênese/genética , Dedos de Zinco/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Toxicol In Vitro ; 64: 104463, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31628012

RESUMO

In this paper, we evaluate the PPARα signaling network in rats, examining transcriptional responses in primary hepatocytes exposed to a PPARα specific ligand, GW7647. These transcriptomic studies were complemented with ChIP-seq studies of PPARα binding and transcription binding motif identification for PPARα responsive genes. We also conducted a limited study of GW7647 dosing the in intact rat to examine differences in transcriptional responses for primary hepatocytes in vitro and in the intact liver. The rat network has a much larger number of down-regulated genes and pathways than we had found in the human and the PPARα binding motifs in rat differed for upregulated and down regulated genes. Based on these results and comparison with our previous work with the human PPARα signaling network, we identified qualitative differences in the transcriptional networks controlled by PPARα activation in the two species that provide an explanation of the interspecies differences in the responses of humans and rodents to GW7647 and likely to other PPARα agonists. These studies also allow some observations on the manner in which in vitro, fit-for-purpose assays in human hepatocytes could form the basis for risk assessment without recourse to in-life studies in rodents or other test species.


Assuntos
Hepatócitos/metabolismo , PPAR alfa/metabolismo , Medição de Risco/métodos , Animais , Butiratos/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Masculino , PPAR alfa/agonistas , PPAR alfa/genética , Compostos de Fenilureia/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
8.
Diabetes ; 67(10): 1935-1948, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29986925

RESUMO

Metabolic homeostasis is maintained by an interplay among tissues, organs, intracellular organelles, and molecules. Cidea and Cidec are lipid droplet (LD)-associated proteins that promote lipid storage in brown adipose tissue (BAT) and white adipose tissue (WAT). Using ob/ob/Cidea-/- , ob/ob/Cidec-/- , and ob/ob/Cidea-/-/Cidec-/- mouse models and CIDE-deficient cells, we studied metabolic regulation during severe obesity to identify ways to maintain metabolic homeostasis and promote antiobesity effects. The phenotype of ob/ob/Cidea-/- mice was similar to that of ob/ob mice in terms of serum parameters, adipose tissues, lipid storage, and gene expression. Typical lipodystrophy accompanied by insulin resistance occurred in ob/ob/Cidec-/- mice, with ectopic storage of lipids in the BAT and liver. Interestingly, double deficiency of Cidea and Cidec activated both WAT and BAT to consume more energy and to increase insulin sensitivity compared with their behavior in the other three mouse models. Increased lipolysis, which occurred on the LD surfaces and released fatty acids, led to activated ß-oxidation and oxidative phosphorylation in peroxisomes and mitochondria in CIDE-deficient adipocytes. The coordination among LDs, peroxisomes, and mitochondria was regulated by adipocyte triglyceride lipase (ATGL)-peroxisome proliferator-activated receptor α (PPARα). Double deficiency of Cidea and Cidec activated energy consumption in both WAT and BAT, which provided new insights into therapeutic approaches for obesity and diabetes.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Gotículas Lipídicas/química , PPAR alfa/metabolismo , Peroxissomos/metabolismo , Proteínas/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Metabolismo Energético/fisiologia , Lipase/genética , Lipase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Fosforilação Oxidativa , PPAR alfa/genética , Proteínas/genética
9.
Metabolism ; 87: 13-17, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29936173

RESUMO

BACKGROUND: Oleoylethanolamide (OEA) is an endocannabinoid that controls food intake, energy expenditure and locomotor activity. Its anorexigenic effect appears to be mediated by PPARα, but the tissue where the presence of this receptor is required for OEA to inhibit feeding is unknown as yet. Previous studies point to a possible role of proximal enterocytes and neurons of the nodose ganglion. MATERIALS AND METHODS: Acute intraperitoneal OEA effects on food intake, energy expenditure, respiratory exchange ratio (RER) and locomotor activity were studied in control mice (PPARα-loxP) and intestinal (Villin-Cre;PPARα-loxP) or nodose ganglion (Phox2B-Cre;PPARα-loxP) specific PPARα knockout mice placed in calorimetric cages. RESULTS: OEA administration to both intestinal and nodose ganglion PPARα knockout mice decreased food intake, RER (leading to increased lipid oxidation) and locomotor activity as in control mice. However, while OEA injection acutely decreased energy expenditure in controls, this effect was not observed in mice devoid of PPARα in the intestine. CONCLUSION: These results indicate that the OEA effect on food intake is independent from the presence of PPARα in the intestine and the nodose ganglion, while the impact of OEA on energy expenditure requires the presence of PPARα in the intestine.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Endocanabinoides/farmacologia , Metabolismo Energético/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Gânglio Nodoso/metabolismo , Ácidos Oleicos/farmacologia , PPAR alfa/metabolismo , Animais , Mucosa Intestinal/efeitos dos fármacos , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Gânglio Nodoso/efeitos dos fármacos , PPAR alfa/efeitos dos fármacos , PPAR alfa/genética
10.
Biochem Biophys Res Commun ; 465(2): 249-55, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26271596

RESUMO

Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes.


Assuntos
Tecido Adiposo Marrom/metabolismo , Diabetes Mellitus Experimental/prevenção & controle , Metabolismo Energético/genética , Doença de Depósito de Glicogênio Tipo IIb/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Autofagia/genética , Glicemia/metabolismo , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica , Gorduras na Dieta/efeitos adversos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Doença de Depósito de Glicogênio Tipo IIb/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Lisossomos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , PPAR alfa/metabolismo , Fagossomos/metabolismo , Fagossomos/patologia , Fatores de Proteção , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Cell Biochem Funct ; 32(4): 368-77, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24615887

RESUMO

Drugs used in the treatment of type 2 diabetes and cardiovascular disease, specifically peroxisome proliferator-activated receptor (PPAR) agonists, have been reported to affect bone cell function and fracture risk. In this study, we assessed the direct effects of PPAR-γ agonists (rosiglitazone and troglitazone), used in the treatment of diabetes, and a PPAR-α agonist (fenofibrate), used to treat hyperlipidaemia, on the function of primary osteoblasts and osteoclasts. Formation of 'trabecular' bone structures by rat calvarial osteoblasts was reduced by up to 85% in cultures treated with rosiglitazone and by 45% in troglitazone-treated or fenofibrate-treated cultures; at the same time, lipid droplet formation was increased by 40-70%. The expression of key osteogenic markers was similarly downregulated in cultures treated with PPAR agonists, whereas adipogenesis markers were upregulated. Formation of osteoclasts in cultures derived from mouse marrow diminished with fenofibrate treatment, whereas both glitazones reduced resorptive activity without affecting osteoclast number. Metformin, although not a PPAR agonist, is also commonly used in the treatment of type 2 diabetes. Here, metformin was found to have no effect on bone cell function. Taken together, these data suggest that PPAR-γ agonists may enhance bone loss via increased adipogenesis at the expense of osteoblast formation. In contrast, PPAR-α agonists may prevent bone loss. Given that the prevalence of diabetes and cardiovascular disease is expected to rise significantly, greater attention may need to be paid to the effects of PPAR agonists on bone homeostasis.


Assuntos
Adipogenia/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , PPAR alfa/agonistas , PPAR gama/agonistas , Animais , Diferenciação Celular , Células Cultivadas , Cromanos/farmacologia , Fenofibrato/farmacologia , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Gotículas Lipídicas/efeitos dos fármacos , Metformina/farmacologia , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Ratos , Ratos Sprague-Dawley , Rosiglitazona , Tiazolidinedionas/farmacologia , Troglitazona
12.
J Biol Chem ; 288(50): 36040-51, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24155240

RESUMO

NAT8L (N-acetyltransferase 8-like) catalyzes the formation of N-acetylaspartate (NAA) from acetyl-CoA and aspartate. In the brain, NAA delivers the acetate moiety for synthesis of acetyl-CoA that is further used for fatty acid generation. However, its function in other tissues remained elusive. Here, we show for the first time that Nat8l is highly expressed in adipose tissues and murine and human adipogenic cell lines and is localized in the mitochondria of brown adipocytes. Stable overexpression of Nat8l in immortalized brown adipogenic cells strongly increases glucose incorporation into neutral lipids, accompanied by increased lipolysis, indicating an accelerated lipid turnover. Additionally, mitochondrial mass and number as well as oxygen consumption are elevated upon Nat8l overexpression. Concordantly, expression levels of brown marker genes, such as Prdm16, Cidea, Pgc1α, Pparα, and particularly UCP1, are markedly elevated in these cells. Treatment with a PPARα antagonist indicates that the increase in UCP1 expression and oxygen consumption is PPARα-dependent. Nat8l knockdown in brown adipocytes has no impact on cellular triglyceride content, lipogenesis, or oxygen consumption, but lipolysis and brown marker gene expression are increased; the latter is also observed in BAT of Nat8l-KO mice. Interestingly, the expression of ATP-citrate lyase is increased in Nat8l-silenced adipocytes and BAT of Nat8l-KO mice, indicating a compensatory mechanism to sustain the acetyl-CoA pool once Nat8l levels are reduced. Taken together, our data show that Nat8l impacts on the brown adipogenic phenotype and suggests the existence of the NAT8L-driven NAA metabolism as a novel pathway to provide cytosolic acetyl-CoA for lipid synthesis in adipocytes.


Assuntos
Acetiltransferases/metabolismo , Adipócitos Marrons/metabolismo , Metabolismo Energético , Metabolismo dos Lipídeos , Acetilcoenzima A/metabolismo , Acetiltransferases/deficiência , Acetiltransferases/genética , Adipócitos Marrons/citologia , Adipócitos Marrons/enzimologia , Adipogenia , Animais , Proteínas de Ciclo Celular/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Inativação Gênica , Humanos , Canais Iônicos/metabolismo , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Tamanho Mitocondrial , PPAR alfa/metabolismo , Fenótipo , Fosfoproteínas/metabolismo , Proteínas Quinases/genética , Transporte Proteico , Proteína Desacopladora 1 , Regulação para Cima
13.
J Physiol ; 591(18): 4655-66, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23818692

RESUMO

Twelve weeks of daily l-carnitine and carbohydrate feeding in humans increases skeletal muscle total carnitine content, and prevents body mass accrual associated with carbohydrate feeding alone. Here we determined the influence of L-carnitine and carbohydrate feeding on energy metabolism, body fat mass and muscle expression of fuel metabolism genes. Twelve males exercised at 50% maximal oxygen consumption for 30 min once before and once after 12 weeks of twice daily feeding of 80 g carbohydrate (Control, n=6) or 1.36 g L-carnitine + 80 g carbohydrate (Carnitine, n=6). Maximal carnitine palmitolytransferase 1 (CPT1) activity remained similar in both groups over 12 weeks. However, whereas muscle total carnitine, long-chain acyl-CoA and whole-body energy expenditure did not change over 12 weeks in Control, they increased in Carnitine by 20%, 200% and 6%, respectively (P<0.05). Moreover, body mass and whole-body fat mass (dual-energy X-ray absorptiometry) increased over 12 weeks in Control by 1.9 and 1.8 kg, respectively (P<0.05), but did not change in Carnitine. Seventy-three of 187 genes relating to fuel metabolism were upregulated in Carnitine vs. Control after 12 weeks, with 'insulin signalling', 'peroxisome proliferator-activated receptor signalling' and 'fatty acid metabolism' as the three most enriched pathways in gene functional analysis. In conclusion, increasing muscle total carnitine in healthy humans can modulate muscle metabolism, energy expenditure and body composition over a prolonged period, which is entirely consistent with a carnitine-mediated increase in muscle long-chain acyl-group translocation via CPT1. Implications to health warrant further investigation, particularly in obese individuals who have a reduced reliance on muscle fat oxidation during low-intensity exercise.


Assuntos
Tecido Adiposo/metabolismo , Carnitina/metabolismo , Metabolismo Energético , Exercício Físico , Redes Reguladoras de Genes , Músculo Esquelético/metabolismo , Tecido Adiposo/fisiologia , Adulto , Carnitina O-Palmitoiltransferase/metabolismo , Método Duplo-Cego , Humanos , Metabolismo dos Lipídeos , Masculino , Músculo Esquelético/fisiologia , Consumo de Oxigênio , PPAR alfa/metabolismo
14.
Funct Integr Genomics ; 13(1): 133-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23314861

RESUMO

During weaning, epithelial cell function in the rumen transitions in response to conversion from a pre-ruminant to a true ruminant environment to ensure efficient nutrient absorption and metabolism. To identify gene networks affected by weaning in bovine rumen, Holstein bull calves were fed commercial milk replacer only (MRO) until 42 days of age, then were provided diets of either milk + orchardgrass hay (MH) or milk + grain-based calf starter (MG). Rumen epithelial RNA was extracted from calves sacrificed at four time points: day 14 (n = 3) and day 42 (n = 3) of age while fed the MRO diet and day 56 (n = 3/diet) and day 70 (n = 3/diet) while fed the MH and MG diets for transcript profiling by microarray hybridization. Five two-group comparisons were made using Permutation Analysis of Differential Expression® to identify differentially expressed genes over time and developmental stage between days 14 and 42 within the MRO diet, between day 42 on the MRO diet and day 56 on the MG or MH diets, and between the MG and MH diets at days 56 and 70. Ingenuity Pathway Analysis (IPA) of differentially expressed genes during weaning indicated the top 5 gene networks involving molecules participating in lipid metabolism, cell morphology and death, cellular growth and proliferation, molecular transport, and the cell cycle. Putative genes functioning in the establishment of the rumen microbial population and associated rumen epithelial inflammation during weaning were identified. Activation of transcription factor PPAR-α was identified by IPA software as an important regulator of molecular changes in rumen epithelium that function in papillary development and fatty acid oxidation during the transition from pre-rumination to rumination. Thus, molecular markers of rumen development and gene networks regulating differentiation and growth of rumen epithelium were identified for selecting targets and methods for improving and assessing rumen development and function, particularly in the growing calf.


Assuntos
Bovinos/crescimento & desenvolvimento , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rúmen/crescimento & desenvolvimento , Transcrição Gênica , Desmame , Animais , Animais Endogâmicos , Bovinos/genética , Bovinos/metabolismo , Dieta , Mucosa Gástrica/crescimento & desenvolvimento , Redes Reguladoras de Genes , Metabolismo dos Lipídeos/genética , Metagenoma/genética , Leite , PPAR alfa/genética , PPAR alfa/metabolismo , Rúmen/metabolismo , Rúmen/fisiologia
15.
Psychoneuroendocrinology ; 37(6): 782-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21978868

RESUMO

BACKGROUND: Glucocorticoids are the key regulators of the biological stress response and act by binding to glucocorticoid receptors (GR). Expression of GR is altered by DNA methylation. Methylation patterns in GR promoters have been shown to be highly variable between individuals, but little is known about the functional consequences of this variation for the acute stress response. The present study investigated associations between methylation status of the GR 1-C promoter and cortisol, cardiovascular and perceived stress responses to a psychosocial stress protocol in a large healthy adult population. METHODS: A total of 725 overall healthy men and women, aged 55-60 years, participated in a standardized psychosocial stress protocol consisting of three different stressors. At different stages during the stress protocol, salivary cortisol levels, continuous blood pressure and heart rate (HR) levels as well as perceived stress were measured. Stress reactivity was calculated as the increase between basal and peak measurements. Methylation status of the GR 1-C promoter was assessed in DNA isolated from peripheral blood samples using a methylation sensitive PCR assay for 675 of the 725 participants. RESULTS: A decrease in methylation of the GR 1-C promoter was associated with a decrease in stress reactivity as indicated by lower cortisol and lower HR reactivity. A 1% decrease in GR 1-C methylation corresponded with a cortisol decrease by 0.14% (95% CI: 0.03-0.25, p=0.02) and an HR decrease by 0.10 bpm (0.03-0.16, p=0.003). Adjusting for sex, lifestyle and education largely abolished these associations. A decrease in methylation of the GR 1-C promoter was also associated with an increase in stress perception as indicated by higher perceived stress (0.03 points [0.00-0.06, p=0.05]), lower perceived performance (-0.03 points [-0.05 to -0.01], p=0.02), and lower perceived control (-0.03 points [-0.05 to 0.00], p=0.04). After adjusting for sex and educational level the associations were no longer statistically significant. GR 1-C methylation status was not associated with blood pressure responses to the stress protocol. DISCUSSION: Although effects were small, variation in methylation status in the GR 1-C promoter was associated with physical and perceived acute stress responses. Interestingly, these associations could largely be explained by differences in lifestyle and education.


Assuntos
Metilação de DNA/fisiologia , Escolaridade , Estilo de Vida , Regiões Promotoras Genéticas/genética , Receptores de Glucocorticoides/genética , Estresse Psicológico/genética , Doença Aguda , Pressão Sanguínea/fisiologia , Estudos de Coortes , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , PPAR alfa/genética , PPAR alfa/metabolismo , Reação em Cadeia da Polimerase , Fatores Socioeconômicos , Inanição
16.
Drug Metab Dispos ; 39(1): 123-31, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20876787

RESUMO

Muraglitazar and peliglitazar, two structural analogs differing by a methyl group, are dual peroxisome proliferator-activated receptor-α/γ activators. Both compounds were extensively metabolized in humans through acyl glucuronidation to form 1-O-ß-acyl glucuronide (AG) metabolites as the major drug-related components in bile, representing at least 15 to 16% of the dose after oral administration. Peliglitazar AG was the major circulating metabolite, whereas muraglitazar AG was a very minor circulating metabolite in humans. Peliglitazar AG circulated at lower concentrations in animal species than in humans. Both compounds had a similar glucuronidation rate in UDP-glucuronic acid-fortified human liver microsomal incubations and a similar metabolism rate in human hepatocytes. Muraglitazar AG and peliglitazar AG were chemically synthesized and found to be similarly oxidized through hydroxylation and O-demethylation in NADPH-fortified human liver microsomal incubations. Peliglitazar AG had a greater stability than muraglitazar AG in incubations in buffer, rat, or human plasma (pH 7.4). Incubations of muraglitazar AG or peliglitazar AG in plasma produced more aglycon than acyl migration products compared with incubations in the buffer. These data suggested that the difference in plasma stability, not differences in intrinsic formation, direct excretion, or further oxidation of muraglitazar AG or peliglitazar AG, contributed to the observed difference in the circulation of these AG metabolites in humans. The study demonstrated the difficulty in doing risk assessment based on metabolite exposure in plasma because the more reactive muraglitazar AG would not have triggered a threshold of concern based on the recent U.S. Food and Drug Administration guidance on Metabolites in Safety Testing, whereas the more stable peliglitazar AG would have.


Assuntos
Glucuronídeos/sangue , Glicina/análogos & derivados , Oxazóis/metabolismo , Adulto , Animais , Bile/química , Bile/metabolismo , Estabilidade de Medicamentos , Glucuronídeos/metabolismo , Glicina/sangue , Glicina/química , Glicina/metabolismo , Glicina/farmacologia , Hepatócitos/metabolismo , Humanos , Macaca fascicularis , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Oxazóis/sangue , Oxazóis/química , Oxazóis/farmacologia , Oxirredução , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Ratos , Medição de Risco , Uridina Difosfato Ácido Glucurônico/metabolismo , Adulto Jovem
17.
Exp Toxicol Pathol ; 61(3): 215-21, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18926675

RESUMO

Substances like gemfibrozil, clofibrate and fenofibrate, widely used in human care for their hypolipidemic effects, belong to a larger class of chemicals called peroxisome proliferators (PPs). PPs, by binding and activing the peroxisome proliferator-activated receptor alpha (PPARalpha), modulate gene involved in lipid homeostasis both in human and in rodent. In a different way, long term administration of PPs results in hepatocarcinogenesis only in rodent. Although the phenomenon is known since more than 30 years, the exact mechanism is not well understood and the human health risks are not established. In this mini-review is inspected the major findings done in the different species and illustrates the possible doubts for human health by the use of PPs.


Assuntos
Fígado/efeitos dos fármacos , Proliferadores de Peroxissomos/efeitos adversos , Animais , Humanos , Neoplasias Hepáticas Experimentais/induzido quimicamente , PPAR alfa/metabolismo , Ratos , Medição de Risco , Especificidade da Espécie
18.
Nutr Rev ; 65(6 Pt 2): S2-6, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17605307

RESUMO

The hyperlipidemic fibrate drugs mediate their lipid-lowering effects through binding to and activating the peroxisome proliferator-activated receptor alpha (PPARalpha). PPARalpha ligands are potent hepatocarcinogens in rats and mice; after 11 months of feeding a fibrate drug, there is 100% incidence of adenomas and carcinomas. However, there is no evidence that humans chronically administered fibrates have increased cancer risk. Recent studies on PPARalpha-humanized mice have revealed a potential mechanism for the species differences in response to PPARalpha ligands. These models will be of great value in human risk assessment and in determining the mechanism of hepatocarcinogenesis.


Assuntos
Modelos Animais de Doenças , Neoplasias Hepáticas/patologia , PPAR alfa/metabolismo , Medição de Risco/métodos , Animais , Humanos , Neoplasias Hepáticas/etiologia , Camundongos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA