Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(10): e18376, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780511

RESUMO

Taking into account homeostatic disorders resulting from arterial hypertension and the key importance of CacyBP/SIP, ß-catenin and endocannabinoids in the functioning of many organs, it was decided to assess the presence and distribution of CacyBP/SIP, ß-catenin, CB1 and CB2 in the adrenal glands of hypertensive rats of various aetiology. The study was conducted on the adrenal glands of rats with spontaneous and renovascular hypertension. The expression of CacyBP/SIP, ß-catenin, CB1 and CB2 was detected by immunohistochemistry and real-time PCR method. The results of the present study revealed both lower gene expression and immunoreactivity of CacyBP/SIP in the adrenal glands of all hypertensive groups compared to the normotensive rats. This study demonstrated a reduction in the immunoreactivity and expression of the ß-catenin, CB1 and CB2 genes in the adrenals of 2K1C rats. While in SHR, the reaction showing ß-catenin and CB1 was very weak or negative, and the expression of CB2 in the adrenal glands of these rats increased. The results of this study show, for the first time, marked differences in the expression of CacyBP/SIP, ß-catenin and CB1 and CB2 cannabinoid receptors in the adrenal glands of rats with primary (SHR) and secondary hypertension (2K1C).


Assuntos
Glândulas Suprarrenais , Hipertensão , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , beta Catenina , Animais , Masculino , Ratos , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , beta Catenina/metabolismo , beta Catenina/genética , Hipertensão/metabolismo , Hipertensão/genética , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/genética , Hipertensão Renovascular/patologia , Imuno-Histoquímica , Ratos Endogâmicos SHR , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
Mol Pharmacol ; 105(5): 359-373, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38458773

RESUMO

Dual amylin and calcitonin receptor agonists (DACRAs) show promise as efficacious therapeutics for treatment of metabolic disease, including obesity. However, differences in efficacy in vivo have been observed for individual DACRAs, indicating that detailed understanding of the pharmacology of these agents across target receptors is required for rational drug development. To date, such understanding has been hampered by lack of direct, subtype-selective, functional assays for the amylin receptors (AMYRs). Here, we describe the generation of receptor-specific assays for recruitment of Venus-tagged Gs protein through fusion of luciferase to either the human calcitonin receptor (CTR), human receptor activity-modifying protein (RAMP)-1, RAMP1 (AMY1R), human RAMP2 (AMY2R), or human RAMP3 (AMY3R). These assays revealed a complex pattern of receptor activation by calcitonin, amylin, or DACRA peptides that was distinct at each receptor subtype. Of particular note, although both of the CT-based DACRAs, sCT and AM1784, displayed relatively similar behaviors at CTR and AMY1R, they generated distinct responses at AMY2R and AMY3R. These data aid the rationalization of in vivo differences in response to DACRA peptides in rodent models of obesity. Direct assessment of the pharmacology of novel DACRAs at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases. SIGNIFICANCE STATEMENT: Amylin receptors (AMYRs) are important obesity targets. Here we describe a novel assay that allows selective functional assessment of individual amylin receptor subtypes that provides unique insight into the pharmacology of potential therapeutic ligands. Direct assessment of the pharmacology of novel agonists at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases.


Assuntos
Doenças Metabólicas , Neuropeptídeos , Humanos , Receptores da Calcitonina/metabolismo , Proteínas Modificadoras da Atividade de Receptores , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Receptores de Peptídeos/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Obesidade
3.
J Gastrointest Cancer ; 55(2): 900-912, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38427147

RESUMO

BACKGROUND: Gastric cancer is one of the major public health problems worldwide. Circadian rhythm disturbances driven by circadian clock genes play a role in the development of cancer. However, whether circadian clock genes can serve as potential therapeutic targets and prognostic biomarkers for gastric cancer remains elusive. METHODS: In this study, we comprehensively analyzed the potential relationship between circadian clock genes and gastric cancer using online bioinformatics databases such as GEPIA, cBioPortal, STRING, GeneMANIA, Metascape, TIMER, TRRUST, and GEDS. RESULTS: Biological clock genes are expressed differently in human tumors. Compared with normal tissues, only PER1, CLOCK, and TIMELESS expression differences were statistically significant in gastric cancer (p < 0.05). PER1 (p = 0.0169) and CLOCK (p = 0.0414) were associated with gastric cancer pathological stage (p < 0.05). Gastric cancer patients with high expression of PER1 (p = 0.0028) and NR1D1 (p = 0.016) had longer overall survival, while those with high expression of PER1 (p = 0.042) and NR1D1 (p = 0.016) had longer disease-free survival. The main function of the biological clock gene is related to the circadian rhythms and melatonin metabolism and effects. CLOCK, NPAS2, and KAT2B were key transcription factors for circadian clock genes. In addition, we also found important correlations between circadian clock genes and various immune cells in the gastric cancer microenvironment. CONCLUSIONS: This study may establish a new gastric cancer prognostic indicator based on the biological clock gene and develop new drugs for the treatment of gastric cancer using biological clock gene targets.


Assuntos
Biomarcadores Tumorais , Proteínas CLOCK , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/mortalidade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Proteínas CLOCK/genética , Relógios Circadianos/genética , Proteínas Circadianas Period/genética , Regulação Neoplásica da Expressão Gênica , Biologia Computacional , Ritmo Circadiano/genética , Proteínas de Ciclo Celular , Peptídeos e Proteínas de Sinalização Intracelular , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares
4.
Mol Genet Genomic Med ; 11(12): e2262, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37533374

RESUMO

BACKGROUND: Schaaf-Yang syndrome (SYS) is a neurodevelopmental disorder caused by truncating variants in the paternally expressed MAGEL2 gene in the Prader-Willi syndrome-region on chromosome 15q. In addition to hypotonia and intellectual disability, individuals with SYS are frequently affected by neonatal contractures and autism spectrum disorder. In this study, we focus on the burden of disease on patients and their families for the first time. METHODS: Based on the online SYS Patient Voices Survey the perspective of 81 primary caregivers on SYS was assessed. RESULTS: The perceived severity of muscular and developmental manifestations dominated the evaluation of the phenotype in early childhood, while behavioral issues were considered more impactful later in life. Importantly, an apprehension toward symptoms with a later onset was observed in caregivers of younger children. Available therapeutic options, while mostly effective, did not sufficiently alleviate the total burden of disease. Overall, parents stated that caring for an individual with SYS was very challenging, affecting their daily lives and long-term planning. CONCLUSION: Our study demonstrates the necessity for treatments that, adapted to age and in accordance with the caregivers' prioritization, improve the patients' medical condition and thus facilitate their and their families' social participation.


Assuntos
Transtorno do Espectro Autista , Proteínas Intrinsicamente Desordenadas , Criança , Recém-Nascido , Humanos , Pré-Escolar , Transtorno do Espectro Autista/genética , Cuidadores , Proteínas/genética , Efeitos Psicossociais da Doença , Percepção , Peptídeos e Proteínas de Sinalização Intracelular
5.
Iran J Allergy Asthma Immunol ; 21(3): 344-354, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35822684

RESUMO

Neutropenia congenita grave (SCN) is a rare disease with a genetically and clinically heterogeneous nature, usually diagnosed in childhood, with an elevated risk of infections such as otitis, skin infections, pneumonia, deep abscesses, and septicemia. Patients with SCN also have an increased risk of leukemia, and mutations in the ELANE and the HAX1 genes have been observed in those patients. This study was conducted to genetically screen six Iranian families with SCN who have at least one affected person. In the first step, all exons and intron boundaries of ELANE and HAX1 genes were sequenced in probands. Cases with no pathogenic mutations were tested through whole-exome sequencing (WES). Analysis showed five different variants in ELANE (c.377 C>T), HAX1 (c.130_131 insA), HYOU1 (c.69 G>C and c.2744 G>A) and SHOC2 (c.4 A>G) genes in four families. We found that two out of six families had mutations in ELANE and HAX1 genes. Moreover, we found two novel mutations at the HYOU1 gene that had not previously been reported, as well as a pathogenic mutation at SHOC2 with multiple phenotypes, that will contribute to determining the genetic basis for SCN. Our study revealed that WES could help diagnose SCN, improve the classification of neutropenia, and rule out other immunodeficiencies such as autoimmune neutropenia, primary immunodeficiency diseases, and inherited bone marrow failure syndromes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Síndrome Congênita de Insuficiência da Medula Óssea , Peptídeos e Proteínas de Sinalização Intracelular , Elastase de Leucócito , Neutropenia , Proteínas Adaptadoras de Transdução de Sinal/genética , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Irã (Geográfico)/epidemiologia , Elastase de Leucócito/genética , Neutropenia/congênito , Neutropenia/diagnóstico , Neutropenia/genética
6.
Mol Omics ; 18(4): 328-335, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35081193

RESUMO

Genome-scale metabolic models (GEMs) have enabled researchers to perform systems-level studies of living organisms. Flux balance analysis (FBA), as a constraint-based technique, enables computation of reaction fluxes and prediction of the metabolic phenotypes of a cell under a set of specified conditions. The quality of a GEM is important for obtaining accurate predictions. In this study, we evaluated the quality of five available GEMs for Arabidopsis thaliana from various points of views. To do this, we inspected some of their important features, including the number of reactions with well-defined gene-protein-reaction rules, number of blocked reactions, mass-unbalanced reactions, prediction accuracy in the simulation of key metabolic functions and existence of erroneous energy generating cycles (EGCs). All of the models were found to include some mass-unbalanced reactions. Moreover, four out of five models were found to include EGCs. However, Aracell includes the maximum number of blocked reactions, which suggests the presence of several incomplete pathways. These results clearly show that simulation by using these models may result in erroneous predictions and all of the publicly available GEMs for A. thaliana require extensive curations before being applied in practice.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Simulação por Computador , Genoma , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Biológicos
7.
Mol Biol Rep ; 49(3): 1995-2002, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34981334

RESUMO

BACKGROUND: Brucellosis is a major zoonosis all over the world. MicroRNAs are significant gene expression regulators and could be involved during the infections and also genetic alterations in the miRNAs sequence can affect primary miRNAs and precursor miRNAs processing and thus alter miRNAs expression. Current research studied the impact of the miR-146a polymorphism on miR-146a, TRAF-6, and IRAK-1 genes expression in patients with brucellosis illness. METHODS AND RESULTS: In this research, 25 patients with brucellosis and 25 healthy participants with determined genotypes for miR-SNP rs2910164 and miR-SNP rs57095329 were recruited. IRAK-1, TRAF-6, and miR-146a expressions in peripheral blood mononuclear cells (PBMCs) were specified by quantitative real- time PCR (qRT-PCR). Moreover, interleukin-1ß (IL-1ß) and tumor necrosis factor- alpha (TNF-α) serum levels were assessed by a sandwich enzyme-linked immunosorbent assay (ELISA) technique. There was no significant difference in the expression level of miR-146a, IRAK-1, and TRAF-6, among the patients with brucellosis and control group. TRAF-6 PBMCs expression levels in the distinctive genotypes of rs2910164 were significantly observed in patients (P = 0.048). No significant distinctions were found in miR-146a, IRAK-1, and TRAF-6 expression levels and among the rs57095329 different genotypes in brucellosis patients and controls. Meanwhile, no significant relationship was found between the rs2910164 and rs57095329 genotypes and the serum level of cytokines mentioned between the two groups. We did not find any association between expression of TRAF-6, miR-146a, and IRAK-1 in PBMCs, and cytokines serum levels with two single nucleotide polymorphisms (SNPs) in miR-146a. CONCLUSIONS: To the best of writers' knowledge, this research is the first one evaluating the probable link between the miR-146a rs2910164 and rs57095329 variant with miRNAs, relevant cytokine levels, and target genes in brucellosis.


Assuntos
Brucelose , Quinases Associadas a Receptores de Interleucina-1 , Peptídeos e Proteínas de Sinalização Intracelular , MicroRNAs , Animais , Brucelose/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Zoonoses
8.
Comput Biol Med ; 139: 104986, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34739970

RESUMO

KIAA1524 is the gene encoding the human cancerous inhibitor of PP2A (CIP2A) protein which is regarded as a novel target for cancer therapy. It is overexpressed in 65%-90% of tissues in almost all studied human cancers. CIP2A expression correlates with cancer progression, disease aggressivity in lung cancer besides poor survival and resistance to chemotherapy in breast cancer. Herein, a pan-cancer analysis of public gene expression datasets was conducted showing significant upregulation of CIP2A in cancerous and metastatic tissues. CIP2A overexpression also correlated with poor survival of cancer patients. To determine the non-coding variants associated with CIP2A overexpression, 5'UTR and 3'UTR variants were annotated and scored using RegulomeDB and Enformer deep learning model. The 5'UTR variants rs1239349555, rs1576326380, and rs1231839144 were predicted to be potential regulators of CIP2A overexpression scoring best on RegulomeDB annotations with a high "2a" rank of supporting experimental data. These variants also scored the highest on Enformer predictions. Analysis of the 3'UTR variants of CIP2A predicted rs56255137 and rs58758610 to alter binding sites of hsa-miR-500a-5 and (hsa-miR-3671, hsa-miR-5692a) respectively. Both variants were also found in linkage disequilibrium with rs11709183 and rs147863209 respectively at r2 ≥ 0.8. The aforementioned variants were found to be eQTL hits significantly associated with CIP2A overexpression. Further, analysis of rs11709183 and rs147863209 revealed a high "2b" rank on RegulomeDB annotations indicating a probable effect on DNAse transcription factors binding. The MuTarget analysis indicated that somatic mutations in TP53 are significantly associated with upregulated CIP2A in human cancers. Analysis of missense SNPs on CIP2A solved structure predicted seven deleterious effects. Four of these variants were also predicted as structurally and functionally destabilizing to CIP2A including; rs375108755, rs147942716, rs368722879, and rs367941403. Variant rs1193091427 was predicted as a potential intronic splicing mutation that might be responsible for the novel CIP2A variant (NOCIVA) in multiple myeloma. Finally, Enrichment of the Wnt/ß-catenin pathway within the CIP2A regulatory gene network suggested potential of therapeutic combinations between FTY720 with Wnt/ß-catenin, Plk1 and/or HDAC inhibitors to downregulate CIP2A which has been shown to be essential for the survival of different cancer cell lines.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares , Autoantígenos/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação
9.
Nat Metab ; 3(3): 428-441, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33758424

RESUMO

Obesity reduces adipocyte mitochondrial function, and expanding adipocyte oxidative capacity is an emerging strategy to improve systemic metabolism. Here, we report that serine/threonine-protein kinase 3 (STK3) and STK4 are key physiological suppressors of mitochondrial capacity in brown, beige and white adipose tissues. Levels of STK3 and STK4, kinases in the Hippo signalling pathway, are greater in white than brown adipose tissues, and levels in brown adipose tissue are suppressed by cold exposure and greatly elevated by surgical denervation. Genetic inactivation of Stk3 and Stk4 increases mitochondrial mass and function, stabilizes uncoupling protein 1 in beige adipose tissue and confers resistance to metabolic dysfunction induced by high-fat diet feeding. Mechanistically, STK3 and STK4 increase adipocyte mitophagy in part by regulating the phosphorylation and dimerization status of the mitophagy receptor BNIP3. STK3 and STK4 expression levels are elevated in human obesity, and pharmacological inhibition improves metabolic profiles in a mouse model of obesity, suggesting STK3 and STK4 as potential targets for treating obesity-related diseases.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético , Mitofagia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Obesidade/prevenção & controle , Obesidade/terapia , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinase 3
10.
Nat Metab ; 3(3): 378-393, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33686286

RESUMO

TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance remains uncertain. Here we show that this TUG cleavage pathway regulates both insulin-stimulated glucose uptake in muscle and organism-level energy expenditure. Using mice with muscle-specific Tug (Aspscr1)-knockout and muscle-specific constitutive TUG cleavage, we show that, after GLUT4 release, the TUG C-terminal cleavage product enters the nucleus, binds peroxisome proliferator-activated receptor (PPAR)γ and its coactivator PGC-1α and regulates gene expression to promote lipid oxidation and thermogenesis. This pathway acts in muscle and adipose cells to upregulate sarcolipin and uncoupling protein 1 (UCP1), respectively. The PPARγ2 Pro12Ala polymorphism, which reduces diabetes risk, enhances TUG binding. The ATE1 arginyltransferase, which mediates a specific protein degradation pathway and controls thermogenesis, regulates the stability of the TUG product. We conclude that insulin-stimulated TUG cleavage coordinates whole-body energy expenditure with glucose uptake, that this mechanism might contribute to the thermic effect of food and that its attenuation could promote obesity.


Assuntos
Metabolismo Energético , Glucose/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células 3T3-L1 , Aminoaciltransferases/metabolismo , Animais , Camundongos , Camundongos Knockout , Oxirredução , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteólise , Termogênese
11.
Hum Reprod ; 36(4): 1120-1133, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33582778

RESUMO

STUDY QUESTION: Do genetic variations in the DNA damage response pathway modify the adverse effect of alkylating agents on ovarian function in female childhood cancer survivors (CCS)? SUMMARY ANSWER: Female CCS carrying a common BR serine/threonine kinase 1 (BRSK1) gene variant appear to be at 2.5-fold increased odds of reduced ovarian function after treatment with high doses of alkylating chemotherapy. WHAT IS KNOWN ALREADY: Female CCS show large inter-individual variability in the impact of DNA-damaging alkylating chemotherapy, given as treatment of childhood cancer, on adult ovarian function. Genetic variants in DNA repair genes affecting ovarian function might explain this variability. STUDY DESIGN, SIZE, DURATION: CCS for the discovery cohort were identified from the Dutch Childhood Oncology Group (DCOG) LATER VEVO-study, a multi-centre retrospective cohort study evaluating fertility, ovarian reserve and risk of premature menopause among adult female 5-year survivors of childhood cancer. Female 5-year CCS, diagnosed with cancer and treated with chemotherapy before the age of 25 years, and aged 18 years or older at time of study were enrolled in the current study. Results from the discovery Dutch DCOG-LATER VEVO cohort (n = 285) were validated in the pan-European PanCareLIFE (n = 465) and the USA-based St. Jude Lifetime Cohort (n = 391). PARTICIPANTS/MATERIALS, SETTING, METHODS: To evaluate ovarian function, anti-Müllerian hormone (AMH) levels were assessed in both the discovery cohort and the replication cohorts. Using additive genetic models in linear and logistic regression, five genetic variants involved in DNA damage response were analysed in relation to cyclophosphamide equivalent dose (CED) score and their impact on ovarian function. Results were then examined using fixed-effect meta-analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Meta-analysis across the three independent cohorts showed a significant interaction effect (P = 3.0 × 10-4) between rs11668344 of BRSK1 (allele frequency = 0.34) among CCS treated with high-dose alkylating agents (CED score ≥8000 mg/m2), resulting in a 2.5-fold increased odds of a reduced ovarian function (lowest AMH tertile) for CCS carrying one G allele compared to CCS without this allele (odds ratio genotype AA: 2.01 vs AG: 5.00). LIMITATIONS, REASONS FOR CAUTION: While low AMH levels can also identify poor responders in assisted reproductive technology, it needs to be emphasized that AMH remains a surrogate marker of ovarian function. WIDER IMPLICATIONS OF THE FINDINGS: Further research, validating our findings and identifying additional risk-contributing genetic variants, may enable individualized counselling regarding treatment-related risks and necessity of fertility preservation procedures in girls with cancer. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the PanCareLIFE project that has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602030. In addition, the DCOG-LATER VEVO study was funded by the Dutch Cancer Society (Grant no. VU 2006-3622) and by the Children Cancer Free Foundation (Project no. 20) and the St Jude Lifetime cohort study by NCI U01 CA195547. The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Reserva Ovariana , Adolescente , Adulto , Hormônio Antimülleriano/genética , Criança , Estudos de Coortes , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ovário , Proteínas Serina-Treonina Quinases , Estudos Retrospectivos
12.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468647

RESUMO

Bromodomains (BDs) are small protein modules that interact with acetylated marks in histones. These posttranslational modifications are pivotal to regulate gene expression, making BDs promising targets to treat several diseases. While the general structure of BDs is well known, their dynamical features and their interplay with other macromolecules are poorly understood, hampering the rational design of potent and selective inhibitors. Here, we combine extensive molecular dynamics simulations, Markov state modeling, and available structural data to reveal a transiently formed state that is conserved across all BD families. It involves the breaking of two backbone hydrogen bonds that anchor the ZA-loop with the αA helix, opening a cryptic pocket that partially occludes the one associated to histone binding. By analyzing more than 1,900 experimental structures, we unveil just two adopting the hidden state, explaining why it has been previously unnoticed and providing direct structural evidence for its existence. Our results suggest that this state is an allosteric regulatory switch for BDs, potentially related to a recently unveiled BD-DNA-binding mode.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Correpressoras/química , Proteínas de Ligação a DNA/química , Histona Acetiltransferases/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Fatores Genéricos de Transcrição/química , Fatores de Transcrição/química , Proteína 28 com Motivo Tripartido/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cadeias de Markov , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo
13.
J Natl Cancer Inst ; 113(4): 390-399, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32986828

RESUMO

BACKGROUND: Black race is associated with worse outcomes in early breast cancer. We evaluated clinicopathologic characteristics, the 21-gene recurrence score (RS), treatment delivered, and clinical outcomes by race and ethnicity among women who participated in the Trial Assigning Individualized Options for Treatment. METHODS: The association between clinical outcomes and race (White, Black, Asian, other or unknown) and ethnicity (Hispanic vs non-Hispanic) was examined using proportional hazards models. All P values are 2-sided. RESULTS: Of 9719 eligible women with hormone receptor-positive, HER2-negative, node-negative breast cancer, there were 8189 (84.3%) Whites, 693 (7.1%) Blacks, 405 (4.2%) Asians, and 432 (4.4%) with other or unknown race. Regarding ethnicity, 889 (9.1%) were Hispanic. There were no substantial differences in RS or ESR1, PGR, or HER2 RNA expression by race or ethnicity. After adjustment for other covariates, compared with White race, Black race was associated with higher distant recurrence rates (hazard ratio [HR] = 1.60, 95% confidence intervals [CI] = 1.07 to 2.41) and worse overall survival in the RS 11-25 cohort (HR = 1.51, 95% CI = 1.06 to 2.15) and entire population (HR = 1.41, 95% CI = 1.05 to 1.90). Hispanic ethnicity and Asian race were associated with better outcomes. There was no evidence of chemotherapy benefit for any racial or ethnic group in those with a RS of 11-25. CONCLUSIONS: Black women had worse clinical outcomes despite similar 21-gene assay RS results and comparable systemic therapy in the Trial Assigning Individualized Options for Treatment. Similar to Whites, Black women did not benefit from adjuvant chemotherapy if the 21-gene RS was 11-25. Further research is required to elucidate the basis for this racial disparity in prognosis.


Assuntos
Povo Asiático/estatística & dados numéricos , População Negra/estatística & dados numéricos , Neoplasias da Mama/etnologia , Hispânico ou Latino/estatística & dados numéricos , População Branca/estatística & dados numéricos , Adulto , Idoso , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Comorbidade , Intervalos de Confiança , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Cobertura do Seguro/estatística & dados numéricos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Menopausa , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/etnologia , Recidiva Local de Neoplasia/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , Receptor ErbB-2/metabolismo , Resultado do Tratamento , Adulto Jovem
14.
Mol Genet Metab ; 131(4): 405-417, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33257258

RESUMO

Niemann-Pick disease type C (NPC) is a neurodegenerative disease in which mutation of NPC1 or NPC2 gene leads to lysosomal accumulation of unesterified cholesterol and sphingolipids. Diagnosis of NPC disease is challenging due to non-specific early symptoms. Biomarker and genetic tests are used as first-line diagnostic tests for NPC. In this study, we developed a plasma test based on N-(3ß,5α,6ß-trihydroxy-cholan-24-oyl)glycine (TCG) that was markedly increased in the plasma of human NPC1 subjects. The test showed sensitivity of 0.9945 and specificity of 0.9982 to differentiate individuals with NPC1 from NPC1 carriers and controls. Compared to other commonly used biomarkers, cholestane-3ß,5α,6ß-triol (C-triol) and N-palmitoyl-O-phosphocholine (PPCS, also referred to as lysoSM-509), TCG was equally sensitive for identifying NPC1 but more specific. Unlike C-triol and PPCS, TCG showed excellent stability and no spurious generation of marker in the sample preparation or aging of samples. TCG was also elevated in lysosomal acid lipase deficiency (LALD) and acid sphingomyelinase deficiency (ASMD). Plasma TCG was significantly reduced after intravenous (IV) 2-hydroxypropyl-ß-cyclodextrin (HPßCD) treatment. These results demonstrate that plasma TCG was superior to C-triol and PPCS as NPC1 diagnostic biomarker and was able to evaluate the peripheral treatment efficacy of IV HPßCD treatment.


Assuntos
Glicina/sangue , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/genética , 2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Ácidos e Sais Biliares/sangue , Biomarcadores/sangue , Feminino , Glicina/análogos & derivados , Glicina/isolamento & purificação , Humanos , Masculino , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/patologia , Espectrometria de Massas em Tandem , Proteínas de Transporte Vesicular/genética
15.
Nat Commun ; 11(1): 5731, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184293

RESUMO

There is increasing evidence that inducing neuronal mitophagy can be used as a therapeutic intervention for Alzheimer's disease. Here, we screen a library of 2024 FDA-approved drugs or drug candidates, revealing UMI-77 as an unexpected mitophagy activator. UMI-77 is an established BH3-mimetic for MCL-1 and was developed to induce apoptosis in cancer cells. We found that at sub-lethal doses, UMI-77 potently induces mitophagy, independent of apoptosis. Our mechanistic studies discovered that MCL-1 is a mitophagy receptor and directly binds to LC3A. Finally, we found that UMI-77 can induce mitophagy in vivo and that it effectively reverses molecular and behavioral phenotypes in the APP/PS1 mouse model of Alzheimer's disease. Our findings shed light on the mechanisms of mitophagy, reveal that MCL-1 is a mitophagy receptor that can be targeted to induce mitophagy, and identify MCL-1 as a drug target for therapeutic intervention in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Mitofagia/efeitos dos fármacos , Mitofagia/fisiologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/economia , Sobrevivência Celular , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Glucose , Células HEK293 , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas de Neoplasias , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Oxigênio , Receptores Citoplasmáticos e Nucleares , Sulfonamidas/farmacologia , Tioglicolatos/farmacologia
16.
Sci Rep ; 10(1): 14874, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913252

RESUMO

Autophagy is a key clearance process to recycle damaged cellular components. One important upstream regulator of autophagy is ULK1 kinase. Several three-dimensional structures of the ULK1 catalytic domain are available, but a comprehensive study, including molecular dynamics, is missing. Also, an exhaustive description of ULK1 alterations found in cancer samples is presently lacking. We here applied a framework which links -omics data to structural protein ensembles to study ULK1 alterations from genomics data available for more than 30 cancer types. We predicted the effects of mutations on ULK1 function and structural stability, accounting for protein dynamics, and the different layers of changes that a mutation can induce in a protein at the functional and structural level. ULK1 is down-regulated in gynecological tumors. In other cancer types, ULK2 could compensate for ULK1 downregulation and, in the majority of the cases, no marked changes in expression have been found. 36 missense mutations of ULK1, not limited to the catalytic domain, are co-occurring with mutations in a large number of ULK1 interactors or substrates, suggesting a pronounced effect of the upstream steps of autophagy in many cancer types. Moreover, our results pinpoint that more than 50% of the mutations in the kinase domain of ULK1, here investigated, are predicted to affect protein stability. Three mutations (S184F, D102N, and A28V) are predicted with only impact on kinase activity, either modifying the functional dynamics or the capability to exert effects from distal sites to the functional and catalytic regions. The framework here applied could be extended to other protein targets to aid the classification of missense mutations from cancer genomics studies, as well as to prioritize variants for experimental validation, or to select the appropriate biological readouts for experiments.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/enzimologia , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/química , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Simulação de Dinâmica Molecular , Mutação , Neoplasias/genética , Neoplasias/patologia , Fosforilação , Elementos Estruturais de Proteínas , Transdução de Sinais , Relação Estrutura-Atividade
17.
Pol J Pathol ; 71(2): 87-98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32729299

RESUMO

Breast cancer is the most leading cause of cancer death in females worldwide. Identification of novel biomarkers for prognosis is required. Imunohistochemical evaluation of CIP2A and ROCK-1 expressions in 126 breast tissue specimens stratified as 21 ductal hyperplasias, 17 duct carcinoma in situ (DCIS) and 88 invasive carcinomas (56 invasive ductal carcinomas NST, 32 invasive lobular carcinomas) was studied. High CIP2A expression was detected in 48.9% of invasive carcinomas. CIP2A overexpression was significantly related to Nottingham prognostic index (NPI) (p = 0.011), stage (p = 0.01), ER negativity (p = 0.031), PR negativity (p = 0.048), and HER-2 positivity (p = 0.02). CIP2A was significantly overexpressed in triple-negative breast cancer (TNBC) (p = 0.004). ROCK-1 expression was detected in 54.5% of invasive carcinomas. Statistically significant associations were observed between ROCK-1 expression and NPI (p = 0.032), stage (p = 0.002), ER negativity (p = 0.012), PR negativity (p = 0.023), HER-2 positivity (p = 0.016), and TNBC subtype (p = 0.033). A positive association between CIP2A and ROCK-1 expressions (p < 0.0001) was documented. There was a significant association between shorter overall survival and high CIP2A and positive ROCK-1 expressions (p < 0.0001) and (p < 0.0001). CIP2A and ROCK-1 expressions could be used as markers for the poor prognosis of breast cancer.


Assuntos
Neoplasias da Mama , Autoantígenos , Biomarcadores Tumorais , Feminino , Humanos , Hiperplasia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Prognóstico , Quinases Associadas a rho
18.
Front Immunol ; 11: 963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508837

RESUMO

The majority of data on human Natural Killer (NK) cell phenotype and function has been generated using cryopreserved peripheral blood mononuclear cells (PBMCs). However, cryopreservation can have adverse effects on PBMCs. In contrast, investigating immune cells in whole blood can reduce the time, volume of blood required, and potential artefacts associated with manipulation of the cells. Whole blood collected from healthy donors and cancer patients was processed by three separate protocols that can be used independently or in parallel to assess extracellular receptors, intracellular signaling protein phosphorylation, and intracellular and extracellular cytokine production in human NK cells. To assess extracellular receptor expression, 200 µL of whole blood was incubated with an extracellular staining (ECS) mix and cells were subsequently fixed and RBCs lysed prior to analysis. The phosphorylation status of signaling proteins was assessed in 500 µL of whole blood following co-incubation with interleukin (IL)-2/12 and an ECS mix for 20 min prior to cell fixation, RBC lysis, and subsequent permeabilization for staining with an intracellular staining (ICS) mix. Cytokine production (IFNγ) was similarly assessed by incubating 1 mL of whole blood with PMA-ionomycin or IL-2/12 prior to incubation with ECS and subsequent ICS antibodies. In addition, plasma was collected from stimulated samples prior to ECS for quantification of secreted IFNγ by ELISA. Results were consistent, despite inherent inter-patient variability. Although we did not investigate an exhaustive list of targets, this approach enabled quantification of representative ECS surface markers including activating (NKG2D and DNAM-1) and inhibitory (NKG2A, PD-1, TIGIT, and TIM-3) receptors, cytokine receptors (CD25, CD122, CD132, and CD212) and ICS markers associated with NK cell activation following stimulation, including signaling protein phosphorylation (p-STAT4, p-STAT5, p-p38 MAPK, p-S6) and IFNγ in both healthy donors and cancer patients. In addition, we compared extracellular receptor expression using whole blood vs. cryopreserved PBMCs and observed a significant difference in the expression of almost all receptors. The methods presented permit a relatively rapid parallel assessment of immune cell receptor expression, signaling protein activity, and cytokine production in a minimal volume of whole blood from both healthy donors and cancer patients.


Assuntos
Citometria de Fluxo , Imunofenotipagem , Interferon gama/sangue , Peptídeos e Proteínas de Sinalização Intracelular/sangue , Células Matadoras Naturais/metabolismo , Neoplasias/sangue , Receptores Imunológicos/sangue , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Criopreservação , Estudos de Viabilidade , Feminino , Humanos , Células Matadoras Naturais/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia , Fenótipo , Fosforilação , Estudo de Prova de Conceito , Fluxo de Trabalho
19.
Elife ; 92020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32338601

RESUMO

In the nucleus, the spatiotemporal regulation of the catalytic subunit of cAMP-dependent protein kinase A (PKA-C) is orchestrated by an intrinsically disordered protein kinase inhibitor, PKI, which recruits the CRM1/RanGTP nuclear exporting complex. How the PKA-C/PKI complex assembles and recognizes CRM1/RanGTP is not well understood. Using NMR, SAXS, fluorescence, metadynamics, and Markov model analysis, we determined the multi-state recognition pathway for PKI. After a fast binding step in which PKA-C selects PKI's most competent conformations, PKI folds upon binding through a slow conformational rearrangement within the enzyme's binding pocket. The high-affinity and pseudo-substrate regions of PKI become more structured and the transient interactions with the kinase augment the helical content of the nuclear export sequence, which is then poised to recruit the CRM1/RanGTP complex for nuclear translocation. The multistate binding mechanism featured by PKA-C/PKI complex represents a paradigm on how disordered, ancillary proteins (or protein domains) are able to operate multiple functions such as inhibiting the kinase while recruiting other regulatory proteins for nuclear export.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Citoplasma , Escherichia coli , Peptídeos e Proteínas de Sinalização Intracelular/genética , Carioferinas/genética , Carioferinas/metabolismo , Espectroscopia de Ressonância Magnética , Cadeias de Markov , Camundongos , Coelhos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Exportina 1
20.
Neurochem Res ; 45(5): 1215-1229, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32140956

RESUMO

Thrombolytic therapy with recombinant tissue plasminogen activator (rtPA) in ischaemic stroke has been associated with neurotoxicity, blood brain barrier (BBB) disruption and intra-cerebral hemorrhage. To examine rtPA cellular toxicity we investigated the effects of rtPA on cell viability in neuronal, astrocyte and brain endothelial cell (bEnd.3) cultures with and without prior exposure to oxygen-glucose deprivation (OGD). In addition, the neuroprotective peptide poly-arginine-18 (R18D; 18-mer of D-arginine) was examined for its ability to reduce rtPA toxicity. Studies demonstrated that a 4- or 24-h exposure of rtPA was toxic, affecting neuronal cell viability at ≥ 2 µM, and astrocyte and bEnd.3 cells viability at ≥ 5 µM. In addition, a 4-h exposure to rtPA after a period of OGD (OGD/rtPA) exacerbated toxicity, affecting neuronal, astrocyte and bEnd.3 cell viability at rtPA concentrations as low as 0.1 µM. Treatment of cells with low concentrations of R18D (0.5 and 1 µM) reduced the toxic effects of rtPA and OGD/rtPA, while on some occasions a higher 2 µM R18D concentrations exacerbated neuronal and bEnd.3 cell toxicity in OGD/rtPA exposed cultures. In exploratory studies we also demonstrated that OGD activates matrix metalloproteinase-9 (MMP-9) release into the supernatant of astrocyte and bEnd.3 cell cultures, but not neuronal cultures, and that OGD/rtPA increases MMP-9 activation. Furthermore, R18D decreased MMP-9 activation in OGD/rtPA treated astrocyte and bEnd.3 cell cultures. In summary, the findings show that rtPA can be toxic to neural cells and that OGD exacerbates toxicity, while R18D has the capacity to reduce rtPA neural cellular toxicity and reduce MMP-9 activation in astrocytes and bEnd.3. Poly-arginine-18 peptides, which are being developed as neuroprotective therapeutics for ischaemic stroke, therefore have the additional potential of reducing cytotoxic effects associated with rtPA thrombolysis in the treatment of ischaemic stroke.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ativador de Plasminogênio Tecidual/toxicidade , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA