Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38810897

RESUMO

Cathelicidins are important antimicrobial peptides in various vertebrate species where they are crucial parts of the innate immune system. The current understanding of amphibian cathelicidins is limited, particularly with regard to their immunomodulatory effects. To address this knowledge gap, we produced the cDNA sequence of the cathelicidin gene from a skin transcriptome of the Chinese spiny frog Quasipaa spinosa. The amino acid sequence of the Quasipaa spinosa cathelicidin (QS-CATH) was predicted to consist of a signal peptide, a cathelin domain, and a mature peptide. Comparative analysis of the QS-CATH amino acid sequence with that of other amphibian cathelicidins revealed high variability in the functional mature peptide among amphibians, whereas the cathelin domain was conserved. The QS-CATH gene was expressed in several tissues, with the highest level of expression in the spleen. Upregulation of QS-CATH after Aeromonas hydrophila infection occurred in the kidney, gut, spleen, skin, and liver. Chemically synthesized QS-CATH exhibited pronounced antibacterial activity against Shigella flexneri, Staphylococcus warneri, Escherichia coli, Salmonella enterica, and Listeria monocytogenes. Furthermore, QS-CATH disrupted the cell membrane integrity of S. flexneri, as evidenced by a lactate dehydrogenase release assay, and it hydrolyzed the genomic DNA of S. flexneri. Additionally, QS-CATH elicited chemotaxis and modulated the expression of inflammatory cytokine genes in RAW264.7 mouse leukemic monocyte/macrophage cells. These findings confirm the antimicrobial effects of amphibian cathelicidin and its ability to influence immune cell function. This will expedite the potential utilization of amphibian antimicrobial peptides as therapeutic agents.


Assuntos
Anuros , Catelicidinas , Animais , Camundongos , Sequência de Aminoácidos , Fatores Imunológicos/farmacologia , Aeromonas hydrophila , Proteínas de Anfíbios/farmacologia , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/isolamento & purificação , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Células RAW 264.7 , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/isolamento & purificação , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/imunologia , População do Leste Asiático
2.
Exp Biol Med (Maywood) ; 246(4): 414-425, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33175610

RESUMO

In the continuing search for novel antibiotics, antimicrobial peptides are promising molecules, due to different mechanisms of action compared to classic antibiotics and to their selectivity for interaction with microorganism cells rather than with mammalian cells. Previously, our research group has isolated the antimicrobial peptide LyeTx I from the venom of the spider Lycosa erythrognatha. Here, we proposed to synthesize three novel shortened derivatives from LyeTx I (LyeTx I mn; LyeTx I mnΔK; LyeTx I mnΔKAc) and to evaluate their toxicity and biological activity as potential antimicrobial agents. Peptides were synthetized by Fmoc strategy and circular dichroism analysis was performed, showing that the three novel shortened derivatives may present membranolytic activity, like the original LyeTx I, once they folded as an alpha helix in 2.2.2-trifluorethanol and sodium dodecyl sulfate. In vitro assays revealed that the shortened derivative LyeTx I mnΔK presents the best score between antimicrobial (↓ MIC) and hemolytic (↑ EC50) activities among the synthetized shortened derivatives, and LUHMES cell-based NeuriTox test showed that it is less neurotoxic than the original LyeTx I (EC50 [LyeTx I mnΔK] ⋙ EC50 [LyeTx I]). In vivo data, obtained in a mouse model of septic arthritis induced by Staphylococcus aureus, showed that LyeTx I mnΔK is able to reduce infection, as demonstrated by bacterial recovery assay (∼10-fold reduction) and scintigraphic imaging (less technetium-99m labeled-Ceftizoxime uptake by infectious site). Infection reduction led to inflammatory process and pain decreases, as shown by immune cells recruitment reduction and threshold nociception increment, when compared to positive control group. Therefore, among the three shortened peptide derivatives, LyeTx I mnΔK is the best candidate as antimicrobial agent, due to its smaller amino acid sequence and toxicity, and its greater biological activity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Bactérias/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Dicroísmo Circular , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Fungos/efeitos dos fármacos , Humanos , Inflamação/patologia , Camundongos , Testes de Sensibilidade Microbiana , Nociceptividade/efeitos dos fármacos , Coelhos
3.
Microb Pathog ; 122: 73-78, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29890331

RESUMO

Over the last decades, poultry industry faced to the rapid emergence of multidrug-resistant bacteria as a global concern. Antimicrobial peptide (AMPs) known as potential antibiotic alternative and were considered as a new antimicrobial agent. Current methods of production and purification of AMPs have several limitations such as: costly, time-consuming and killing the producing host cells in recombinant form. In the present study, a chimeric peptide derived from camel lactoferrin was produced in Escherichia coli periplasmic space using a pET-based expression system and its antibacterial activity was determined on some avian pathogens in vitro. A carboxy-terminal polyhistidine tag was used for purification by Ni2+ affinity chromatography with an average yield of 0.42 g/L. The His-tagged chimeric peptide showed different range of antimicrobial activity against clinically isolated avian pathogens with low chicken blood hemolysis activity and high serum stability. Overall, the results of this investigation showed the recombinant chimeric peptide was successfully expressed in pET-based expression system and could be considered as a proper alternative for some currently used antibiotics in poultry industry and drugs veterinary medicine.


Assuntos
Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Infecções Bacterianas/veterinária , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Doenças das Aves Domésticas/microbiologia , Proteínas Recombinantes/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Camelus , Galinhas , Testes de Sensibilidade Microbiana , Doenças das Aves Domésticas/tratamento farmacológico , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
4.
Appl Microbiol Biotechnol ; 101(14): 5667-5675, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28488117

RESUMO

Helicobacter pylori (H. pylori) shows increasingly enhanced resistance to various antibiotics, and its eradication has become a major problem in medicine. The antimicrobial peptide PGLa-AM1 is a short peptide with 22 amino acids and exhibits strong antibacterial activity. In this study, we investigated whether it has anti-H. pylori activity for the further development of anti-H. pylori drugs to replace existing antibiotics. However, the natural antimicrobial peptide PGLa-AM1 shows a low yield and is difficult to separate, limiting its application. A good strategy to solve this problem is to express the antimicrobial peptide PGLa-AM1 using gene engineering at a high level and low cost. For getting PGLa-AM1 with native structure, in this study, a specific protease cleavage site of tobacco etch virus (TEV) was designed before the PGLa-AM1 peptide. For convenience to purify and identify high-efficiency expression PGLa-AM1, the PGLa-AM1 gene was fused with the polyhedrin gene of Bombyx mori (B. mori), and a 6 × His tag was designed to insert before the amino terminus of the fusion protein. The fusion antibacterial peptide PGLa-AM1 (FAMP) gene codon was optimized, and the gene was synthesized and cloned into the Escherichia coli (E. coli) pET-30a (+) expression vector. The results showed that the FAMP was successfully expressed in E. coli. Its molecular weight was approximately 34 kDa, and its expression level was approximately 30 mg/L. After the FAMP was purified, it was further digested with TEV protease. The acquired recombinant antimicrobial peptide PGLa-AM1 exerted strong anti-H. pylori activity and therapeutic effect in vitro and in vivo.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Helicobacter pylori/efeitos dos fármacos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Modelos Animais de Doenças , Escherichia coli/genética , Engenharia Genética/economia , Engenharia Genética/métodos , Infecções por Helicobacter/tratamento farmacológico , Camundongos , Proteínas de Matriz de Corpos de Inclusão , Potyvirus/enzimologia , Potyvirus/genética , Conformação Proteica , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Estruturais Virais/genética
5.
Biotechnol Bioeng ; 112(5): 957-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25425208

RESUMO

Antimicrobial peptides, as a new class of antibiotics, have generated tremendous interest as potential alternatives to classical antibiotics. However, the large-scale production of antimicrobial peptides remains a significant challenge. This paper reports a simple and low-cost chromatography-free platform technology for producing antimicrobial peptides in Escherichia coli (E. coli). A fusion protein comprising a variant of the helical biosurfactant protein DAMP4 and the known antimicrobial peptide pexiganan is designed by joining the two polypeptides, at the DNA level, via an acid-sensitive cleavage site. The resulting DAMP4(var)-pexiganan fusion protein expresses at high level and solubility in recombinant E. coli, and a simple heat-purification method was applied to disrupt cells and deliver high-purity DAMP4(var)-pexiganan protein. Simple acid cleavage successfully separated the DAMP4 variant protein and the antimicrobial peptide. Antimicrobial activity tests confirmed that the bio-produced antimicrobial peptide has the same antimicrobial activity as the equivalent product made by conventional chemical peptide synthesis. This simple and low-cost platform technology can be easily adapted to produce other valuable peptide products, and opens a new manufacturing approach for producing antimicrobial peptides at large scale using the tools and approaches of biochemical engineering.


Assuntos
Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Escherichia coli/metabolismo , Sequência de Aminoácidos , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Precipitação Química , Clonagem Molecular/métodos , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Microbiologia Industrial/economia , Microbiologia Industrial/métodos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
6.
Glycobiology ; 25(1): 101-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25209582

RESUMO

Euonymus europaeus lectin (EEL) is a carbohydrate-binding protein derived from the fruit of the European spindle tree. EEL was first identified for its erythrocyte agglutinating properties and specificity for B and H blood groups. However, a detailed molecular picture of the structural basis of carbohydrate recognition by EEL remains to be developed. In this study, we performed fluorescence titrations of a range of carbohydrates against EEL. Binding of EEL to a wide range of carbohydrates was observed, including a series of blood group-related carbohydrates, mannosides, chitotriose and sialic acid. Affinity was strongest for carbohydrates with H-related structures and the B trisaccharide. A homology model of EEL was produced from templates identified using the HHPred server, which employs hidden Markov models (HMMs) to identify templates. The HMM approach identified that the best templates for EEL were proteins featuring a ricin B-like (R-type) fold. Separate templates were used to model the core and binding site regions of the lectin. Through the use of constrained docking and spatial comparison with a template ligand, binding modes for the carbohydrate ligands were predicted. A relationship between the experimental binding energies and the computed binding energies of the selected docked poses was determined and optimized. Collectively, our results suggest that EEL utilizes a single site for recognition of carbohydrates terminating in a variety of monosaccharides.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Antígenos de Grupos Sanguíneos/química , Euonymus/química , Lectinas de Plantas/química , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Sítios de Ligação , Configuração de Carboidratos , Sequência de Carboidratos , Cinética , Ligantes , Manosídeos/química , Cadeias de Markov , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Lectinas de Plantas/isolamento & purificação , Ligação Proteica , Dobramento de Proteína , Ricina/química , Ácidos Siálicos/química , Espectrometria de Fluorescência , Homologia Estrutural de Proteína , Termodinâmica , Trissacarídeos/química
7.
Peptides ; 31(11): 1957-65, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20713107

RESUMO

Cationic antimicrobial host defense peptides (HDPs) combat infection by directly killing a wide variety of microbes, and/or modulating host immunity. HDPs have great therapeutic potential against antibiotic-resistant bacteria, viruses and even parasites, but there are substantial roadblocks to their therapeutic application. High manufacturing costs associated with amino acid precursors have limited the delivery of inexpensive therapeutics through industrial-scale chemical synthesis. Conversely, the production of peptides in bacteria by recombinant DNA technology has been impeded by the antimicrobial activity of these peptides and their susceptibility to proteolytic degradation, while subsequent purification of recombinant peptides often requires multiple steps and has not been cost-effective. Here we have developed methodologies appropriate for large-scale industrial production of HDPs; in particular, we describe (i) a method, using fusions to SUMO, for producing high yields of intact recombinant HDPs in bacteria without significant toxicity and (ii) a simplified 2-step purification method appropriate for industrial use. We have used this method to produce seven HDPs to date (IDR1, MX226, LL37, CRAMP, HHC-10, E5 and E6). Using this technology, pilot-scale fermentation (10L) was performed to produce large quantities of biologically active cationic peptides. Together, these data indicate that this new method represents a cost-effective means to enable commercial enterprises to produce HDPs in large-scale under Good Laboratory Manufacturing Practice (GMP) conditions for therapeutic application in humans.


Assuntos
Antibacterianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Escherichia coli/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Sequência de Aminoácidos , Anti-Infecciosos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/biossíntese , Catelicidinas/biossíntese , Catelicidinas/isolamento & purificação , Clonagem Molecular/métodos , Análise Custo-Benefício , Fatores Imunológicos/biossíntese , Fatores Imunológicos/isolamento & purificação , Peptídeos/isolamento & purificação
8.
J Food Sci ; 75(6): M383-8, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20722941

RESUMO

The peptide mixture from housefly pupae has broad spectrum antimicrobial activity but has not previously been reported as a food preservative. In this study, the preservation effects of a housefly pupae peptide mixture, nisin, and sodium dehydroacetate (DHA-S) on the number of mesophilic aerobic bacteria (MAB), total volatile basic nitrogen (TVB-N), and pH value of chilled pork were compared. All results showed that a good preservation effect was observed among 3 treatments with the peptide mixture of housefly pupae, nisin, and DHA-S and that there was no significant difference among them. These results indicate that housefly peptide mixture has a great potential as a food preservative. The results of scanning electron microscope and transmission electron microscopy suggest that the primary mechanism of housefly pupae peptide mixture may be bacterial cytoplasmic membrane lysis and pores induced in the membranes. Practical Applications: Peptide mixture extracted from housefly pupae using low-cost and simple method has broad spectrum antimicrobial activity. According to the effect on chilled pork preservation, extracted housefly peptide mixture has a great potential as a food preservative.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Microbiologia de Alimentos , Conservantes de Alimentos/farmacologia , Moscas Domésticas/metabolismo , Proteínas de Insetos/farmacologia , Carne/microbiologia , Animais , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Membrana Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Conservação de Alimentos/economia , Conservantes de Alimentos/economia , Conservantes de Alimentos/isolamento & purificação , Concentração de Íons de Hidrogênio , Proteínas de Insetos/isolamento & purificação , Nisina/farmacologia , Pupa/metabolismo , Pironas/farmacologia , Refrigeração , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/ultraestrutura , Suínos/microbiologia , Fatores de Tempo
9.
Biotechnol Appl Biochem ; 39(Pt 3): 339-45, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15154847

RESUMO

Endogenous antimicrobial peptides are ubiquitous components of animal and plant host defences. These peptides, usually cationic and amphipathic, kill target cells rapidly and are efficacious against antibiotic-resistant and clinically relevant pathogens. A practical challenge in the development of cationic peptides as therapeutics is to meet the production requirements for large quantities of highly purified drug substance at competitive costs. While chemical peptide synthesis can be used to manufacture cationic peptides, we have developed cost-effective methods for recombinant production by expressing fusion proteins comprised of multiple copies of the peptides. The fusion proteins accumulate in Escherichia coli inclusion bodies and constitute over 50% of the total cellular proteins. Active antimicrobial peptides are released by chemical reagents and purified by chromatography, combining both standard and novel approaches. Challenges of industrial-scale manufacturing of therapeutics were considered in the development of this process.


Assuntos
4-Butirolactona/análogos & derivados , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Eficiência , Proteínas Recombinantes de Fusão/isolamento & purificação , 4-Butirolactona/síntese química , 4-Butirolactona/uso terapêutico , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Centrifugação , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Cromatografia em Papel , Clonagem Molecular , Eletroforese Capilar , Escherichia coli/citologia , Liofilização , Corpos de Inclusão/química , Peptídeos/análise , Peptídeos/síntese química , Proteínas Recombinantes de Fusão/economia , Staphylococcaceae/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA