Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med ; 121: 103367, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701625

RESUMO

PURPOSE: Diffusing alpha-emitters radiation therapy (DaRT) is a brachytherapy technique using α-particles to treat solid tumours. The high linear energy transfer (LET) and short range of α-particles make them good candidates for the targeted treatment of cancer. Treatment planning of DaRT requires a good understanding of the dose from α-particles and the other particles released in the 224Ra decay chain. METHODS: The Geant4 Monte Carlo toolkit has been used to simulate a DaRT seed to better understand the dose contribution from all particles and simulate the DNA damage due to this treatment. RESULTS: Close to the seed α-particles deliver the majority of dose, however at radial distances greater than 4 mm, the contribution of ß-particles is greater. The RBE has been estimated as a function of number of double strand breaks (DSBs) and complex DSBs. A maximum seed spacing of 5.5 mm and 6.5 mm was found to deliver at least 20 Gy RBE weighted dose between the seeds for RBEDSB and RBEcDSB respectively. CONCLUSIONS: The DNA damage changes with radial distance from the seed and has been found to become less complex with distance, which is potentially easier for the cell to repair. Close to the seed α-particles contribute the majority of dose, however the contribution from other particles cannot be neglected and may influence the choice of seed spacing.


Assuntos
Partículas alfa , Dano ao DNA , Método de Monte Carlo , Partículas alfa/uso terapêutico , Dosagem Radioterapêutica , Doses de Radiação , Eficiência Biológica Relativa , Difusão , Braquiterapia/métodos , Humanos , Transferência Linear de Energia , Planejamento da Radioterapia Assistida por Computador/métodos , Quebras de DNA de Cadeia Dupla/efeitos da radiação
2.
Clin Nucl Med ; 49(6): 546-548, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537249

RESUMO

ABSTRACT: 212 Pb emerges as a compelling in vivo α-particle generator for targeted α therapy due to its favorable half-life ( t1/2 = 10.6 hours) aligning with the biological half-lives of small peptides and its potent α-particle emissions within the decay series. However, one of the challenges with 212 Pb is to perform appropriate image-guided dosimetry. To date, all the data have been extrapolated from its imaging analog, 203 Pb. We present the first-in-human posttherapy image-guided dosimetric estimates of a single cycle of 212 Pb VMT-α-peptide, administered in a 41-year-old woman with an advanced grade 2 NET. The patient also demonstrated partial response on treatment.


Assuntos
Partículas alfa , Tumores Neuroendócrinos , Humanos , Feminino , Adulto , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/radioterapia , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/patologia , Partículas alfa/uso terapêutico , Radiometria , Metástase Neoplásica , Radioisótopos de Chumbo , Radioterapia Guiada por Imagem , Resultado do Tratamento
3.
Int J Biol Macromol ; 263(Pt 2): 130332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401580

RESUMO

Glycogen, a complex branched glucose polymer and a blood-sugar reservoir in animals, comprises small ß particles joined together into composite α particles. In diabetic animals, α particles fragment more easily than those in healthy animals. Finding evidence for or against postulated mechanisms for α-particle formation is thus important for diabetes research. Insight into this is obtained here using Monte-Carlo simulations, including addition and loss of glucose monomer, branching and debranching, based on earlier simulations which were in acceptable agreement with experiment [Zhang et al., Int J Biol Macromolecules 2018, 116, 264]. One postulated mechanism for α-particle formation is "budding": occasionally a glucan chain temporarily protrudes from the particle, and if its growing end is sufficiently far from its parent particle, it propagates to a new linked particle. We tested this by simulations in which an "artificial" bud (a chain extending well outside the average particle radius) is added to a glycogen molecule in a dynamic steady state, and the system allowed to evolve. In some simulations, the particle reached a new steady state having an irregular dumbbell shape: a rudimentary α particle. Thus 'budding' is a possible mechanism for α particles to form. If no simulations had shown this behaviour, it would have refuted the postulate.


Assuntos
Diabetes Mellitus , Glicogênio , Animais , Partículas alfa , Glucose , Glicemia
4.
Med Phys ; 51(5): 3665-3676, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38194496

RESUMO

BACKGROUND: Our previous work introduced and evaluated a standard for surface absorbed dose rate per unit radioactivity to water from unsealed alpha-emitting radionuclides used in targeted radionuclide therapy (TRT). An overall uncertainty over 4.0% at k = 1 was reported for the absorbed dose to air measurements, which was partially attributed to the rotational alignment uncertainty in the geometrical setup. PURPOSE: A printed circuit board (PCB) with a segmented guard was constructed to align the extrapolation chamber (EC) and the source plates using a differential capacitance technique. The PCB EC aimed to enhance the repeatability of the ionization current measurements. The PCB EC was evaluated using a thin film 210Po source. The measured absorbed dose to air cavity was compared with the Monte Carlo (MC) calculations. Using the extrapolation method, the surface absorbed dose rate to water was calculated. METHODS: The PCB EC was constructed with a 4.50 mm diameter collector surrounded by four sectors and a guard electrode. The sectors were isolated for rotational alignment and later connected to the guard for ionization current measurements. A bridge circuit measured differential capacitance between opposing sectors, and a hexapod motion stage rotated the source substrate to minimize the differential capacitance. The EC was evaluated using a 210Po source with a 3.20 mm diameter and 1.253 µ $\mu $ Ci radioactivity. MC simulations were performed to calculate the k p o i n t ${k}_{point}$ , k b a c k s c a t t e r ${k}_{backscatter}$ , and k d i v ${k}_{div}$ correction factors. Ionization current measurements were performed for air gaps in the 0.3-0.525 mm range and surface absorbed dose rate to water was calculated. RESULTS: Rotational offsets of up to 3.0° were found and the current repeatability was found to increase with the absorbed dose to air uncertainty calculated to be ∼2.0%. Using the capacitance method, the effective EC diameter was measured to be 4.53 mm. The recombination, polarity, and electrometer corrections were reported to be within 1.00% across all measurement trials. The MC-calculated correction factors were calculated to be much larger than the recombination and polarity correction factors. The average k p o i n t ${k}_{point}$ , k b a c k s c a t t e r ${k}_{backscatter}$ , and k d i v ${k}_{div}$ corrections were calculated to be 1.063, 0.9402, and 2.136, respectively. The MC-calculated absorbed dose to air was found to overestimate the absorbed dose by over 4.00% when compared with the measured absorbed dose to air. The surface absorbed dose rate to water was calculated to be 2.304 × 10 - 6 $2.304 \times {10}^{ - 6}$ Gy/s/Bq with an overall uncertainty of 4.07%. CONCLUSIONS: The constructed PCB EC was deemed suitable as an absorbed dose standard. A repeatable rotational alignment was achieved using the differential capacitance technique. The metal electrodes on the PCB made a difference of < 1.00% on the backscatter correction when compared to the EC comprised of polystyrene-equivalent collector. A 20% difference in the surface absorbed dose rate to water was found between the two ECs, which is attributed to the cavity diameter differences leading to different magnitudes of dose fall-off along the lateral direction.


Assuntos
Método de Monte Carlo , Radiometria , Água , Água/química , Radiometria/instrumentação , Partículas alfa , Doses de Radiação , Padrões de Referência , Radioisótopos
5.
Med Phys ; 51(5): 3725-3733, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38284426

RESUMO

BACKGROUND: Diffusing alpha-emitters radiation therapy (DaRT) is a novel brachytherapy technique that leverages the diffusive flow of 224Ra progeny within the tumor volume over the course of the treatment. Cell killing is achieved by the emitted alpha particles that have a short range in tissue and high linear energy transfer. The current proposed absorbed dose calculation method for DaRT is based on a diffusion-leakage (DL) model that neglects absorbed dose from beta particles. PURPOSE: This work aimed to couple the DL model with dose point kernels (DPKs) to account for dose from beta particles as well as to consider the non-local deposition of energy. METHODS: The DaRT seed was modeled using COMSOL multiphysics and the DL model was implemented to extract the spatial information of the diffusing daughters. Using Monte-Carlo (MC) methods, DPKs were generated for 212Pb, 212Bi, and their progenies since they were considered to be the dominant beta emitters in the 224Ra radioactive decay chain. A convolution operation was performed between the integrated number densities of the diffusing daughters and DPKs to calculate the total absorbed dose over a 30-day treatment period. Both high-diffusion and low-diffusion cases were considered. RESULTS: The calculated DPKs showed non-negligible energy deposition over several millimeters from the source location. An absorbed dose >10 Gy was deposited within a 1.8 mm radial distance for the low diffusion case and a 2.2 mm radial distance for the high diffusion case. When the DPK method was compared with the local energy deposition method that solely considered dose from alpha particles, differences above 1 Gy were found within 1.3 and 1.8 mm radial distances from the surface of the source for the low diffusion and high diffusion cases, respectively. CONCLUSIONS: The proposed method enhances the accuracy of the dose calculation method used for the DaRT technique.


Assuntos
Partículas alfa , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica , Partículas alfa/uso terapêutico , Difusão , Braquiterapia/métodos , Radioisótopos de Chumbo/uso terapêutico , Bismuto/uso terapêutico , Humanos , Partículas beta/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos
6.
Phys Med ; 112: 102626, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37393861

RESUMO

Diffusing alpha-emitters radiation Therapy (DaRT) is an interstitial brachytherapy technique using 224Ra seeds. For accurate treatment planning a good understanding of the early DNA damage due to α-particles is required. Geant4-DNA was used to calculate the initial DNA damage and radiobiological effectiveness due to α-particles with linear energy transfer (LET) values in the range 57.5-225.9 keV/µm from the 224Ra decay chain. The impact of DNA base pair density on DNA damage has been modelled, as this parameter varies between human cell lines. Results show that the quantity and complexity of DNA damage changes with LET as expected. Indirect damage, due to water radical reactions with the DNA, decreases and becomes less significant at higher LET values as shown in previous studies. As expected, the yield of complex double strand breaks (DSBs), which are harder for a cell to repair, increases approximately linearly with LET. The level of complexity of DSBs and radiobiological effectiveness have been found to increase with LET as expected. The quantity of DNA damage has been shown to increase for increased DNA density in the expected base pair density range of human cells. The change in damage yield as a function of base pair density is largest for higher LET α-particles, an increase of over 50% for individual strand breaks between 62.7 and 127.4 keV/µm. This change in yield shows that the DNA base pair density is an important parameter for modelling DNA damage particularly at higher LET where the DNA damage is greatest and most complex.


Assuntos
Braquiterapia , Humanos , Método de Monte Carlo , Dano ao DNA , Partículas alfa/uso terapêutico , DNA
7.
Radiat Prot Dosimetry ; 199(13): 1376-1383, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394946

RESUMO

It is very important to evaluate the diameters (activity median aerodynamic diameter) of plutonium dioxide (PuO2) particles for internal exposure dose evaluation. In this study, a method of evaluating PuO2 particle diameters using an alpha-particle imaging detector was developed. PuO2 particles with different diameters were modeled by Monte Carlo simulation, and the change in the shape of the energy spectrum for each particle diameter was evaluated. Two different patterns were modeled, namely, the case of 239PuO2 and the case of PuO2 (including isotopic composition of Pu). Multiple regression analysis was performed to determine the PuO2 particle diameter from the obtained parameters. The simulated diameters and the diameters obtained with the regression model were in good agreement. The advantage of using the alpha-particle imaging detector is to measure the alpha energy spectrum for individual particle, and this allows accurate measurement of particle diameter distribution.


Assuntos
Diagnóstico por Imagem , Plutônio , Partículas alfa , Simulação por Computador , Método de Monte Carlo
8.
Med Phys ; 50(8): 5176-5188, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37161766

RESUMO

BACKGROUND: Recent developments in alpha and beta emitting radionuclide therapy highlight the importance of developing efficient methods for patient-specific dosimetry. Traditional tabulated methods such as Medical Internal Radiation Dose (MIRD) estimate the dose at the organ level while more recent numerical methods based on Monte Carlo (MC) simulations are able to calculate dose at the voxel level. A precalculated MC (PMC) approach was developed in this work as an alternative to time-consuming fully simulated MC. Once the spatial distribution of alpha and beta emitters is determined using imaging and/or numerical methods, the PMC code can be used to achieve an accurate voxelized 3D distribution of the deposited energy without relying on full MC calculations. PURPOSE: To implement the PMC method to calculate energy deposited by alpha and beta particles emitted from the Ra-224 decay chain. METHODS: The GEANT4 (version 10.7) MC toolkit was used to generate databases of precalculated tracks to be integrated in the PMC code as well as to benchmark its output. In this regard, energy spectra of alpha and beta particles emitted by the Ra-224 decay chain were generated using GAMOS (version 6.2.0) and imported into GEANT4 macro files. Either alpha or beta emitting sources were defined at the center of a homogeneous phantom filled with various materials such as soft tissue, bone, and lung where particles were emitted either mono-directionally (for database generation) or isotropically (for benchmarking). Two heterogeneous phantoms were used to demonstrate PMC code compatibility with boundary crossing events. Each precalculated database was generated step-by-step by storing particle track information from GEANT4 simulations followed by its integration in a PMC code developed in MATLAB. For a user-defined number of histories, one of the tracks in a given database was selected randomly and rotated randomly to reflect an isotropic emission. Afterward, deposited energy was divided between voxels based on step length in each voxel using a ray-tracing approach. The radial distribution of deposited energy was benchmarked against fully simulated MC calculations using GEANT4. The effect of the GEANT4 parameter StepMax on the accuracy and speed of the code was also investigated. RESULTS: In the case of alpha decay, primary alpha particles show the highest contribution (>99%) in deposited energy compared to their secondary particles. In most cases, protons act as the main secondary particles in the deposition of energy. However, for a lung phantom, using a range cutoff parameter of 10 µm on primary alpha particles yields a higher contribution of secondary electrons than protons. Differences between deposited energy calculated by PMC and fully simulated MC are within 2% for all alpha and beta emitters in homogeneous and heterogeneous phantoms. Additionally, statistical uncertainties are less than 1% for voxels with doses higher than 5% of the maximum dose. Moreover, optimization of the parameter StepMax is necessary to achieve the best tradeoff between code accuracy and speed. CONCLUSIONS: The PMC code shows good performance for dose calculations deposited by alpha and beta emitters. As a stand-alone algorithm, it is suitable to be integrated into clinical treatment planning systems.


Assuntos
Algoritmos , Prótons , Humanos , Imagens de Fantasmas , Partículas alfa/uso terapêutico , Benchmarking
9.
Appl Radiat Isot ; 197: 110825, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37099829

RESUMO

We used Monte Carlo simulations to study release of 224Ra daughter nuclei from the seed used for Diffusing Alpha-Emitters Radiation Therapy (DART). Calculated desorption probabilities for 216Po (15%) and 212Pb (12%) showed that they make a significant contribution to total release from the seed. We also showed that the dose to tissue from decays inside the 10 mm long seed exceeds 2.9 Gy for initial 224Ra activity of 3 µCi (111 kBq).


Assuntos
Partículas alfa , Braquiterapia , Partículas alfa/uso terapêutico , Braquiterapia/métodos , Simulação por Computador , Método de Monte Carlo
10.
Int J Radiat Biol ; 99(8): 1248-1256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36731443

RESUMO

PURPOSE: Different alpha exposure setups are often used to study the relation between biological responses and LET. This study aimed to estimate the dose heterogeneity and uncertainty in four exposure setups using Geant4 and PARTRAC codes. The importance of the irradiation system characteristics was shown in the context of reporting experimental results, especially in radiobiological studies at the molecular level. MATERIALS AND METHODS: Geant4 was used to estimate the dose distributions in cells grown on a disk exposed to alpha particles penetrating from above and below. The latter setup was simulated without and with a collimator. PARTRAC was used for the validation of Geant4 simulations based on distributions of the number of alpha particles penetrating a round nucleus and the deposited energy. RESULTS: The LET distributions obtained for simulated setups excluding the collimator were wide and non-Gaussian. Using a collimator resulted in a Gaussian LET distribution, but strongly reduced dose rate and dose homogeneity. Comparison between PARTRAC and Geant4 calculations for the cell nucleus exposed to alpha radiation showed an excellent agreement. CONCLUSIONS: The interpretation of results from radiobiological experiments with alpha particles should always cover the characteristics of the experimental setup, which can be done precisely with computational methods.


Assuntos
Partículas alfa , Transferência Linear de Energia , Método de Monte Carlo , Radiobiologia/métodos , Núcleo Celular
11.
Med Phys ; 50(3): 1793-1811, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36464914

RESUMO

BACKGROUND: Diffusing alpha-emitters Radiation Therapy ("DaRT") is a new method, presently in clinical trials, which allows treating solid tumors by alpha particles. DaRT relies on interstitial seeds carrying µCi-level 224 Ra activity below their surface, which release a chain of short-lived alpha emitters that spread throughout the tumor volume primarily by diffusion. Alpha dose calculations in DaRT are based on describing the transport of alpha emitting atoms, requiring new modeling techniques. PURPOSE: A previous study introduced a simplified framework, the "Diffusion-Leakage (DL) model", for DaRT alpha dose calculations, and employed it to a point source, as a basic building block of arbitrary configurations of line sources. The aim of this work, which is divided into two parts, is to extend the model to realistic seed geometries (in Part I), and to employ single-seed calculations to study the properties of DaRT seed lattices (Part II). Such calculations can serve as a pragmatic guide for treatment planning in future clinical trials. METHODS: We derive a closed-form asymptotic solution for an infinitely long cylindrical source, and extend it to an approximate time-dependent expression that assumes a uniform temporal profile at all radial distances from the source. We then develop a finite-element one-dimensional numerical scheme for a complete time-dependent solution of this geometry and validate it against the closed-form expressions. Finally, we discuss a two-dimensional axisymmetric scheme for a complete time-dependent solution for a seed of finite diameter and length. Different solutions are compared over the relevant parameter space, providing guidelines on their usability and limitations. RESULTS: We show that approximating the seed as a finite line source comprised of point-like segments significantly underestimates the correct alpha dose, as predicted by the full two-dimensional calculation. The time-dependent one-dimensional solution is shown to coincide to sub-percent-level with the two-dimensional calculation in the seed midplane, and maintains an accuracy of a few percent up to ∼2 mm from the seed edge. CONCLUSIONS: For actual treatment plans, the full two-dimensional solution should be used to generate dose lookup tables, similarly to the TG-43 format employed in conventional brachytherapy. Given the accuracy of the one-dimensional solution up to ∼2 mm from the seed edge it can be used for efficient parametric studies of DaRT seed lattices.


Assuntos
Braquiterapia , Neoplasias , Humanos , Braquiterapia/métodos , Partículas alfa/uso terapêutico , Dosagem Radioterapêutica , Método de Monte Carlo
12.
Phys Med Biol ; 67(9)2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35316802

RESUMO

Objective. A systematic review of dosimetry in Targeted Alpha Therapy (TAT) has been performed, identifying the common issues.Approach. The systematic review was performed in accordance with the PRISMA guidelines, and the literature was searched using the Scopus and PubMed databases.Main results. From the systematic review, three key points should be considered when performing dosimetry in TAT. (1) Biodistribution/Biokinetics: the accuracy of the biodistribution data is a limit to accurate dosimetry in TAT. The biodistribution of alpha-emitting radionuclides throughout the body is difficult to image directly, with surrogate radionuclide imaging, blood/faecal sampling, and animal studies able to provide information. (2) Daughter radionuclides: the decay energy of the alpha-emissions is sufficient to break the bond to the targeting vector, resulting in a release of free daughter radionuclides in the body. Accounting for daughter radionuclide migration is essential. (3) Small-scale dosimetry and microdosimetry: due to the short path length and heterogeneous distribution of alpha-emitters at the target site, small-scale/microdosimetry are important to account for the non-uniform dose distribution in a target region, organ or cell and for assessing the biological effect of alpha-particle radiation.Significance. TAT is a form of cancer treatment capable of delivering a highly localised dose to the tumour environment while sparing the surrounding healthy tissue. Dosimetry is an important part of treatment planning and follow up. Being able to accurately predict the radiation dose to the target region and healthy organs could guide the optimal prescribed activity. Detailed dosimetry models accounting for the three points mentioned above will help give confidence in and guide the clinical application of alpha-emitting radionuclides in targeted cancer therapy.


Assuntos
Partículas alfa , Neoplasias , Partículas alfa/uso terapêutico , Animais , Método de Monte Carlo , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radioisótopos/uso terapêutico , Radiometria/métodos , Distribuição Tecidual
13.
Phys Med Biol ; 67(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35013008

RESUMO

A shallow neural network was trained to accurately calculate the microdosimetric parameters, 〈z1〉 and 〈z12〉 (the first and second moments of the single-event specific energy spectra, respectively) for use in alpha-particle microdosimetry calculations. The regression network of four inputs and two outputs was created in MATLAB and trained on a data set consisting of both previously published microdosimetric data and recent Monte Carlo simulations. The input data consisted of the alpha-particle energies (3.97-8.78 MeV), cell nuclei radii (2-10µm), cell radii (2.5-20µm), and eight different source-target configurations. These configurations included both single cells in suspension and cells in geometric clusters. The mean square error (MSE) was used to measure the performance of the network. The sizes of the hidden layers were chosen to minimize MSE without overfitting. The final neural network consisted of two hidden layers with 13 and 20 nodes, respectively, each with tangential sigmoid transfer functions, and was trained on 1932 data points. The overall training/validation resulted in a MSE = 3.71 × 10-7. A separate testing data set included input values that were not seen by the trained network. The final test on 892 separate data points resulted in a MSE = 2.80 × 10-7. The 95th percentile testing data errors were within ±1.4% for 〈z1〉 outputs and ±2.8% for 〈z12〉 outputs, respectively. Cell survival was also predicted using actual versus neural network generated microdosimetric moments and showed overall agreement within ±3.5%. In summary, this trained neural network can accurately produce microdosimetric parameters used for the study of alpha-particle emitters. The network can be exported and shared for tests on independent data sets and new calculations.


Assuntos
Partículas alfa , Redes Neurais de Computação , Núcleo Celular , Sobrevivência Celular , Método de Monte Carlo
14.
Phys Med Biol ; 66(22)2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34706345

RESUMO

The purpose of this work was to validate the calculation accuracy of nanodosimetric quantities in Geant4-DNA track structure simulation code. We implemented the Jet Counter (JC) nanodosimeter geometry in the simulation platform and quantified the impact of the Geant4-DNA physics models and JC detector performance on the ionization cluster size distributions (ICSD). ICSD parameters characterize the quality of radiation field and are supposed to be correlated to the complexity of the initial DNA damage in nanoscale and eventually the response of biological systems to radiation. We compared Monte Carlo simulations of ICSD in JC geometry performed using Geant4-DNA and PTra codes with experimental data collected for alpha particles at 3.8 MeV. We investigated the impact of simulation and experimental settings, i.e., three Geant4-DNA physics models, three sizes of a nanometer sensitive volume, gas to water density scaling procedure, JC ion extraction efficiency and the presence of passive components of the detector on the ICSD and their parameters. We found that ICSD in JC geometry obtained from Geant4-DNA simulations in water correspond well to ICSD measurements in nitrogen gas for all investigated settings, while the best agreement is for Geant4-DNA physics option 4. This work also discusses the accuracy and robustness of ICSD parameters in the context of the application of track structure simulation methods for treatment planning in particle therapy.


Assuntos
Partículas alfa , DNA , Partículas alfa/uso terapêutico , Simulação por Computador , DNA/química , Método de Monte Carlo , Radiometria/métodos , Água/química
15.
Phys Med Biol ; 66(15)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34280910

RESUMO

In radiopharmaceutical treatmentsα-particles are employed to treat tumor cells. However, the mechanism that drives the biological effect induced is not well known. Being ionizing radiation,α-particles can affect biological organisms by producing damage to the DNA, either directly or indirectly. Following the principle that microdosimetry theory accounts for the stochastic way in which radiation deposits energy in sub-cellular sized volumes via physical collisions, we postulate that microdosimetry represents a reasonable framework to characterize the statistical nature of direct damage induction byα-particles to DNA. We used the TOPAS-nBio Monte Carlo package to simulate direct damage produced by monoenergetic alpha particles to different DNA structures. In separate simulations, we obtained the frequency-mean lineal energy (yF) and dose-mean lineal energy (yD) of microdosimetric distributions sampled with spherical sites of different sizes. The total number of DNA strand breaks, double strand breaks (DSBs) and complex strand breaks per track were quantified and presented as a function of eitheryForyD.The probability of interaction between a track and the DNA depends on how the base pairs are compacted. To characterize this variability on compactness, spherical sites of different size were used to match these probabilities of interaction, correlating the size-dependent specific energy (z) with the damage induced. The total number of DNA strand breaks per track was found to linearly correlate withyFandzFwhen using what we defined an effective volume as microdosimetric site, while the yield of DSB per unit dose linearly correlated withyDorzD,being larger for compacted than for unfolded DNA structures. The yield of complex breaks per unit dose exhibited a quadratic behavior with respect toyDand a greater difference among DNA compactness levels. Microdosimetric quantities correlate with the direct damage imparted on DNA.


Assuntos
Partículas alfa , DNA , Partículas alfa/efeitos adversos , DNA/genética , Dano ao DNA , Método de Monte Carlo , Radiação Ionizante
16.
Int J Radiat Biol ; 97(9): 1217-1228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34232830

RESUMO

RATIONALE: The role of radiation-induced bystander effects in cancer therapy with alpha-particle emitting radiopharmaceuticals remains unclear. With renewed interest in using alpha-particle emitters to sterilize disseminated tumor cells, micrometastases, and tumors, a better understanding of the direct effects of alpha particles and the contribution of the bystander responses they induce is needed to refine dosimetric models that help predict clinical benefit. Accordingly, this work models and quantifies the relative importance of direct effects (DE) and bystander effects (BE) in the growth delay of human breast cancer xenografts observed previously in the tibiae of mice treated with 223RaCl2. METHODS: A computational model of MDA-MB-231 and MCF-7 human breast cancer xenografts in the tibial bone marrow of mice administered 223RaCl2 was created. A Monte Carlo radiation transport simulation was performed to assess individual cell absorbed doses. The responses of the breast cancer cells to direct alpha particle irradiation and gamma irradiation were needed as input data for the model and were determined experimentally using a colony-forming assay and compared to the responses of preosteoblast MC3T3-E1 and osteocyte-like MLO-Y4 bone cells. Using these data, a scheme was devised to simulate the dynamic proliferation of the tumors in vivo, including DE and BE propagated from the irradiated cells. The parameters of the scheme were estimated semi-empirically to fit experimental tumor growth. RESULTS: A robust BE component, in addition to a much smaller DE component, was required to simulate the in vivo tumor proliferation. We also found that the relative biological effectiveness (RBE) for cell killing by alpha particle radiation was greater for the bone cells than the tumor cells. CONCLUSION: This modeling study demonstrates that DE of radiation alone cannot explain experimental observations of 223RaCl2-induced growth delay of human breast cancer xenografts. Furthermore, while the mechanisms underlying BE remain unclear, the addition of a BE component to the model is necessary to provide an accurate prediction of the growth delay. More complex models are needed to further comprehend the extent and complexity of 223RaCl2-induced BE.


Assuntos
Medula Óssea/efeitos da radiação , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Transformação Celular Neoplásica , Modelos Biológicos , Rádio (Elemento)/uso terapêutico , Partículas alfa/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Feminino , Camundongos , Método de Monte Carlo , Eficiência Biológica Relativa
17.
Int J Radiat Biol ; 97(10): 1404-1416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34330206

RESUMO

PURPOSE: The development of an exposure apparatus for in situ α-irradiation studies of cells. The construction of the apparatus is simple and the apparatus is maintenance free, easy to use and of low cost. This small device can be placed in an incubator, where the exposure environment is controlled. Moreover the vapor saturated incubator protects the cells from drying out, allowing long irradiation intervals. MATERIALS AND METHODS: The system includes a 234U alpha (α)-source of total activity 0.77 ± 0.03 MBq in the form of a thin disk deposited on an aluminum substrate. The α-particles emitted in the air have a mean energy of 4.9 MeV at the disk surface. Source homogeneity has been studied via Rutherford Backscattering Spectrometry. Using SRIM 2013 and Monte Carlo (MC) simulations via the MCNP6.1 code, LET and energy deposition values have been calculated for various filling gasses. Furthermore, based on these simulations, the assembly's dimensions and equivalent irradiation rate have been determined. With respect to the aforementioned dimensions, the experimental setup is constructed in a way to provide uniform irradiation of the sample. Using Sacalc3v1.4 irradiation radial homogeneity has been studied. In order to evaluate biologically our apparatus, a well-established chromosomal aberration assay has been utilized, applied in exponentially growing hamster (CHO) cells. Furthermore, immunofluorescence gamma-H2AX/53BP1 foci assay has been performed as a 'biological detector', in order to validate α-particles surface density. RESULTS: Source surface homogeneity: emission deviations do not exceed 10-15%. The optimal distance between the source and the cells for irradiation is determined to be 14.8 mm. Irradiation radial homogeneity: a deviation of 5% occurs at the first 8 mm from the center of the irradiation area, and a 10% deviation occurs after 12 mm. Chromosomal aberrations were found in good agreement with the corresponding in bibliography. CONCLUSIONS: The current technical report describes analytically the development and evaluation stages of this experimental housing; from MC simulations to the irradiation of mammalian cells and data analysis. Moreover, guidance is provided as well as a report of the variables on which critical parameters are depended, so as to make this work useful to anyone who wants to construct a similar in-house α-irradiation apparatus for radiobiological studies using mammalian cells.


Assuntos
Partículas alfa , Radiobiologia , Partículas alfa/efeitos adversos , Animais , Aberrações Cromossômicas , Cricetinae , Método de Monte Carlo
18.
Appl Radiat Isot ; 176: 109838, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34175546

RESUMO

In this work we used the InterDosi code to estimate photon specific absorbed fractions (SAFs) for some organs of the Zubal adult male voxelized phantom. Chemical compositions and densities of ICRP 110 adult male organs were attributed to those of the studied voxelized phantom. The SAFs of monoenergetic photons with energies ranging from 0.01 to 2 MeV, were calculated for three target regions, namely kidneys, liver, and spleen, which were the radiation source regions too. The obtained SAFs were compared to recent results obtained with the GATE code. In the GATE study, chemical compositions and densities of different organs were obtained from the ICRU report number 44. The inter-comparisons between the two studies show reasonably similar results, as 80% of the calculated SAFs are consistent within 2.5% discrepancy. This demonstrates the usefulness and applicability of the InterDosi code for internal dose calculations in a voxel-based phantom. We completed this work by studying the alpha SAFs in some organs for energies emitted by 213Bi used in targeted alpha-therapy and an analytical formula was derived for rapid alpha self-irradiation calculation in soft tissues.


Assuntos
Partículas alfa , Imagens de Fantasmas , Fótons , Doses de Radiação , Adulto , Humanos , Masculino , Método de Monte Carlo
19.
Sci Rep ; 11(1): 10230, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986410

RESUMO

Radon is a leading cause of lung cancer in indoor public and mining workers. Inhaled radon progeny releases alpha particles, which can damage cells in the airway epithelium. The extent and complexity of cellular damage vary depending on the alpha particle's kinetic energy and cell characteristics. We developed a framework to quantitate the cellular damage on the nanometer and micrometer scales at different intensities of exposure to radon progenies Po-218 and Po-214. Energy depositions along the tracks of alpha particles that were slowing down were simulated on a nanometer scale using the Monte Carlo code Geant4-DNA. The nano-scaled track histories in a 5 µm radius and 1 µm-thick cylindrical volume were integrated into the tracking scheme of alpha trajectories in a micron-scale bronchial epithelium segment in the user-written SNU-CDS program. Damage distribution in cellular DNA was estimated for six cell types in the epithelium. Deep-sited cell nuclei in the epithelium would have less chance of being hit, but DNA damage from a single hit would be more serious, because low-energy alpha particles of high LET would hit the nuclei. The greater damage in deep-sited nuclei was due to the 7.69 MeV alpha particles emitted from Po-214. From daily work under 1 WL of radon concentration, basal cells would respond with the highest portion of complex DSBs among the suspected progenitor cells in the most exposed regions of the lung epithelium.


Assuntos
Brônquios/efeitos da radiação , Radônio/efeitos adversos , Mucosa Respiratória/efeitos da radiação , Partículas alfa , Brônquios/metabolismo , Epitélio/química , Epitélio/efeitos da radiação , Humanos , Pulmão/química , Pulmão/efeitos da radiação , Modelos Biológicos , Método de Monte Carlo , Doses de Radiação , Radônio/análise , Produtos de Decaimento de Radônio/efeitos adversos , Produtos de Decaimento de Radônio/análise , Mucosa Respiratória/química , Mucosa Respiratória/metabolismo
20.
Cancer Biother Radiopharm ; 36(3): 252-259, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33337280

RESUMO

Background: Density-based dose point kernel (DPK) scaling accuracy was investigated in various homogeneous tissue media. Methods: Using GEometry ANd Tracking 4 Monte Carlo code, DPKs were generated for 5, 8 MeV monoenergetic α particles and 223Ra, 225Ac, and 227Th. Dose was scored in 1 µm thick concentric shells and DPKs were scaled based on the tissue's mass density and compared with the water DPK. Results: Scaled kernels agreed within ±5% except near the Bragg peaks, where they differed up to 25%. Conclusions: The authors conclude that kernel scaling based on mass density of the transport medium can be utilized accurately up to 5%, excluding Bragg peak regions.


Assuntos
Partículas alfa/uso terapêutico , Neoplasias/radioterapia , Radioisótopos/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Relação Dose-Resposta à Radiação , Humanos , Método de Monte Carlo , Radiometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA