Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141268, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246499

RESUMO

Swimming consistency and respiration of fish are recognized as the non-invasive stress biomarkers. Their alterations could directly indicate the presence of pollutants in the water ecosystem. Since these biomarkers are a routine process for fish, it is difficult to monitor their activity manually. For this reason, experts employ engineering technologies to create sensors that can monitor the regular activities of fish. Knowing the importance of these non-invasive stress biomarkers, we developed online biological behavior monitoring system-OBBMS and online biological respiratory response monitoring system-OBRRMS to monitor real-time swimming consistency and respiratory response of fish, respectively. We continuously monitored the swimming consistency and respiration (OCR, CER and RQ) of zebrafish (control and atrazine-treatments) for 7 days using our homemade real-time biological response monitoring systems. Furthermore, we analyzed oxidative stress indicators (SOD, CAT and POD) within the vital tissues (gills, brain and muscle) of zebrafish during stipulated sampling periods. The differences in the swimming consistency and respiratory rate of zebrafish between the control and atrazine treatments could be precisely differentiated on the real-time datasets of OBBMS and OBRRMS. The zebrafish exposed to atrazine toxin showed a concentration-dependent effect (hypoactivity). The OCR and CER were increased in the atrazine treated zebrafish. Both Treatment I and II received a negative response for RQ. Atrazine toxicity let to a rise in the levels of SOD, CAT and POD in the vital tissues of zebrafish. The continuous acquisition of fish signals is achieved which is one of the main merits of our OBBMS and OBRRMS. Additionally, no special data processing was done, the real-time data sets were directly used on statistical tools and the differences between the factors (groups, photoperiods, exposure periods and their interactions) were identified precisely. Hence, our OBBMS and OBRRMS could be a promising tool for biological response-based real-time water quality monitoring studies.


Assuntos
Atrazina , Perciformes , Poluentes Químicos da Água , Animais , Antioxidantes , Peixe-Zebra/fisiologia , Natação , Atrazina/toxicidade , Qualidade da Água , Ecossistema , Respiração , Superóxido Dismutase , Biomarcadores , Poluentes Químicos da Água/toxicidade
2.
J Toxicol Environ Health A ; 87(4): 166-184, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38073470

RESUMO

Copper (Cu) is a naturally occurring metal with essential micronutrient properties. However, this metal might also pose increased adverse environmental and health risks due to industrial and agricultural activities. In Brazil, the maximum allowable concentration of Cu in drinking water is 2 mg/L. Despite this standard, the impact of such concentrations on aquatic organisms remains unexplored. This study aimed to evaluate the toxicity of CuSO4 using larval zebrafish at environmentally relevant concentrations. Zebrafish (Danio rerio) larvae at 72 hr post-fertilization (hpf) were exposed to nominal CuSO4 concentrations ranging from 0.16 to 48 mg/L to determine the median lethal concentration (LC50), established at 8.4 mg/L. Subsequently, non-lethal concentrations of 0.16, 0.32, or 1.6 mg/L were selected for assessing CuSO4 -induced toxicity. Morphological parameters, including body length, yolk sac area, and swim bladder area, were adversely affected by CuSO4 exposure, particularly at 1.6 mg/L (3.31 mm ±0.1, 0.192 mm2 ±0.01, and 0.01 mm2 ±0.05, respectively). In contrast, the control group exhibited values of 3.62 mm ±0.09, 0.136 mm2 ±0.013, and 0.3 mm2 ±0.06, respectively. Behavioral assays demonstrated impairments in escape response and swimming capacity, accompanied by increased levels of reactive oxygen species (ROS) and lipid peroxidation. In addition, decreased levels of non-protein thiols and reduced cellular viability were noted. Data demonstrated that exposure to CuSO4 at similar concentrations as those permitted in Brazil for Cu adversely altered morphological, biochemical, and behavioral endpoints in zebrafish larvae. This study suggests that the permissible Cu concentrations in Brazil need to be reevaluated, given the potential enhanced adverse health risks of exposure to environmental metal contamination.


Assuntos
Cobre , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Peixe-Zebra/fisiologia , Larva , Brasil , Dose Letal Mediana , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero
3.
Ecotoxicol Environ Saf ; 269: 115796, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061085

RESUMO

Acid mine drainage (AMD) is widely acknowledged as a substantial threat to the biodiversity of aquatic ecosystems. The present study aimed to study the toxicological effects of Cu-rich AMD from the Sulitjelma mine in zebrafish larvae. The AMD from this mine was found to contain elevated levels of dissolved metals including Mg (46.7 mg/L), Al (20.2 mg/L), Cu (18.3 mg/L), Fe (19.8 mg/L) and Zn (10.6 mg/L). To investigate the toxicological effects, the study commenced by exposing zebrafish embryos to various concentrations of AMD (ranging from 0.75% to 9%) to determine the median lethal concentration (LC50). Results showed that 96 h LC50 for zebrafish larvae following AMD exposure was 2.86% (95% CI: 2.32-3.52%). Based on acute toxicity results, zebrafish embryos (<2 hpf) were exposed to 0.1% AMD (Cu: 21.7 µg/L) and 0.45% AMD (Cu: 85.7 µg/L) for 96 h to assess development, swimming behaviour, heart rate, respiration and transcriptional responses at 116 hpf. Light microscopy results showed that both 0.1% and 0.45% AMD reduced the body length, eye size and swim bladder area of zebrafish larvae and caused phenotypic abnormalities. Swimming behaviour results showed that 0.45% AMD significantly decreased the locomotion of zebrafish larvae. Heart rate was not affected by AMD exposure. Furthermore, exposure caused a significant increase in oxygen consumption indicating vascular stress in developing larvae. Taken altogether, the study shows that even heavily diluted AMD with environmentally relevant levels of Cu caused toxicity in zebrafish larvae.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Larva , Ecossistema , Metais/farmacologia , Modelos Animais , Poluentes Químicos da Água/análise , Embrião não Mamífero
4.
Ecotoxicol Environ Saf ; 268: 115721, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000300

RESUMO

Penthiopyrad (PO), a succinate dehydrogenase inhibitor (SDHI) fungicide, poses a potential risk to fish. Here, we investigated the adverse effects of PO on endocrine regulation and reproductive capacity in zebrafish during a 21-d sublethal exposure to PO concentrations ranging from 0.02 to 2.00 mg/L. Following exposure to PO (0.20 and 2.00 mg/L), female-specific effects including follicle necrosis, structural disturbance of the yolk follicle, fusion of cortical follicles appeared in ovarian tissue of adult females, which led to a significant reduction in fertility. Correspondingly, 0.20 and 2.00 mg/L PO led to a marked reduction in the GSI values of females, and 2.00 mg/L PO caused a 31% decline in the proportion of perinucleolar oocytes (PCO) in oocytes. In addition, testosterone (T) level was obviously suppressed and 17ß-estradiol (E2) level was increased in females after exposure to 2.00 mg/L PO. Male zebrafish treated with 0.20 and 2.00 mg/L of PO exhibited significant interstitial enlargement, edema in the testes, and reduced diameter of seminiferous tubules, along with a thinner basement membrane. The effects of PO on males were associated with significant increase in E2 level, suggesting that PO has an estrogenic effect on male fish. Greater E2 levels in serum were further supported by increased transcription levels of genes linked to the hypothalamic-pituitary-gonad-liver (HPGL) axis. Notably, transcription levels of cyp19a, er2b, era, and cyp19b was remarkably increased, exhibiting a clear link with variations in E2 levels. Overall, the present study demonstrates that PO induces reproductive impairment in zebrafish by promoting steroidogenesis.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Masculino , Feminino , Peixe-Zebra/fisiologia , Gônadas , Sistema Endócrino , Pirazóis/farmacologia , Reprodução , Poluentes Químicos da Água/toxicidade , Vitelogeninas/genética , Disruptores Endócrinos/toxicidade
5.
J Vis Exp ; (201)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37982528

RESUMO

The presence of neuropathological effects proved to be, for many years, the main endpoint for assessing the neurotoxicity of a chemical substance. However, in the last 50 years, the effects of chemicals on the behavior of model species have been actively investigated. Progressively, behavioral endpoints were incorporated into neurotoxicological screening protocols, and these functional outcomes are now routinely used to identify and determine the potential neurotoxicity of chemicals. Behavioral assays in adult zebrafish provide a standardized and reliable means to study a wide range of behaviors, including anxiety, social interaction, learning, memory, and addiction. Behavioral assays in adult zebrafish typically involve placing the fish in an experimental arena and recording and analyzing their behavior using video tracking software. Fish can be exposed to various stimuli, and their behavior can be quantified using a variety of metrics. The novel tank test is one of the most accepted and widely used tests to study anxiety-like behavior in fish. The shoaling and social preference tests are useful in studying the social behavior of zebrafish. This assay is particularly interesting since the behavior of the entire shoal is studied. These assays have proven to be highly reproducible and sensitive to pharmacological and genetic manipulations, making them valuable tools for studying the neural circuits and molecular mechanisms underlying behavior. Additionally, these assays can be used in drug screening to identify compounds that may be potential modulators of behavior. We will show in this work how to apply behavioral tools in fish neurotoxicology, analyzing the effect of methamphetamine, a recreational drug, and glyphosate, an environmental pollutant. The results demonstrate the significant contribution of behavioral assays in adult zebrafish to the understanding of the neurotoxicological effects of environmental pollutants and drugs, in addition to providing insights into the molecular mechanisms that may alter neuronal function.


Assuntos
Comportamento Animal , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Comportamento Animal/fisiologia , Escala de Avaliação Comportamental , Comportamento Social , Ansiedade/induzido quimicamente
6.
Environ Toxicol Pharmacol ; 100: 104119, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37028532

RESUMO

To account for global contamination events, we must identify direct and indirect pollutant effects. Although pollutants can have direct effects on individuals, it is unknown how a few contaminated individuals affect groups, a widespread social organization. We show environmentally relevant levels of cadmium (Cd) can have indirect social effects revealed in the social context of a larger group. Cd-contaminated individuals had poor vision and more aggressive responses, but no other behavioral effects. The presence of experienced Cd-exposed pairs in the groups had an indirect effect on the un-exposed individual's social interactions leading to the shoal becoming bolder and moving closer to a novel object than control groups. Because a few directly affected individuals could indirectly affect social behavior of the un-exposed majority, we believe that such acute but potentially important heavy metal toxicity could inform reliable predictions about the consequences of their use in a changing world.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Peixe-Zebra/fisiologia , Poluentes Químicos da Água/toxicidade , Comportamento Social
7.
Sci Total Environ ; 872: 162262, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36801337

RESUMO

In vitro assays are widely proposed as a test alternative to traditional in vivo standard acute and chronic toxicity tests. However, whether toxicity information derived from in vitro assays instead of in vivo tests could provide sufficient protection (e.g., 95 % of protection) for chemical risks remain evaluated. To investigate the feasibility of zebrafish (Danio rerio) cell-based in vitro test method as a test alternative, we comprehensively compared sensitivity differences among endpoints, among test methods (in vitro, FET and in vivo), and between zebrafish and rat (Rattus norvegicus), respectively using chemical toxicity distribution (CTD) approach. For each test method involved, sublethal endpoints were more sensitive than lethal endpoints for both zebrafish and rat, respectively. Biochemistry (zebrafish in vitro), development (zebrafish in vivo and FET), physiology (rat in vitro) and development (rat in vivo) were the most sensitive endpoints for each test method. Nonetheless, zebrafish FET test was the least sensitive one compared to its in vivo and in vitro tests for either lethal or sublethal responses. Comparatively, rat in vitro tests considering cell viability and physiology endpoints were more sensitive than rat in vivo test. Zebrafish was found to be more sensitive than rat regardless of in vivo or in vitro tests for each pairwise endpoint of concern. Those findings indicate that zebrafish in vitro test is a feasible test alternative to zebrafish in vivo and FET test and traditional mammalian test. It is suggesting that zebrafish in vitro test can be optimized by choosing more sensitive endpoints, such as biochemistry to provide sufficient protection for zebrafish in vivo test and to establish applications of zebrafish in vitro test in future risk assessment. Our findings are vital for evaluating and further application of in vitro toxicity toxicity information as an alternative for chemical hazard and risk assessment.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Ratos , Animais , Peixe-Zebra/fisiologia , Embrião não Mamífero , Testes de Toxicidade Crônica , Medição de Risco , Técnicas In Vitro , Mamíferos
8.
Sci Total Environ ; 858(Pt 2): 159838, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343805

RESUMO

The dispersion of SARS-CoV-2 in aquatic environments via the discharge of domestic and hospital sewage has been confirmed in different locations. Thus, we aimed to evaluate the possible impacts of zebrafish (Danio rerio) exposure to SARS-CoV-2 peptide fragments (PSPD-2001, 2002, and 2003) alone and combined with a mix of emerging pollutants. Our data did not reveal the induction of behavioral, biometric, or mutagenic changes. But we noticed an organ-dependent biochemical response. While nitric oxide and malondialdehyde production in the brain, gills, and muscle did not differ between groups, superoxide dismutase activity was reduced in the "PSPD", "Mix", and "Mix+PSPD" groups. An increase in catalase activity and a reduction in DPPH radical scavenging activity were observed in the brains of animals exposed to the treatments. However, the "Mix+PSPD" group had a higher IBRv2 value, with NO levels (brain), the reduction of acetylcholinesterase activity (muscles), and the DPPH radical scavenging activity (brain and muscles), the most discriminant factors for this group. The principal component analysis (PCA) and hierarchical clustering analysis indicated a clear separation of the "Mix+PSPD" group from the others. Thus, we conclude that exposure to viral fragments, associated with the mix of pollutants, induced more significant toxicity in zebrafish adults than in others.


Assuntos
COVID-19 , Poluentes Ambientais , Poluentes Químicos da Água , Animais , Peixe-Zebra/fisiologia , SARS-CoV-2 , Acetilcolinesterase/metabolismo , Mutagênicos , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade , Peptídeos , Biometria
9.
Biomolecules ; 12(8)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-36008997

RESUMO

p-Toluene sulfonamide (p-TSA), a small molecular drug with antineoplastic activity is widely gaining interest from researchers because of its pharmacological activities. In this study, we explored the potential cardio and neural toxicity of p-TSA in sublethal concentrations by using zebrafish as an in vivo animal model. Based on the acute toxicity assay, the 96hr LC50 was estimated as 204.3 ppm, suggesting the overall toxicity of p-TSA is relatively low in zebrafish larvae. For the cardiotoxicity test, we found that p-TSA caused only a minor alteration in treated larvae after no overall significant alterations were observed in cardiac rhythm and cardiac physiology parameters, as supported by the results from expression level measurements of several cardiac development marker genes. On the other hand, we found that acute p-TSA exposure significantly increased the larval locomotion activity during the photomotor test while prolonged exposure (4 days) reduced the locomotor startle reflex activities in zebrafish. In addition, a higher respiratory rate and blood flow velocity was also observed in the acutely treated fish groups compared to the untreated group. Finally, by molecular docking, we found that p-TSA has a moderate binding affinity to skeletal muscle myosin II subfragment 1 (S1), ATPase activity, actin- and Ca2+-stimulated myosin S1 ATPase, and v-type proton ATPase. These binding interactions between p-TSA and proteins offer insights into the potential molecular mechanism of action of p-TSA on observed altered responses toward photo and vibration stimuli and minor altered vascular performance in the zebrafish larvae.


Assuntos
Antineoplásicos , Peixe-Zebra , Adenosina Trifosfatases/metabolismo , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Coração , Larva , Locomoção , Simulação de Acoplamento Molecular , Sulfonamidas/metabolismo , Sulfonamidas/toxicidade , Tolueno/metabolismo , Tolueno/farmacologia , Peixe-Zebra/fisiologia
10.
Chemosphere ; 305: 135449, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35750227

RESUMO

Behavioural disruptions are sensitive indicators of alterations to normal animal physiology and can be used for toxicity assessment. The small vertebrate zebrafish is a leading model organism for toxicological studies. The ability to continuously monitor the toxicity of drugs, pollutants, or environmental changes over several days in zebrafish can have high practical application. Although video-recordings can be used to monitor short-term zebrafish behaviour, it is challenging to videorecord prolonged experiments (e.g. circadian behaviour over several days) because of the darkness periods (nights) and the heavy data storage and image processing requirements. Alternatively, infrared-based activity monitors, widely used in invertebrate models such as drosophila, generate simple and low-storage data and could optimize large-scale prolonged behavioural experiments in zebrafish, thus favouring the implementation of high-throughput testing strategies. Here, we validate the use of a Locomotor Activity Monitor (LAM) to study the behaviour of zebrafish larvae, and we characterize the behavioural phenotypes induced by abnormal light conditions and by the Parkinsonian toxin MPP+. When zebrafish were deprived from daily light-cycle synchronization, the LAM detected various circadian disruptions, such as increased activity period, phase shifts, and decreased inter-daily stability. Zebrafish exposed to MPP+ (10, 100, 500 µM) showed a concentration-dependent decrease in activity, sleep disruptions, impaired habituation to repetitive startles (visual-motor responses), and a slower recovery to normal activity after the startle-associated stress. These phenotypes evidence the feasibility of using infrared-based LAM to assess multi-parameter behavioural disruptions in zebrafish. The procedures in this study have wide applicability and may yield standard methods for toxicity testing.


Assuntos
Ritmo Circadiano , Peixe-Zebra , Animais , Ritmo Circadiano/genética , Escuridão , Fotoperíodo , Sono , Peixe-Zebra/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-35618149

RESUMO

Pathological anxiety is a set of diseases characterized by specific clinical manifestations and the use of alternative models may provide novel insights in translational neurobehavioral research. In zebrafish, the separate performance of novel tank and light dark tests in different order to assess anxiety using a same animal may provide conflicting data due to the battery effect and/or time-drug-response and variability across tests. To improve data reliability, we aimed to characterize a novel behavioral paradigm to measure geotaxis and scototaxis as anxiety-like responses in the same trial. The novel apparatus consisted of four colored-compartments, with specific white- and black sections delimited in both bottom and upper areas of the tank. The main baseline responses of zebrafish in the novel apparatus were measured and animals were further exposed to modulators of anxiety. Zebrafish showed robust habituation to novelty stress during the 6-min trial with preference for the black section while exploring the top area. Fluoxetine (100 µg/L, 15 min) reduced geotaxis and scototaxis and ketamine (20 mg/L, 20 min) decreased geotaxis and increased the distance traveled in the black section while exploring the top, possibly due to the increased circling behavior. As anxiogenic modulators, conspecific alarm substance (3.5 mL/L, 5 min) exacerbated risk assessment, geotaxis, and scototaxis, whereas caffeine (10 mg/L, 15 min) increased geotaxis and exploration in the black section of the top area. Since important correlations were also found for relevant anxiety-like behaviors, our findings support the predictive validity of this novel paradigm to simultaneously assess geotaxis and scototaxis in zebrafish. Moreover, it fully adheres to the 3Rs principle of animal experimentation of reducing the number of subjects tested, execution time, also minimizing a potential battery effect.


Assuntos
Comportamento Animal , Peixe-Zebra , Animais , Ansiedade , Humanos , Atividade Motora , Reprodutibilidade dos Testes , Peixe-Zebra/fisiologia
12.
Environ Toxicol Pharmacol ; 90: 103809, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35033682

RESUMO

Antineoplastics treat cancers and enter aquatic ecosystems through wastewater and hospital effluent. Risks associated with antineoplastics are not well characterized in aquatic organisms. We conducted zebrafish embryo/larvae toxicity assays to evaluate responses to cyclophosphamide (0.01-50 µM). Zebrafish survival was affected by 5 µM cyclophosphamide and deformities were noted at > 1 µM. Oxidative respiration remained unchanged in embryos with exposure up to 200 µM. Reactive oxygen species were not increased by 50 µM cyclophosphamide exposure. More than 15 oxidative stress and immune-related transcripts were measured. Superoxide dismutase 2 and heat shock protein 70 and 90a were induced in larvae by cyclophosphamide. Immune-related transcripts were assessed due to immunosuppressive properties of cyclophosphamide, and mmp9 and myd88 levels were altered in expression. Hyperactivity of larvae was noted following 5 µM cyclophosphamide exposure. There was no change in anxiety-related endpoints (light-dark preference). Risks for larval fish exposed to cyclophosphamide in the environment may be low.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ciclofosfamida/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Antineoplásicos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Larva/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/anormalidades , Peixe-Zebra/fisiologia
13.
Proc Biol Sci ; 289(1967): 20212077, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35078359

RESUMO

Energetic cost of growth determines how much food-derived energy is needed to produce a given amount of new biomass and thereby influences energy transduction between trophic levels. Growth and development are regulated by hormones and are therefore sensitive to changes in temperature and environmental endocrine disruption. Here, we show that the endocrine disruptor bisphenol A (BPA) at an environmentally relevant concentration (10 µgl-1) decreased fish (Danio rerio) size at 30°C water temperature. Under the same conditions, it significantly increased metabolic rates and the energetic cost of growth across development. By contrast, BPA decreased the cost of growth at cooler temperatures (24°C). BPA-mediated changes in cost of growth were not associated with mitochondrial efficiency (P/O ratios (i.e. adenosine diphosphate (ADP) used/oxygen consumed) and respiratory control ratios) although BPA did increase mitochondrial proton leak. In females, BPA decreased age at maturity at 24°C but increased it at 30°C, and it decreased the gonadosomatic index suggesting reduced investment into reproduction. Our data reveal a potentially serious emerging problem: increasing water temperatures resulting from climate warming together with endocrine disruption from plastic pollution can impact animal growth efficiency, and hence the dynamics and resilience of animal populations and the services these provide.


Assuntos
Disruptores Endócrinos , Plásticos , Animais , Compostos Benzidrílicos , Feminino , Reprodução , Água , Peixe-Zebra/fisiologia
14.
Commun Biol ; 4(1): 1261, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737378

RESUMO

Simultaneous longitudinal imaging across multiple conditions and replicates has been crucial for scientific studies aiming to understand biological processes and disease. Yet, imaging systems capable of accomplishing these tasks are economically unattainable for most academic and teaching laboratories around the world. Here, we propose the Picroscope, which is the first low-cost system for simultaneous longitudinal biological imaging made primarily using off-the-shelf and 3D-printed materials. The Picroscope is compatible with standard 24-well cell culture plates and captures 3D z-stack image data. The Picroscope can be controlled remotely, allowing for automatic imaging with minimal intervention from the investigator. Here, we use this system in a range of applications. We gathered longitudinal whole organism image data for frogs, zebrafish, and planaria worms. We also gathered image data inside an incubator to observe 2D monolayers and 3D mammalian tissue culture models. Using this tool, we can measure the behavior of entire organisms or individual cells over long-time periods.


Assuntos
Imageamento Tridimensional/métodos , Mamíferos , Planárias , Xenopus , Peixe-Zebra , Animais , Comportamento Animal , Mamíferos/fisiologia , Organoides/fisiologia , Planárias/anatomia & histologia , Planárias/fisiologia , Xenopus/anatomia & histologia , Xenopus/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia
15.
Zebrafish ; 18(3): 231-234, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33877911

RESUMO

The study of swimming behavior is an important part of fish biology research and the swim tunnel is used to study swimming performance as well as metabolism of fish. In this investigation, we have developed a user-friendly, automated, modular, and low-cost swim tunnel that permits to study the performance of one or more fish separately, as well as a small group of individuals. To validate our swim tunnel, we assessed swimming activity of four different species (zebrafish, medaka, guppy, and cavefish) recording reliable data of swimming behavior and performance. Because swimming behavior has been recently used in different fields from physiology to ecotoxicology, our setup could help researchers with a low-cost solution.


Assuntos
Peixes/fisiologia , Natação , Animais , Oryzias/fisiologia , Poecilia/fisiologia , Natação/fisiologia , Peixe-Zebra/fisiologia
16.
Methods Mol Biol ; 2206: 205-222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32754820

RESUMO

The zebrafish has emerged as a valuable and important model organism for studying vascular development and vascular biology. Here, we discuss some of the approaches used to study vessels in fish, including loss-of-function tools such as morpholinos and genetic mutants, along with methods and considerations for assessing vascular phenotypes. We also provide detailed protocols for methods used for vital imaging of the zebrafish vasculature, including microangiography and long-term time-lapse imaging. The methods we describe, and the considerations we suggest using for assessing phenotypes observed using these methods, will help ensure reliable, valid conclusions when assessing vascular phenotypes following genetic or experimental manipulation of zebrafish.


Assuntos
Angiografia/métodos , Vasos Sanguíneos/fisiologia , Peixe-Zebra/fisiologia , Animais , Vasos Sanguíneos/metabolismo , Morfolinos/metabolismo , Neovascularização Fisiológica/fisiologia , Fenótipo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
17.
Micron ; 136: 102876, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32512409

RESUMO

BACKGROUND: In the last few decades, zebrafish (Danio rerio) were introduced as a model organism to investigate human diseases including cardiovascular and neuronal disorders. In most zebrafish investigations, cardiac function and blood flow hemodynamics need to be assessed to study the effects of the interference on the cardiovascular system. For heart function assessment, most important parameters include heart rate, cardiac output, ejection fraction, fractional area change, and fractional shortening. METHODS: A 10 s high-speed video of beating heart and flowing blood within major vessels of zebrafish that are less than 5 days post fertilization (dpf) were recorded via a stereo microscope equipped with a high speed camera. The videos were analyzed using MicroZebraLab and image J software for the assessment of cardiac function. RESULTS: Using the technique described here, we were able to simply yet effectively assess cardiac function and blood flow dynamics of normal zebrafish embryos. We believe that the practical method presented here will help cardiac researchers using the zebrafish as a model to examine cardiac function by using tools that could be available in their laboratory.


Assuntos
Circulação Sanguínea , Frequência Cardíaca/fisiologia , Hemodinâmica , Microscopia de Vídeo/métodos , Peixe-Zebra/fisiologia , Animais , Doenças Cardiovasculares , Sistema Cardiovascular , Modelos Animais de Doenças
18.
Cells ; 9(5)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443839

RESUMO

Automated high-throughput workflows allow for chemical toxicity testing and drug discovery in zebrafish disease models. Due to its conserved structural and functional properties, the zebrafish pronephros offers a unique model to study renal development and disease at larger scale. Ideally, scoring of pronephric phenotypes includes morphological and functional assessments within the same larva. However, to efficiently upscale such assays, refinement of existing methods is required. Here, we describe the development of a multiparametric in vivo screening pipeline for parallel assessment of pronephric morphology, kidney function and heart rate within the same larva on a single imaging platform. To this end, we developed a novel 3D-printed orientation tool enabling multiple consistent orientations of larvae in agarose-filled microplates. Dorsal pronephros imaging was followed by assessing renal clearance and heart rates upon fluorescein isothiocyanate (FITC)-inulin microinjection using automated time-lapse imaging of laterally positioned larvae. The pipeline was benchmarked using a set of drugs known to induce developmental nephrotoxicity in humans and zebrafish. Drug-induced reductions in renal clearance and heart rate alterations were detected even in larvae exhibiting minor pronephric phenotypes. In conclusion, the developed workflow enables rapid and semi-automated in vivo assessment of multiple morphological and functional parameters.


Assuntos
Bioensaio/métodos , Testes de Função Cardíaca , Frequência Cardíaca/fisiologia , Rim/fisiologia , Pronefro/anatomia & histologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia , Animais , Embrião não Mamífero/fisiologia , Fluoresceína-5-Isotiocianato/metabolismo , Larva/fisiologia , Pronefro/embriologia , Peixe-Zebra/embriologia
19.
Environ Toxicol Chem ; 39(8): 1534-1545, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32367592

RESUMO

A study was conducted to understand the potential for ibuprofen to impact the hypothalamus-pituitary-gonadal endocrine axis resulting in disruption of fish reproduction. The Good Laboratory Practice study was conducted according to the Organisation for Economic Co-operation and Development 229 Protocol, Fish Short-Term Reproduction Assay, and extended an additional 4 d to evaluate hatching success in the F1 generation. Test organisms were exposed to nominal test concentrations of 0.5, 2.4, 11.5, 55.3, and 265.4 µg ibuprofen/L and a negative control (dilution water). To strengthen the statistical power of the study, twice the number of replicates were used in the negative control versus individual treatment levels. A 21-d pre-exposure to identify groups of actively spawning fish was immediately followed by a 36-d exposure. Results for apical endpoints of survival, growth, and reproduction (fecundity and fertility), as well as the biomarker vitellogenin in the F0 generation and time to hatch and hatching success in the F1 generation are presented. Based on mean measured exposure concentrations and effects on fecundity in the F0 generation and hatching success in the F1 generation, overall no-observed-effect concentration and lowest-observed-effect concentration for the present study were 55.2 and 265.9 µg ibuprofen/L, respectively. Results from the present study indicate a lack of endocrine-mediated reproductive effects in zebrafish at environmentally relevant concentrations of ibuprofen. Environ Toxicol Chem 2020;39:1534-1545. © 2020 SETAC.


Assuntos
Ibuprofeno/toxicidade , Organização para a Cooperação e Desenvolvimento Econômico , Reprodução/efeitos dos fármacos , Peixe-Zebra/fisiologia , Animais , Feminino , Fertilidade/efeitos dos fármacos , Masculino , Óvulo/efeitos dos fármacos , Análise de Sobrevida , Vitelogeninas/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento
20.
Chemosphere ; 255: 126934, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32387730

RESUMO

Environmental factors, such as photoperiod and temperature were the main limiting factors for the survival of organisms in the nature environment. Changes in environmental factors are well predicted but determining their effects on organisms are challenging hot topic in the field of eco-toxicology. Thus, technology based eco-toxicity assessment was focused worldwide. In this research, the effects of different temperatures (15 °C, 22 °C, 30 °C, 32 °C, and 35 °C) and photoperiods (dark and light periods) on the continuous behavior responses of Zebrafish (Danio rerio) were investigated using an online monitoring system (OMS). We designed a new fish chamber with sensors to measure the behavior responses of zebrafish under different conditions. Data obtained from the OMS could be assessed for factors such as difference in swimming behavior, circadian rhythm, and avoidance behavior using latest software (MATLAB). The observed behavior anomalies on zebrafish under different temperatures and continuous photoperiods were statically significant (p < 0.05). We conclude that the new designed fish chamber (behavior sensors) is good in sensing behavioral responses of zebrafish under different conditions. The fish behavior strength could be a potential biomarker to assess the effects of environmental factors. The present study would be a basic platform for assessing the effects of different stressors simultaneously on swimming behavior of zebrafish.


Assuntos
Comportamento Animal/efeitos dos fármacos , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Animais , Ritmo Circadiano , Fotoperíodo , Natação , Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA