Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172357, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614344

RESUMO

Per- and Polyfluoroalkyl substances (PFAS) have been widely used in various industries, including pesticide production, electroplating, packaging, paper making, and the manufacturing of water-resistant clothes. This study investigates the levels of PFAS in fish tissues collected from four target waterways (15 sampling points) in the northwestern part of Illinois during 2021-2022. To assess accumulation, concentrations of 17 PFAS compounds were evaluated in nine fish species to potentially inform on exposure risks to local sport fishing population via fish consumption. At least four PFAS (PFHxA, PFHxS, PFOS, and PFBS) were detected at each sampling site. The highest concentrations of PFAS were consistently found in samples from the Rock River, particularly in areas near urban and industrial activities. PFHxA emerged as the most accumulated PFAS in the year 2022, while PFBS and PFOS dominated in 2021. Channel Catfish exhibited the highest PFAS content across different fish species, indicating its bioaccumulation potential across the food chain. Elevated levels of PFOS were observed in nearly all fish, indicating the need for careful consideration of fish consumption. Additional bioaccumulation data in the future years is needed to shed light on the sources and PFAS accumulation potential in aquatic wildlife in relation to exposures for potential health risk assessment.


Assuntos
Monitoramento Ambiental , Peixes , Fluorocarbonos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Illinois , Peixes/metabolismo , Fluorocarbonos/análise
2.
Mar Pollut Bull ; 202: 116353, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38598929

RESUMO

Galaxolide (HHCB) and tonalide (AHTN) are dominant musks added to personal care products. However, the accumulate and trophic transfer of SMs through the marine food chain are unclear. In this study, organisms were collected from three bays in Bohai Sea to investigate the bioaccumulation, trophic transfer, and health risk of SMs. The HHCB and AHTN concentrations in the muscles range from 2.75 to 365.40 µg/g lw and 1.04-4.94 µg/g lw, respectively. The median HHCB concentrations in muscles were the highest in Bohai Bay, followed by Laizhou Bay and Liaodong Bay, consistent with the HHCB concentrations in sediments. The different fish tissues from Bohai Bay were analyzed, and the HHCB and AHTN concentrations followed the heart > liver > gill > muscles. The trophic magnification factors (TMF) were lower than 1 and the health risk assessment showed no adverse health effects. The results provide insights into the bioaccumulation and trophic transfer behavior of SMs in marine environments.


Assuntos
Monitoramento Ambiental , Peixes , Cadeia Alimentar , Poluentes Químicos da Água , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Animais , Peixes/metabolismo , China , Bioacumulação , Benzopiranos , Ácidos Graxos Monoinsaturados/análise , Ácidos Graxos Monoinsaturados/metabolismo , Tetra-Hidronaftalenos/análise , Baías
3.
Environ Geochem Health ; 46(4): 122, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483653

RESUMO

This study aims to explore the concentrations of Se and Hg in shellfish along the Gulf of Mannar (GoM) coast (Southeast India) and to estimate related risks and risk-based consumption limits for children, pregnant women, and adults. Se concentrations in shrimp, crab, and cephalopods ranged from 0.256 to 0.275 mg kg-1, 0.182 to 0.553 mg kg-1, and 0.176 to 0.255 mg kg-1, respectively, whereas Hg concentrations differed from 0.009 to 0.014 mg kg-1, 0.022 to 0.042 mg kg-1 and 0.011 to 0.024 mg kg-1, respectively. Se and Hg content in bamboo shark (C. griseum) was 0.242 mg kg-1 and 0.082 mg kg-1, respectively. The lowest and highest Se concentrations were found in C. indicus (0.176 mg kg-1) and C. natator (0.553 mg kg-1), while Hg was found high in C. griseum (0.082 mg kg-1) and low in P. vannamei (0.009 mg kg-1). Se shellfishes were found in the following order: crabs > shrimp > shark > cephalopods, while that of Hg were shark > crabs > cephalopods > shrimp. Se in shellfish was negatively correlated with trophic level (TL) and size (length and weight), whereas Hg was positively correlated with TL and size. Hg concentrations in shellfish were below the maximum residual limits (MRL) of 0.5 mg kg-1 for crustaceans and cephalopods set by FSSAI, 0.5 mg kg-1 for crustaceans and 1.0 mg kg-1 for cephalopods and sharks prescribed by the European Commission (EC/1881/2006). Se risk-benefit analysis, the AI (actual intake):RDI (recommended daily intake) ratio was > 100%, and the AI:UL (upper limit) ratio was < 100%, indicating that all shellfish have sufficient level of Se to meet daily requirements without exceeding the upper limit (UL). The target hazard quotient (THQ < 1) and hazard index (HI < 1) imply that the consumption of shellfish has no non-carcinogenic health impacts for all age groups. However, despite variations among the examined shellfish, it was consistently observed that they all exhibited a Se:Hg molar ratio > 1. This finding implies that the consumption of shellfish is generally safe in terms of Hg content. The health benefit indexes, Se-HBV and HBVse, consistently showed high positive values across all shellfish, further supporting the protective influence of Se against Hg toxicity and reinforcing the overall safety of shellfish consumption. Enhancing comprehension of food safety analysis, it is crucial to recognize that the elevated Se:Hg ratio in shellfish may be attributed to regular selenoprotein synthesis and the mitigation of Hg toxicity by substituting Se bound to Hg.


Assuntos
Mercúrio , Selênio , Poluentes Químicos da Água , Gravidez , Animais , Criança , Adulto , Feminino , Humanos , Mercúrio/análise , Selênio/análise , Monitoramento Biológico , Peixes/metabolismo , Frutos do Mar/análise , Crustáceos , Medição de Risco , Poluentes Químicos da Água/análise
4.
Environ Toxicol Chem ; 43(4): 671-685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353354

RESUMO

Microplastics (MPs) have attracted global concern because of their harmful effects on marine biota; their toxic properties can negatively impact aquatic ecosystems. Fish is an essential source of protein for humans, playing a crucial role in daily food intake. Until recently, MPs were addressed primarily as environmental pollutants, but they are now increasingly recognized as contaminants in the food supply. The present review has comprehended the current knowledge of MP contamination in freshwater and marine fishes of Asia, including 112 peer-reviewed sources from 2016 to 2023. The review recorded 422 Asian fishes (345 marine and 77 freshwater) to be contaminated with MPs. Clarias gariepinus and Selaroides leptolepi have shown maximum MP contamination in the freshwater and marine environments of Asia, respectively. Omnivorous and carnivorous fishes exhibited higher susceptibility to ingesting MPs. Benthopelagic, demersal, and reef-associated habitats were identified as more prone to MP accumulation. In both freshwater and marine environments, China has the highest number of contaminated species among all the countries. Pollution indices indicated high MP contamination in both freshwater and marine environments. A prevalence of fibers was recorded in all fishes. Black- and blue-colored MPs of <500 µm-1 mm size were found dominantly. Polyethylene terephthalate and polyethylene were recorded as the prevalent plastic polymers in freshwater and marine fish, respectively. Overall, the review served as a comprehensive understanding of MP concentrations and variations between species, between feeding habits, and between geographic locations, which can be pivotal for addressing pressing environmental challenges, protecting human health, and fostering global sustainability efforts in the face of escalating plastic pollution. Environ Toxicol Chem 2024;43:671-685. © 2024 SETAC.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Ecossistema , Monitoramento Ambiental , Ásia , Peixes/metabolismo , Poluentes Químicos da Água/análise
5.
Food Res Int ; 180: 114086, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395583

RESUMO

This study aimed to explore the concentrations of Se and Hg in marine fish along the Gulf of Mannar (southeast coast of India) and to assess related risks and risk-based consumption limits for children, pregnant women, and adults. Se concentrations in pelagic and benthic fish ranged from 0.278 to 0.470 mg/kg and 0.203 to 0.294 mg/kg, respectively, whereas Hg concentrations ranged from 0.028 to 0.106 mg/kg and 0.026 to 0.097 mg/kg, respectively. Se and Hg contents in demersal fish (Nemipterus japonicus) were 0.282 and 0.039 mg/kg, respectively. The lowest and highest Hg concentrations in pelagic fish were found in Scomberomorus commersoni and Euthynnus affinis whereas the lowest and highest Se concentrations in benthic fish were found in Scarus ghobban and Siganus javus. Se concentrations in marine fishes were found in the following order: pelagic > demersal > benthic whereas Hg concentrations were found in the following order: pelagic > benthic > demersal. The presence of Se in fish was positively correlated with trophic level (TL) and size whereas that of Hg was weakly correlated with TL and habitat and negatively correlated with size. Se risk-benefit analysis, the AI/RDI (actual intake/recommended daily intake) ratio was > 100 % and the AI/UL (upper limit) ratio was < 100 %, indicating that all fish have sufficient levels of Se to meet daily requirements without exceeding the UL. Hg level was below the maximum residual limit (MRL) of 0.5 mg/kg for most fish but it was 1 mg/kg in E. affinis and Lethrinus lentjan. The target hazard quotient (THQ < 1) and hazard index (HI < 1) imply that the consumption of fish poses no noncarcinogenic health risks. However, all examined fish had a mean Se/Hg molar ratio > 1, indicating that human intake of fishwas rather safe relative to Hg content. Health benefit indexes (Se-HBV and HBVse) with high positive values in all fish supported the protective effect of Se against Hg toxicity, suggesting the overall safety of fish consumption. The high Se/Hg ratio in fish could be attributed to the replacement of Se bound to Hg, thereby suppressing Hg toxicity and maintaining normal selenoprotein synthesis. This insight is useful for a better understanding of food safety analysis.


Assuntos
Mercúrio , Selênio , Poluentes Químicos da Água , Gravidez , Animais , Criança , Adulto , Humanos , Feminino , Selênio/análise , Mercúrio/análise , Mercúrio/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Peixes/metabolismo , Medição de Risco
6.
Fish Physiol Biochem ; 50(2): 557-574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38193995

RESUMO

Research on antioxidant biomarkers can generate profound insights into the defense mechanisms of fish larvae against different stressors and can reveal manipulation strategies for improved growth and survival. However, the number of samples to process and unavailability of required infrastructure in larval-rearing facilities limit the immediate processing, requiring the preservation of specimens. Silver pompano (Trachinotus blochii), a potential marine aquaculture species, shows a low larval survival rate due to poorly developed antioxidant mechanism. In this context, 39 storage conditions, including three storage temperatures and different buffers, were scrutinized to select the most suitable preservation strategy for five important antioxidant biomarkers of fish larvae, viz. catalase activity, superoxide dismutase (SOD) activity, measurement of lipid peroxidation, reduced glutathione (GSH), and ascorbic acid contents. The paper proposes the optimum larval storage conditions for these five evaluated antioxidant biomarkers to generate similar results in preserved and non-preserved larval samples. Larval samples preserved in PBS at lower temperatures (- 20 °C and - 80 °C) are recommended for evaluating catalase activity and ascorbic acid content. Catalase activity can also be evaluated by preserving the larval samples at - 20 °C or - 80 °C without buffers. Larval samples held in PBS or without any buffers at - 20 °C and at - 80 °C were found to be suitable for SOD and GSH evaluation, respectively. Preservation in 50% glacial acetic acid at - 80 °C or - 20 °C was preferred for the lipid peroxidation assays. Apart from methodological perspectives, the paper provides insights into the dynamics of larval antioxidant profiles of T. blochii, for the first time.


Assuntos
Antioxidantes , Superóxido Dismutase , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Larva/metabolismo , Superóxido Dismutase/metabolismo , Ácido Ascórbico , Glutationa , Peixes/metabolismo , Biomarcadores/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo
7.
Environ Sci Pollut Res Int ; 31(12): 17617-17633, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36719589

RESUMO

Highly anthropized areas as ports represent complex scenarios that require accurate monitoring plans aimed to address the environmental status. In this context, the activities of the EU Interreg Project "GEstione dei REflui per il MIglioramento delle Acque portuali (GEREMIA)" were focused on comparing sites differently affected by human presence, as the Port of Genoa and the natural area of the S'Ena Arrubia fishpond: a panel of analyses was carried out on Mugilidae fish sampled in these two areas, aimed to address trace metal accumulation in the liver, gills, and muscle, as well as cytochrome P450 (CYP450) induction in liver and biliary polycyclic aromatic hydrocarbon (PAH) metabolites, and histopathological alterations in the liver and gills. Chemical analyses in the liver, gills, and muscle of specimens collected in the port area showed an overall higher degree of trace metal contamination compared to the natural fishpond, and similar results were obtained in terms of CYP450 induction and biliary PAH metabolites, suggesting a higher exposure to organic compounds. In addition, histopathological analyses revealed a significant alteration and then a loss of functionality of liver and gill tissue in individuals from the port. Overall, this study describes the complex environmental pollution scenario in the Port of Genoa, confirming the importance of using multidisciplinary approaches and different types of analyses to address both the presence and the effects of contaminants in marine environments.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Gerenciamento de Resíduos , Poluentes Químicos da Água , Animais , Humanos , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Citocromo P-450 CYP1A1/metabolismo , Peixes/metabolismo , Fígado , Nível de Saúde , Hidrocarbonetos Policíclicos Aromáticos/análise , Brânquias/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-37977240

RESUMO

This study aimed to analyze the toxic effects of Roundup Transorb® on the endangered Neotropical annual killifish Austrolebias charrua through the assessment of molecular and biochemical biomarkers. The fish were collected in temporary ponds and exposed to environmentally realistic concentrations of the herbicide (5 mg.L-1 for 96 h). The production of ROS, lipid peroxidation, DNA damage, and membrane fluidity were evaluated in the blood cells by flow cytometry. The mRNA expression of the antioxidant-related genes sod2, cat, gstα, atp1a1, gclc, and ucp1 across the brain, liver, and gills was quantified. The acute exposure of annual killifish to Roundup significantly increased ROS production, lipid peroxidation, and DNA damage in their erythrocytes. Likewise, Roundup Transorb® decreased membrane fluidity in the blood cells of the exposed fish. Gene expression analysis revealed that Roundup exposure alters the relative expression of genes associated with oxidative stress and antioxidant defense. Our results give rise to new insights into adaptive mechanisms of A. charrua in response to Roundup. Since Brazilian annual killifishes strongly risk extinction, this study paves the way for developing novel biotechnologies applied to environmental monitoring and aquatic toxicology assessment.


Assuntos
Glifosato , Herbicidas , Animais , Antioxidantes/metabolismo , Glicina/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Herbicidas/toxicidade , Peixes/metabolismo , Fundulus heteroclitus , Biomarcadores/metabolismo
9.
Environ Sci Pollut Res Int ; 30(52): 112086-112103, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37824055

RESUMO

The unregulated expulsion of untreated textile water into water bodies is a major hazard to aquatic ecosystems. The present investigation was contrived to estimate the impact of textile dye bath effluent (untreated and microbially treated) on fish Channa punctata. Untreated effluent-exposed fish showed extremely altered behaviour (air gulping, erratic and speedy movements, increased opercular activity) and morphology (deposition of dyes on skin and scales, high pigmentation, mucus exudation). Significantly increased micronuclei (1.61-, 1.28-, 1.38-fold) and aberrant cell frequency (1.37-, 1.45-, 1.28-fold) was observed in untreated group as compared to treated group after 15, 30, and 45 days of exposure. Tail length, % tail intensity, tail moment and olive tail moment were also enhanced in all the exposed tissues. However, maximum damage was noticed in gill tissues showing 1.19-, 1.37-, 1.34- and 1.50-fold increased TL, %TI, TM and OTM in untreated group as compared to treated group after 45 days of exposure. On comparing untreated and treated groups, increased blood parameters and significantly reduced white blood cell count (WBC) were noticed in treated group. Significantly enhanced alterations in biochemical parameters were also analysed in untreated group. Reduced alterations in enzymological levels of fishes exposed to treated effluent indicate lesser toxic nature of the degraded metabolites of dye. Histological analysis in fishes exposed to untreated effluent showed several deformities in liver (necrosis, congestion, fusion of cells and melanomacrophage infiltration) and gill tissues (necrosis, bending of lamellae and severe aneurysm). Scanning electron microscopy (SEM) analysis further reaffirmed the pathologies observed in histological analysis. Fewer structural alterations were noticed in treated effluent fishes. The results concluded that untreated effluent inflicted toxicity potential on morphology as well as physiological defects in fish, and the severity increased with increasing duration of exposure, whereas reduction in toxicity in microbially treated groups can be analysed for aquacultural purposes owing to their lesser toxic nature.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Indústria Têxtil , Ecossistema , Peixes/metabolismo , Necrose , Dano ao DNA , Água Doce , Água/metabolismo
10.
Chemosphere ; 344: 140221, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741370

RESUMO

Parabens have emerged as the primary preservative of choice in numerous consumer goods, prompting growing apprehension regarding their potential for human exposure. The study employed the optimized QuEChERs sample extraction method and the UHPLC-Q-Orbitrap HRMS system to generate the initial contamination profiles of seven parabens and their four metabolites in a total of 114 fish samples found along the coastline of Vietnam. The findings of the study indicated that methylparaben was the predominant substance detected, exhibiting the highest concentration in the largehead hairtail (Trichiurus lepturus) species at 32.8 ng g-1 dry weight (dw). Additionally, the metabolites with the highest detectable concentrations in the largehead hairtail were found to be 4-HB and 3,4-DHB, with levels of 8822.0 ng g-1 dw and 3490.8 ng g-1 dw, respectively. Besides, the study reveals notable variations in paraben concentrations across three distinct regions in Vietnam, namely the Central, North, and South (Mann-Whitney U test, p < 0.05). The trophic magnification factors (TMF) for methylparaben, ethylparaben, ethyl protocatechuate, and 4-hydroxybenzoic acid exhibited values exceeding 1, indicating substantial biomagnification of these substances within the marine food web of Vietnam. Additionally, noteworthy positive associations have been observed between methylparaben and ethylparaben, as well as their respective metabolites. Based on the findings of the study, it can be concluded that there is no direct impact of seafood consumption on human health in Vietnam.


Assuntos
Peixes , Parabenos , Animais , Humanos , Parabenos/análise , Vietnã , Bioacumulação , Peixes/metabolismo , Medição de Risco
11.
Talanta ; 264: 124762, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276678

RESUMO

In this work, a wide-scope liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitative determination of environmental levels of multiclass drugs and their metabolites in water and fish samples was developed. The method allowed the reliable determination of 44 drugs, covering a rather wide range of chemistries and physicochemical characteristics. In order to obtain a reliable and robust analytical protocol, different combinations of extraction and cleanup techniques were systematically examined. Aqueous samples were extracted using a simple Oasis HLB SPE enrichment protocol with pH-optimized sample percolation (pH 3). The extraction of cryo-homogenized biota samples was performed using double extraction with MeOH basified with 0.5% NH3, which allowed high extraction recoveries for all target analytes. The problem of the coextracted lipid matrix, which is known to be the key obstacle for reliable biota analysis, was systematically examined in a series of model cleanup experiments. A combination of cryo-precipitation, filtration, and HLB SPE cleanup was proposed as a protocol, which allowed reliable and robust analysis of all target compounds at low ng/g levels. At the final conditions, the method which was validated at three concentration levels showed high extraction recoveries (68-97%), acceptable matrix effects (12 to -32%), accuracies (81-129%), and reproducibilities (3-32%) for all analytes. The developed method was used to determine drug concentrations in river water and in feral freshwater fish, including whole fish and muscle tissue, from the Sava River (Croatia), in order to estimate their corresponding bioaccumulation potential. With respect to bioaccumulation potential in whole fish and fish muscle, the most relevant drugs were lisinopril, sertraline, terbinafine, torsemide, diazepam, desloratadine, and loratadine with estimated bioaccumulation factors ranging from 20 to 838 and from 1 to 431, respectively.


Assuntos
Resíduos de Drogas , Animais , Cromatografia Líquida/métodos , Água/metabolismo , Espectrometria de Massas em Tandem/métodos , Bioacumulação , Peixes/metabolismo , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão
12.
Environ Sci Pollut Res Int ; 30(35): 83341-83355, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37340160

RESUMO

Rivers get polluted with diverse types of hazardous and toxic substances, pesticides being one of them. The water and sediment of rivers get contaminated with pesticide residues coming through the run-off of vast agricultural fields along the catchment area and also from domestic sewage water. The residues get bio-concentrated and bio-accumulated in different aquatic organisms and animals including fishes along the food chain. Fish, one of the important and chief sources of proteins, are consumed by humans. The presence of toxic substances like pesticides in any food item is undesirable for the fear of health hazards. We have monitored the status of pesticide residue in river Gomti, a tributary of River Ganga that passes through the Uttar Pradesh state of India. Water, sediment, and fish samples collected from the different locations along the river stretch were analyzed for 34 targeted pesticide compounds belonging to organochlorines (OC), organophosphates (OP), and synthetic pyrethroids (SP) groups. In 52% of water, 30% of sediment, and 43% of fish samples residues of OCs were detected while the OPs were present in 33%, 25%, and 39% of samples respectively. However, none of the SPs could be recorded in any sample. The concentrations of the pesticides in water indicate stress conditions to some extent to aquatic life, but based on the human health risk assessment it can be concluded that consumption of fishes from the river contaminated with different OC or OP residues would not pose any direct risk to the consumers.


Assuntos
Hidrocarbonetos Clorados , Resíduos de Praguicidas , Praguicidas , Poluentes Químicos da Água , Animais , Humanos , Resíduos de Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Praguicidas/análise , Hidrocarbonetos Clorados/análise , Peixes/metabolismo , Água , Índia , Medição de Risco
13.
Sci Total Environ ; 878: 163195, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37003335

RESUMO

This study aimed to develop a multidisciplinary approach to assess the ecological status of six moderate-sized French estuaries. For each estuary, we gathered geographical information, hydrobiological data, chemistry of pollutants and fish biology, including integration of proteomics and transcriptomics data. This integrative study covered the entire hydrological system studied, from the watershed to the estuary, and considered all the anthropogenic factors that can impact this environment. To reach this goal, European flounder (Platichthys flesus) were collected from six estuaries in September, which ensures a minimum residence time of five months within an estuary. Geographical metrics are used to characterize land use in each watershed. The concentrations of nitrite, nitrate, organic pollutants, and trace elements were measured in water, sediments and biota. All of these environmental parameters allowed to set up a typology of estuaries. Classical fish biomarkers, coupled with molecular data from transcriptomics and shotgun proteomics, highlighted the flounder's responses to stressors in its environment. We analysed the protein abundances and gene expression levels in the liver of fish from the different estuaries. We showed clear positive deregulation of proteins associated with xenobiotic detoxification in a system characterized by a large population density and industrial activity, as well as in a predominantly agricultural catchment area (mostly cultures of vegetables and pig breeding) mainly impacted by pesticides. Fish from the latter estuary also displayed strong deregulation of the urea cycle, most probably related to high nitrogen load. Proteomic and transcriptomic data also revealed a deregulation of proteins and genes related to the response to hypoxia, and a probable endocrine disruption in some estuaries. Coupling these data allowed the precise identification of the main stressors interacting within each hydrosystem.


Assuntos
Linguado , Poluentes Químicos da Água , Animais , Suínos , Linguado/fisiologia , Monitoramento Ambiental , Ecossistema , Proteômica , França , Peixes/metabolismo , Estuários , Poluentes Químicos da Água/análise
14.
Environ Monit Assess ; 195(5): 617, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103641

RESUMO

Fish constitutes an essential source of high-quality protein and is, at the same time, the source of exposure to many hazardous contaminants, namely mercury and methyl mercury (MeHg). This study aims at assessing the risk that MeHg poses to the health of adult Qatari residents through fish consumption. Data on fish consumption were collected using a self-administered online survey composed of three sections that collected information about the fish-eating patterns of the participants. The fish species that were reported to be consumed by ≥ 3% of the respondents were sampled and analyzed for their total mercury (T-Hg) content levels. MeHg concentrations were derived from T-Hg content levels using a scenario-based approach. Disaggregated fish consumption and contamination data were combined using the deterministic approach to estimate MeHg intakes. The average, 75th, and 95th percentiles of the MeHg intake estimates were determined and compared to the tolerable weekly intake (TWI) set by the European Food Safety Agency (EFSA) (1.3 µg·kg-1·w-1). All fish samples contained T-Hg at levels ˂ 0.3-0.5 µg/g with a mean value of 0.077 µg/g. The study population had an average fish consumption of 736.0 g/week. The average estimated weekly intakes of MeHg exceeded TWI for some fish consumers including females of childbearing age and those following a high-protein diet. Our study highlights the need to establish regulatory guidelines and dietary advice based on risk/benefit ratio.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Feminino , Humanos , Monitoramento Ambiental , Contaminação de Alimentos/análise , Compostos de Metilmercúrio/análise , Mercúrio/análise , Peixes/metabolismo , Medição de Risco , Alimentos Marinhos
15.
Sci Total Environ ; 876: 163094, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36996992

RESUMO

Food has consistently been shown to be an important source of exposure to environmental pollutants, drawing attention to the health risks of pollutants in marine mammals with high daily food intake. Here, the dietary exposure risks posed to the Indo-Pacific humpback dolphins from the Pearl River Estuary (PRE), China, by fourteen phthalate metabolites (mPAEs) were evaluated for the first time. On the basis of liquid chromatography-mass spectrometry (LC-MS/MS) analysis, the levels of ∑14mPAEs in ten main species of prey fish (n = 120) of dolphins ranged from 103.0 to 444.5 ng/g wet weight (ww), among which Bombay duck contained a significantly higher body burden of ∑14mPAEs than other prey species. Phthalic acid (PA), monooctyl phthalate (MnOP), monononyl phthalate (MNP), monoethyl phthalate (MEP), monoethylhexyl phthalate (MEHP), mono (5-carboxy-2-ethylpentyl) phthalate (MECPP), monobutyl phthalate (MBP), and monoisobutyl phthalate (MiBP) all had a trophic magnification factor (TMF) greater than unity, indicating the biomagnification potential of these mPAEs in the marine ecosystem of the PRE. A dietary exposure assessment based on the adjusted reference dose values of phthalates (PAEs) showed that bis (2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) may pose a high (HQ > 1) and medium (0.01 < HQ < 1) risk to the dolphin adults and juveniles, respectively. Our results highlight the potential health risks of mPAEs to marine mammals through dietary routes.


Assuntos
Golfinhos , Poluentes Ambientais , Ácidos Ftálicos , Animais , Exposição Ambiental/análise , Golfinhos/metabolismo , Cromatografia Líquida , Ecossistema , Espectrometria de Massas em Tandem , Ácidos Ftálicos/análise , Poluentes Ambientais/análise , Peixes/metabolismo , Medição de Risco
16.
Water Environ Res ; 95(2): e10836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744448

RESUMO

It is essential to increase the use of carbohydrates as an energy source and improve protein synthesis and utilization to reduce ammonia nitrogen emissions. A 60-day cultural experiment was conducted to assess the impact of resistant starch (kelp meal, Laminaria japonica) replacing starch on water quality, nitrogen and phosphorus budget and microbial community of hybrid snakehead. Approximately 1350 experimental fish (11.4 ± 0.15 g) were randomly divided into control group (C, 20% starch) and four resistant starch groups: low replacement group (LR, 15% starch), medium replacement group (MR, 10% starch), high replacement group (HR, 5% starch) and full replacement group (FR, 0% starch). The crude protein and crude fat content of hybrid snakehead fish fed with the FR diet had the most significant improvement (P < 0.05). However, resistant starch also increased the effectiveness of nitrogen and phosphorus utilization in hybrid snakeheads, which decreased the proportion of total nitrogen and total phosphorus in tail water. The minimum nitrogen and phosphorus emission rate was when the starch level was 6.1%. Denitrifying microbes including Gemmobacter, Rhodobacter, Emticicia and Bosea have become much more prevalent in group FR (P < 0.05). In general, replacing starch with resistant starch can enhance the rate at which nitrogen and phosphorus are used in feeding, lessening water pollution and altering environmental microbial composition. PRACTITIONER POINTS: Resistant starch (RS) improves whole fish nutritional content. Resistant starch improves dietary nitrogen and phosphorus utilization. Resistant starch acts as a carbon source and encourages the colonization of denitrifying bacteria in water.


Assuntos
Laminaria , Microbiota , Animais , Ração Animal/análise , Peixes/metabolismo , Laminaria/metabolismo , Nitrogênio/metabolismo , Fósforo , Amido Resistente , Amido , Qualidade da Água
17.
Environ Sci Pollut Res Int ; 30(12): 34585-34597, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36515882

RESUMO

The extraction of 21 insecticides and 5 metabolites was performed using an optimized and validated QuEChERS protocol that was further used for the quantification (GC-MS/MS) in several seafood matrices (crustaceans, bivalves, and fish-mudskippers). Seven species, acquired from Hong Kong and Macao wet markets (a region so far poorly monitored), were selected based on their commercial importance in the Indo-Pacific region, market abundance, and affordable price. Among them, mussels from Hong Kong, together with mudskippers from Macao, presented the highest insecticide concentrations (median values of 30.33 and 23.90 ng/g WW, respectively). Residual levels of fenobucarb, DDTs, HCHs, and heptachlors were above the established threshold (10 ng/g WW) for human consumption according to the European and Chinese legislations: for example, in fish-mudskippers, DDTs, fenobucarb, and heptachlors (5-, 20- and tenfold, respectively), and in bivalves, HCHs (fourfold) had higher levels than the threshold. Risk assessment revealed potential human health effects (e.g., neurotoxicity), especially through fish and bivalve consumption (non-carcinogenic risk; ΣHQLT > 1), and a potential concern of lifetime cancer risk development through the consumption of fish, bivalves, and crustaceans collected from these markets (carcinogenic risk; ΣTCR > 10-4). Since these results indicate polluted regions, where the seafood is collected/produced, a strict monitoring framework should be implemented in those areas to improve food quality and safety of seafood products.


Assuntos
Bivalves , Contaminação de Alimentos , Inseticidas , Poluentes Químicos da Água , Animais , Peixes/metabolismo , Contaminação de Alimentos/análise , Inseticidas/metabolismo , Medição de Risco , Alimentos Marinhos/análise , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise
18.
Biol Trace Elem Res ; 201(8): 4093-4102, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36447003

RESUMO

This study aimed to evaluate the bioaccumulation of heavy metals (copper, zinc, and lead) and chemical compositions (fat, protein, moisture, and ash) in the Parastromateus niger muscle of the Oman Sea in pre-monsoon and post-monsoon. An atomic absorption spectrophotometer was used to determine heavy metal concentrations in fish muscle tissue. Chemical composition contents were measured using the Association of Official Analytical Chemists (AOAC) methods. Zinc was the most abundant heavy metal in two seasons (0.077 ± 0.005 µg/g), followed by copper (0.033 ± 0.005 µg/g) and lead (0.015 ± 0.005 µg/g). The mean concentrations of all heavy metals of muscle in pre-monsoon were higher than in post-monsoon. The concentrations of Cu, Zn, and Pb were lower than the maximum permissible limits (MPL) of international standards for human consumption established by FAO, FAO/WHO, WHO, and MAFF. The protein and fat content in fish muscle collected in pre-monsoon was higher than in post-monsoon. A significant difference between protein, fat, moisture, and ash values was recorded in two seasons (P < 0.05). The human health risk of heavy metals was evaluated according to the United States Environmental Protection Agency (USEPA) standards. The estimated daily intake (EDI) of each heavy metal in two seasons was lower than the tolerable daily intake (TDI). THQ (target hazard quotient) and TTHQ (total target hazard quotient) values were lower than the threshold limit of 1.0, indicating a non-carcinogenic risk for consumers. TR (target carcinogenic risk) value for Pb was much lower than the unacceptable risk level (10-4); therefore, the consumption of muscles of Parastromateus niger did not significantly pose a human health risk.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Humanos , Cobre , Omã , Chumbo , Níger , Poluentes Químicos da Água/análise , Contaminação de Alimentos/análise , Metais Pesados/análise , Peixes/metabolismo , Zinco , Medição de Risco , Carcinógenos , Monitoramento Ambiental/métodos
19.
Open Vet J ; 13(12): 1738-1743, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38292718

RESUMO

Background: In Egypt, salted fish is considered a typically processed fish, including salted sardine, salted mullet (feseikh), keeled mullet (sahlia), and herrings. High-quality protein, polyunsaturated fatty acids, vital amino acids, and trace minerals such as magnesium and calcium are all abundant in fish. However, eating salted fish can expose people to toxins found in the environment, such as heavy metals. Aim: In Zagazig, Egypt, four types of locally produced salted fish-salted sardine, feseikh, sahlia, and herrings-were tested for heavy metals, specifically lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg). Second, the assessed heavy metals linked to the Egyptian population's consumption of salted fish were used to calculate estimated daily intakes (EDIs) and potential health hazards, such as hazard quotient (HQ) and hazard index (HI). Methods: Samples of salted herrings, feseikh, sahlia, and sardines were gathered from the markets in Zagazig. Samples of salted fish were subjected to acid digestion and then heavy metal extraction. Atomic absorption spectrometers (AAS) were used to measure heavy metals. HI, HQ, and EDI were computed computationally. Results: With the exception of mercury, which was not found in the salted herrings, the recorded results showed that all of the tested metals were present in the samples that were evaluated. The herrings contained residual Pb and Cd contents that were highest, followed by sardine, feseikh, and sahlia, in that order. After sardine, herrings, and sahlia, feseikh has the greatest concentration. Sardine, feseikh, and sahlia had the highest quantities of mercury, in that order. A number of samples were found to be above the maximum allowable levels. There were no apparent hazards associated with consuming such conventional fish products, according to the computed HQ and HI values for the heavy metals under investigation based on the daily intakes. Conclusion: Samples of salted fish sold in Zagazig, Egypt, had high quantities of the hazardous elements Pb, Cd, As, and Hg. Due to the bioaccumulation and biomagnification characteristics of these studied metals, such data should be taken carefully even though the computed health hazards revealed no potential problems.


Assuntos
Mercúrio , Metais Pesados , Animais , Cádmio/análise , Cádmio/metabolismo , Egito , Chumbo/metabolismo , Metais Pesados/análise , Metais Pesados/metabolismo , Mercúrio/análise , Mercúrio/metabolismo , Peixes/metabolismo , Produtos Pesqueiros , Ingestão de Alimentos , Medição de Risco
20.
Artigo em Inglês | MEDLINE | ID: mdl-35805555

RESUMO

Heavy metal contamination in coastal waters may pose a serious threat to aquatic products and human health. This study aimed to gain a better understanding of the pollution-induced by heavy metals in Haikou Bay and adjacent seas and assessed the potential ecological risk. The spatial distributions of heavy metals including Cu, Pb, Zn, Cd, Cr, Hg, and As were analyzed in the surface and bottom water, surface sediment, and five species of fish collected from Haikou Bay and adjacent seas. For seawater, the results showed that the horizontal distribution of the seven heavy metal elements in the study area had no uniform pattern due to the influence of complex factors, such as land-based runoff, port shipping, and ocean current movement. In contrast, the vertical distribution of these heavy metal elements, except for Zn and Cd, showed high concentrations in the surface water and low concentrations in the bottom water. Due to the symbiotic relationship between Zn and Cd, the distributions of these two elements were similar in the study areas. Different from the complex distribution of heavy metals in water, the highest concentrations of these elements in surface sediment all occurred at station 11 except for Pb. Our study revealed that organic carbon and sulfide are important factors affecting the heavy metal concentrations in the surface sediments. Heavy metals in waters and surface sediment were lower than the quality standard of class I according to the China National Standard for Seawater Quality and the sediment quality, except for Zn in water, suggesting that the seawater and surface sediment in Haikou Bay and adjacent seas has not been polluted by heavy metals. Additionally, the heavy metal As was the main element affecting the quality of fish in this study area, and attention should be paid in the future. The target hazard quotient (THQ) values of seven heavy metal elements in fish were all lower than 1.0, indicating that eating fish in this area will not pose a risk to human health. These results provide valuable information for further understanding the status of heavy metal pollution in Haikou Bay and adjacent seas and the development of targeted conversation measures for the environment and fish consumers.


Assuntos
Sedimentos Geológicos/química , Metais Pesados/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Animais , Baías , China , Monitoramento Ambiental/métodos , Peixes/metabolismo , Sedimentos Geológicos/análise , Metais Pesados/efeitos adversos , Oceanos e Mares , Medição de Risco , Poluentes Químicos da Água/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA