Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 14(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38927099

RESUMO

The antioxidant defense mechanisms play a critical role in mitigating the deleterious effects of reactive oxygen species (ROS). Catalase stands out as a paramount enzymatic antioxidant. It efficiently catalyzes the decomposition of hydrogen peroxide (H2O2) into water and oxygen, a potentially harmful byproduct of cellular metabolism. This reaction detoxifies H2O2 and prevents oxidative damage. Catalase has been extensively studied as a therapeutic antioxidant. Its applications range from direct supplementation in conditions characterized by oxidative stress to gene therapy approaches to enhance endogenous catalase activity. The enzyme's stability, bioavailability, and the specificity of its delivery to target tissues are significant hurdles. Furthermore, studies employing conventional catalase formulations often face issues related to enzyme purity, activity, and longevity in the biological milieu. Addressing these challenges necessitates rigorous scientific inquiry and well-designed clinical trials. Such trials must be underpinned by sound experimental designs, incorporating advanced catalase formulations or novel delivery systems that can overcome existing limitations. Enhancing catalase's stability, specificity, and longevity in vivo could unlock its full therapeutic potential. It is necessary to understand the role of catalase in disease-specific contexts, paving the way for precision antioxidant therapy that could significantly impact the treatment of diseases associated with oxidative stress.


Assuntos
Antioxidantes , Catalase , Estresse Oxidativo , Catalase/metabolismo , Catalase/química , Humanos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Terapia Genética/métodos
2.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791192

RESUMO

The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 µg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.


Assuntos
Cóclea , Molécula 1 de Adesão Intercelular , Ruído , Estresse Oxidativo , Ficocianina , Sinapses , Animais , Estresse Oxidativo/efeitos dos fármacos , Cobaias , Ficocianina/farmacologia , Ficocianina/uso terapêutico , Cóclea/metabolismo , Cóclea/efeitos dos fármacos , Cóclea/patologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ruído/efeitos adversos , Molécula 1 de Adesão Intercelular/metabolismo , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/patologia , Espécies Reativas de Oxigênio/metabolismo , Masculino , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia , Peróxido de Hidrogênio/metabolismo , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Antioxidantes/farmacologia , Linhagem Celular , Perda Auditiva Oculta
3.
BMC Womens Health ; 23(1): 525, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794412

RESUMO

BACKGROUND: In recent decades, in vitro fertilization (IVF) has been widely used as a method of assisted reproductive technology (ART) to improve fertility in individuals. To be more successful in this laboratory method, we used the presence of two common types of antioxidants (melatonin and vitamin C) simultaneously and exclusively in IVF medium. METHODS: The cumulus-oocyte complexes (COCs) were obtained from Gonadotropin-releasing hormone (GnRH) and Human Chorionic Gonadotropin (HMG) -stimulated mice. Subsequently, metaphase II (MII) oocytes were fertilized in vitro. In the experiment, the IVF medium was randomly divided into two equal groups: The control group did not receive any antioxidants. In the treatment group, 100 µM melatonin and 5 mM vitamin C were added to the IVF medium. Finally, oocytes and putative embryos transferred into developmental medium and cultured 120 h after IVF to the blastocyst stage. After and before IVF, oocytes and putative embryos were stained with dichlorodihydrofluorescein diacetate (DCFDA) and the H2O2 level was measured with an inverted fluorescence microscope using ImageJ software. At the end of the fifth day after IVF, the expression of Bax and B cell lymphoma 2 (Bcl2) was evaluated using real-time PCR. RESULTS: The levels of reactive oxygen species (ROS) in oocytes and putative embryos observed in the treatment group demonstrated a significant reduce compared to the control group (p ≤ 0.01. (.Furthermore, the number of embryos in the blastocycte stage(P < 0.05), the expression level of the Bcl2 (P < 0.05) gene, the Bax unlike gene, significantly increased compared with the control group. CONCLUSION: We conclude that the presence of melatonin and vitamin C antioxidants simultaneously and exclusively in the IVF medium leads to a reduction in ROS and ,as a result, improves the growth of the embryo up to the blastocyst stage.


Assuntos
Melatonina , Humanos , Animais , Camundongos , Melatonina/farmacologia , Melatonina/uso terapêutico , Proteína X Associada a bcl-2/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Desenvolvimento Embrionário , Oócitos/metabolismo , Fertilização in vitro
4.
Sci Total Environ ; 883: 163538, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37100139

RESUMO

Seagrasses, which are considered among the most ecologically valuable and endangered coastal ecosystems, have a narrowly limited distribution in the south-east Pacific, where Zostera chilensis is the only remaining relict. Due to water scarcity, desalination industry has grown in the last decades in the central-north coasts of Chile, which may be relevant to address in terms of potential impacts on benthic communities due to their associated high-salinity brine discharges to subtidal ecosystems. In this work, we assessed ecophysiological and cellular responses to desalination-extrapolable hypersalinity conditions on Z. chilensis. Mesocosms experiments were performed for 10 days, where plants were exposed to 3 different salinity treatments: 34 psu (control), 37 psu and 40 psu. Photosynthetic performance, H2O2 accumulation, and ascorbate content (reduced and oxidized) were measured, as well as relative gene expression of enzymes related to osmotic regulation and oxidative stress; these, at 1, 3, 6 and 10 days. Z. chilensis showed a decrease in photosynthetic parameters such as electron transport rate (ETRmax) and saturation irradiance (EkETR) under hypersalinity treatments, while non-photochemical quenching (NPQmax) presented an initial increment and a subsequent decline at 40 psu. H2O2 levels increased with hypersalinity, while ascorbate and dehydroascorbate only increased under 37 psu, although decreased along the experimental period. Increased salinities also triggered the expression of genes related to ion transport and osmolyte syntheses, but salinity-dependent up-regulated genes were mostly those related to the reactive oxygen species metabolism. The relict seagrass Z. chilensis has shown to withstand increased salinities that may be extrapolable to desalination effects in the short-term. As the latter is not fully clear in the long-term, and considering the restricted distribution and ecological importance, direct brine discharges to Z. chilensis meadows may not be recommended.


Assuntos
Magnoliopsida , Zosteraceae , Ecossistema , Zosteraceae/metabolismo , Chile , Magnoliopsida/metabolismo , Peróxido de Hidrogênio/metabolismo , Oceano Pacífico , Ácido Ascórbico , Medição de Risco , Salinidade
5.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293359

RESUMO

Salt stress will have a serious inhibitory effect on various metabolic processes of plant cells, this will lead to the excessive accumulation of reactive oxygen species (ROS). Hydrogen peroxide (H2O2) is a type of ROS that can severely damage plant cells in large amounts. Existing methods for assessing the content of H2O2 released from leaves under salt stress will cause irreversible damage to plant leaves and are unable to detect H2O2 production in real time. In this study, on the strength of a series of physiological indicators to verify the occurrence of salt stress, an electrochemical sensor for the detection of H2O2 released from leaves under salt stress was constructed. The sensor was prepared by using multi-walled carbon nanotube-titanium carbide-palladium (MWCNT-Ti3C2Tx-Pd) nanocomposite as substrate material and showed a linear response to H2O2 detection in the range 0.05-18 mM with a detection limit of 3.83 µM. Moreover, we measured the determination of H2O2 released from Arabidopsis leaves at different times of salt stress by the sensor, which was consistent with conventional method. This study demonstrates that electrochemical sensing is a desirable technology for the dynamic determination of H2O2 released by leaves and the assessment of salt stress to plants.


Assuntos
Arabidopsis , Nanotubos de Carbono , Peróxido de Hidrogênio/metabolismo , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/análise , Nanotubos de Carbono/química , Paládio , Folhas de Planta/metabolismo , Estresse Salino , Técnicas Eletroquímicas
6.
Molecules ; 27(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889393

RESUMO

Gas plasma is an approved technology that generates a plethora of reactive oxygen species, which are actively applied for chronic wound healing. Its particular antimicrobial action has spurred interest in other medical fields, such as periodontitis in dentistry. Recent work has indicated the possibility of performing gas plasma-mediated biofilm removal on teeth. Teeth frequently contain restoration materials for filling cavities, e.g., resin-based composites. However, it is unknown if such materials are altered upon gas plasma exposure. To this end, we generated a new in-house workflow for three commonly used resin-based composites following gas plasma treatment and incubated the material with human HaCaT keratinocytes in vitro. Cytotoxicity was investigated by metabolic activity analysis, flow cytometry, and quantitative high-content fluorescence imaging. The inflammatory consequences were assessed using quantitative analysis of 13 different chemokines and cytokines in the culture supernatants. Hydrogen peroxide served as the control condition. A modest but significant cytotoxic effect was observed in the metabolic activity and viability after plasma treatment for all three composites. This was only partially treatment time-dependent and the composites alone affected the cells to some extent, as evident by differential secretion profiles of VEGF, for example. Gas plasma composite modification markedly elevated the secretion of IL6, IL8, IL18, and CCL2, with the latter showing the highest correlation with treatment time (Pearson's r > 0.95). Cell culture media incubated with gas plasma-treated composite chips and added to cells thereafter could not replicate the effects, pointing to the potential that surface modifications elicited the findings. In conclusion, our data suggest that gas plasma treatment modifies composite material surfaces to a certain extent, leading to measurable but overall modest biological effects.


Assuntos
Peróxido de Hidrogênio , Queratinócitos , Resinas Compostas/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Queratinócitos/metabolismo , Teste de Materiais , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco
7.
Ecotoxicol Environ Saf ; 239: 113690, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35643032

RESUMO

Ciprofloxacin is ubiquitous and poses a potential threat to aquatic ecosystems. However, the comprehensive effect of prolonged ciprofloxacin exposure on the submerged clonal plant Vallisneria natans (Lour.) Hara remains unknown. Growth and physiological responses in V. natans exposed to ciprofloxacin at concentrations of 0, 0.05, 0.25, 1.25, 2.5, 5 and 10 mg/L were repeatedly evaluated on Days 7, 14, 28, 42 and 56. V. natans maintained good growth properties under 0.05-0.25 mg/L ciprofloxacin treatments, while the inhibition effect on plant growth induced by higher-concentration treatments increased over time. The IC50 values of ciprofloxacin for growth endpoints ranged from 1.6 mg/L to 5.3 mg/L and displayed time-dependent decreases. Pigment contents were significantly stimulated by ciprofloxacin on Day 7 but decreased to varying degrees as the exposure time was extended. Soluble protein and hydrogen peroxide content rose significantly over the first 14 days of treatment with 0.25-10 mg/L ciprofloxacin but decreased under 1.25-10 mg/L ciprofloxacin treatments since Day 28. Antioxidants including superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase and proline functioned well in mitigating oxidative stress under different ciprofloxacin concentrations, lowering the comprehensive toxic effects of ciprofloxacin on V. natans during the period from Day 14 to Day 42, as evidenced by decreased IBR (integrated biomarker response) values. However, the toxic pressure of ciprofloxacin on V. natans peaked on Day 56. These findings suggest that exposure time can influence the responses of V. natans exposed to ciprofloxacin and that IBR can be employed to evaluate the integrated impacts of prolonged ciprofloxacin contamination in aquatic settings.


Assuntos
Ciprofloxacina , Hydrocharitaceae , Antioxidantes/metabolismo , Ciprofloxacina/toxicidade , Ecossistema , Hydrocharitaceae/metabolismo , Peróxido de Hidrogênio/metabolismo , Plantas/metabolismo , Superóxido Dismutase/metabolismo
8.
J Appl Microbiol ; 133(5): 2760-2778, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35665578

RESUMO

AIMS: Iron (Fe) deficiency in soil is a continuing problem for soybean (Glycine max L.) production, partly as a result of continuing climate change. This study elucidates how Trichoderma harzianum strain T22 (TH) mitigates growth retardation associated with Fe-deficiency in a highly sensitive soybean cultivar. METHODS AND RESULTS: Soil TH supplementation led to mycelial colonization and the presence of UAOX1 gene in roots that caused substantial improvement in chlorophyll score, photosynthetic efficiency and morphological parameters, indicating a positive influence on soybean health. Although rhizosphere acidification was found to be a common feature of Fe-deficient soybean, the upregulation of Fe-reductase activity (GmFRO2) and total phenol secretion were two of the mechanisms that substantially increased the Fe availability by TH. Heat-killed TH applied to soil caused no improvement in photosynthetic attributes and Fe-reductase activity, confirming the active role of TH in mitigating Fe-deficiency. Consistent increases in tissue Fe content and increased Fe-transporter (GmIRT1, GmNRAMP2a, GmNRAMP2b and GmNRAMP7) mRNA levels in roots following TH supplementation were observed only under Fe-deprivation. Root cell death, electrolyte leakage, superoxide (O2 •- ) and hydrogen peroxide (H2 O2 ) substantially declined due to TH in Fe-deprived plants. Further, the elevation of citrate and malate concentration along with the expression of citrate synthase (GmCs) and malate synthase (GmMs) caused by TH suggest improved chelation of Fe in Fe-deficient plants. Results also suggest that TH has a role in triggering antioxidant defence by increasing the activity of glutathione reductase (GR) along with elevated S-metabolites (glutathione and methionine) to stabilize redox status under Fe-deficiency. CONCLUSIONS: TH increases the availability and mobilization of Fe by inducing Fe-uptake pathways, which appears to help provide resistance to oxidative stress associated with Fe-shortage in soybean. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings indicate that while Fe deficiency does not affect the rate or degree of TH hyphal association in soybean roots, the beneficial effects of TH alone may be Fe deficiency-dependent.


Assuntos
Glycine max , Deficiências de Ferro , Glycine max/metabolismo , Malatos/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Glutationa Redutase/metabolismo , Raízes de Plantas/metabolismo , Superóxidos/metabolismo , Citrato (si)-Sintase/metabolismo , Malato Sintase/metabolismo , Clorofila/metabolismo , Ferro/metabolismo , Glutationa/metabolismo , Fenóis/metabolismo , Solo , Citratos , Metionina/metabolismo , RNA Mensageiro/metabolismo
9.
Appl Environ Microbiol ; 88(14): e0043422, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35758758

RESUMO

Spatially resolving chemical landscapes surrounding microbial communities can provide insight into chemical interactions that dictate cellular physiology. Electrochemical techniques provide an attractive option for studying these interactions due to their robustness and high sensitivity. Unfortunately, commercial electrochemical platforms that are capable of measuring chemical activity on the micron scale are often expensive and do not easily perform multiple scanning techniques. Here, we report development of an inexpensive electrochemical system that features a combined micromanipulator and potentiostat component capable of scanning surfaces while measuring molecular concentrations or redox profiles. We validate this experimental platform for biological use with a two-species biofilm model composed of the oral bacterial pathogen Aggregatibacter actinomycetemcomitans and the oral commensal Streptococcus gordonii. We measure consumption of H2O2 by A. actinomycetemcomitans biofilms temporally and spatially, providing new insights into how A. actinomycetemcomitans responds to this S. gordonii-produced metabolite. We advance our platform to spatially measure redox activity above biofilms. Our analysis supports that redox activity surrounding biofilms is species specific, and the region immediately above an S. gordonii biofilm is highly oxidized compared to that above an A. actinomycetemcomitans biofilm. This work provides description and validation of a versatile, quantitative framework for studying bacterial redox-mediated physiology in an integrated and easily adaptable experimental platform. IMPORTANCE Scanning electrochemical probe microscopy methods can provide information of the chemical environment along a spatial surface with micron-scale resolution. These methods often require expensive instruments that perform optimized and highly sensitive niche techniques. Here, we describe a novel system that combines a micromanipulator that scans micron-sized electrodes across the surface of bacterial biofilms and a potentiostat, which performs various electrochemical techniques. This platform allows for spatial measurement of chemical gradients above live bacteria in real time, and as proof of concept, we utilize this setup to map H2O2 detoxification above an oral pathogen biofilm. We increased the versatility of this platform further by mapping redox potentials of biofilms in real time on the micron scale. Together, this system provides a technical framework for studying chemical interactions among microbes.


Assuntos
Biofilmes , Peróxido de Hidrogênio , Aggregatibacter actinomycetemcomitans , Peróxido de Hidrogênio/metabolismo , Oxirredução , Streptococcus gordonii/metabolismo
10.
Sci Total Environ ; 828: 154543, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302016

RESUMO

Bio-electro-Fenton (BEF) processes have been widely studied in recent years to remove recalcitrant micropollutants from wastewater. Though promising, it still faces the critical challenge of residual iron and iron sludge in the treated effluent. Thus, an innovative medium-pressure ultraviolet-catalyzed bio-electrochemical system (MUBEC), in which medium-pressure ultraviolet was employed as an alternative to iron for in-situ H2O2 activation, was developed for the removal of recalcitrant micropollutants. The influence of operating parameters, including initial catholyte pH, cathodic aeration rate, and input voltage, on the system performance, was explored. Results indicated that complete reduction of 10 mg L-1 of model micro-pollutants ibuprofen (IBU) and carbamazepine (CBZ) was achieved at pH 3, with an aeration rate of 1 mL min-1 and a voltage of 0.3 V, following pseudo-first-order kinetics. Moreover, potential transformation pathways and the associated intermediates during the degradation were deduced and detected, respectively. Thus, the MUBEC system shows the potential for the efficient and cost-effective degradation of recalcitrant micropollutants from wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Catálise , Peróxido de Hidrogênio/metabolismo , Ferro , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise
11.
Artigo em Inglês | MEDLINE | ID: mdl-34748935

RESUMO

Skeletal muscle mitochondria of the African pygmy mouse Mus mattheyi exhibit markedly reduced oxygen consumption and ATP synthesis rates but a higher mitochondrial efficiency than what would be expected from allometric trends. In the present study, we assessed whether such reduction of mitochondrial activity in M. mattheyi can limit the oxidative stress associated with an increased generation of mitochondrial reactive oxygen species. We conducted a comparative study of mitochondrial oxygen consumption, H2O2 release, and electron leak (%H2O2/O) in skeletal muscle mitochondria isolated from the extremely small African pygmy mouse (M. mattheyi, ~5 g) and Mus musculus, which is a larger Mus species (~25 g). Mitochondria were energized with pyruvate, malate, and succinate, after which fluxes were measured at different steady-state rates of oxidative phosphorylation. Overall, M. mattheyi exhibited lower oxidative activity and higher electron leak than M. musculus, while the H2O2 release did not differ significantly between these two Mus species. We further found that the high coupling efficiency of skeletal muscle mitochondria from M. mattheyi was associated with high electron leak. Nevertheless, data also show that, despite the higher electron leak, the lower mitochondrial respiratory capacity of M. mattheyi limits the cost of a net increase in H2O2 release, which is lower than that expected for a mammals of this size.


Assuntos
Mitocôndrias Musculares/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
12.
J Inorg Biochem ; 224: 111584, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34479002

RESUMO

Excessive molybdenum (Mo) and cadmium (Cd) cause toxic effects on animals, but their joint effects on pyroptosis in kidney of ducks remain unclear. 160 healthy 7-day-old ducks were randomly divided into four groups which were fed with basal diet containing different dosages of Mo or/and Cd for 16 weeks. On the 4th, 8th, 12th and 16th weeks, kidney tissue and serum were collected. The results showed that Mo or/and Cd could significantly elevate their contents in kidney, disturb the homeostasis of trace elements, cause renal function impairment and histological abnormality, and oxidative stress as accompanied by increasing hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations and decreasing glutathione peroxidase (GSH-Px), catalase (CAT) and total-superoxide dismutase (T-SOD) activities. Simultaneously, Mo or/and Cd could markedly increase interleukin-1ß (IL-1ß), interleukin-18 (IL-18) contents and the expression levels of pyroptosis-related genes (NOD-like receptor protein-3 (NLRP3), Caspase-1, apoptosis-associated speck-like protein (ASC), NIMA-related kinase 7 (NEK7), Gasdermin A (GSDMA), Gasdermin E (GSDME), IL-1ß and IL-18) and proteins (NLRP3, Caspase-1 p20, ASC and Gasdermin D (GSDMD)). Moreover, the changes of above these indicators were more obvious in combined group. Taken together, the results illustrate that Mo and Cd might synergistically lead to oxidative stress and induce pyroptosis via NLRP3/Caspase-1 pathway, whose mechanism is somehow related to Mo and Cd accumulation in duck kidneys.


Assuntos
Cádmio/toxicidade , Rim/metabolismo , Molibdênio/toxicidade , Piroptose/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 1/metabolismo , Catalase/metabolismo , Patos , Peróxido de Hidrogênio/metabolismo , Interleucina-1beta/metabolismo , Malondialdeído/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oligoelementos/metabolismo
13.
Ecotoxicol Environ Saf ; 214: 112067, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33640724

RESUMO

Deltamethrin (DM) is a synthetic pyrethroid used for agricultural purposes to control insects. However, its extensive use contaminates the aquatic environment and results in serious health problems in aquatic organisms. Knowledge about the toxic effect of DM in freshwater prawns is limited; therefore, this study aims to assess the toxicity of DM in Macrobrachium rosenbergii based on multiple biomarkers. Four-day acute toxicity tests showed that DM was highly toxic to M. rosenbergii with the 24 h, 48 h, 72 h and 96 h LC50 values to be 1.919, 0.603, 0.539, and 0.449 µg/L, respectively. According to 96 h LC50, prawns were exposed to DM at three concentrations (0.02, 0.08, and 0.32 µg/L) for 4 days, and then moved into fresh water for decontamination to investigate the toxic effect of DM in M. rosenbergii. At low concentration (0.02 µg/L and 0.08 µg/L), DM did not cause obvious histopathological damage to hepatopancreas and gill tissue, while at high concentration (0.32 µg/L), the histopathological harm was serious and the damage did not recover to the initial level after 7-day decontamination. 0.02 µg/L DM exposure did not induce significant changes in most of the biomarkers except the increased lactate dehydrogenase (LDH) activity, lactic acid (LD) level, and the first increased then decreased mRNA expression of immune-related genes, indicating the stimulation of DM on energy production and immunity. 0.08 µg/L and 0.32 µg/L DM exposure resulted in varying degrees of damage on prawns, but overall, their toxic effects showed similar trends based on the biomarkers. Increase in malonaldehyde (MDA) and hydrogen peroxide (H2O2) content and decrease in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity after DM exposure demonstrated the oxidative stress caused by DM. The significantly increased acid phosphatase (ACP), alkaline phosphatase (AKP), LDH activity and LD level indicated hepatopancreatic dysfunction and respiration disruption. The first increased and then decreased expression pattern of immune-related genes indicated the immunosuppression caused by DM. After 7-day decontamination in freshwater, the activity/level of the biomarkers partly recovered. This study revealed the severe toxic effect of DM on Macrobrachium rosenbergii based on multiple biomarkers, providing fundamental knowledge for the establishment of DM toxicity assessment system with proper parameters in freshwater crustaceans.


Assuntos
Nitrilas/toxicidade , Palaemonidae/fisiologia , Piretrinas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/metabolismo , Biomarcadores/metabolismo , Água Doce , Brânquias/metabolismo , Hepatopâncreas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Palaemonidae/efeitos dos fármacos , Piretrinas/farmacologia , Superóxido Dismutase/metabolismo
14.
Methods Mol Biol ; 2202: 33-42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32857343

RESUMO

Production of reactive oxygen species (ROS) in the mitochondria plays multiple roles in physiology, and excessive production of ROS leads to the development of various pathologies. ROS in the mitochondria are generated by various enzymes, mainly in the electron transporvt chain, and it is important to identify not only the trigger but also the source of free radical production. It is important to measure mitochondrial ROS in live, intact cells, because activation of ROS production could be initiated by changes in extramitochondrial processes which could be overseen when using isolated mitochondria. Here we describe the approaches, which allow to measure production of ROS in the matrix of mitochondria in live cells. We also demonstrate how to measure kinetic changes in lipid peroxidation in mitochondria of live cells. These methods could be used for understanding the mechanisms of pathology in a variety of disease models and also for testing neuro- or cardioprotective chemicals.


Assuntos
Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Imagem Individual de Molécula/métodos , Animais , Radicais Livres/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Modelos Biológicos , Estresse Oxidativo
15.
J Plant Physiol ; 254: 153279, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32979789

RESUMO

Yield components of potato are largely affected by the physiology age of the tuber seeds at planting. The current study focuses on monitoring seed tuber aging in two CN1 and CN2 somatic hybrid lines and Spunta (Sp) variety during 270 days of storage at 4 °C. Aging rate was monitored based on sprouting, emergence and tissue oxidation rates. Investigation of sprouting parameters such as physiological age index (PAI) considering physiological and chronological age and the incubation period (IP) indicated lower physiological age in hybrids than in Sp during the storage. Moreover, these analyses showed that off-seasonal growing conditions increased the aging, more clearly, in Sp tubers than in hybrid ones. However, dormancy periods (endodormancy and after storage dormancy) were equivalent in the different tuber lots. PAI and IP data when combined with those from emergence parameters (duration until emergence and stem number) seem more efficient for the characterization of the different potato lines. However, emergence indicators, when considered separately, were not able to distinguish clearly between seasonal and off-seasonal tubers. Data suggest that hybrid seeds exhibited high performances since they produced higher stem number per plant than Sp. The high aging rate in Sp tubers seems to be associated with the few developed stems. Biochemical analyses supported in part morphophysiological differences between hybrids and Sp seeds although these indicators seem more sensitive to aging. Indeed data showed that the dormancy break, and then, the development were associated with some level of tissue oxidation. Antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and carotenoids seem more enhanced after the release of dormancy. However, induction of these activities started earlier in off-seasonal tubers than in seasonal ones, this was consistent with their advanced aging level revealed by PAI and IP data. Activation of these antioxidants appears to respond effectively to the increase of ROS suggesting a better control of postharvest development and tissue deterioration especially in CN2 off-seasonal tubers. This study suggests that CN2 followed by CN1 exhibited the best performance compared to Sp variety.


Assuntos
Antioxidantes/metabolismo , Armazenamento de Alimentos , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Carotenoides/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Hibridização Genética , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Dormência de Plantas , Tubérculos/fisiologia , Refrigeração , Solanum tuberosum/fisiologia , Superóxido Dismutase/metabolismo
16.
J Biol Chem ; 295(48): 16207-16216, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32747443

RESUMO

Compensatory changes in energy expenditure occur in response to positive and negative energy balance, but the underlying mechanism remains unclear. Under low energy demand, the mitochondrial electron transport system is particularly sensitive to added energy supply (i.e. reductive stress), which exponentially increases the rate of H2O2 (JH2O2) production. H2O2 is reduced to H2O by electrons supplied by NADPH. NADP+ is reduced back to NADPH by activation of mitochondrial membrane potential-dependent nicotinamide nucleotide transhydrogenase (NNT). The coupling of reductive stress-induced JH2O2 production to NNT-linked redox buffering circuits provides a potential means of integrating energy balance with energy expenditure. To test this hypothesis, energy supply was manipulated by varying flux rate through ß-oxidation in muscle mitochondria minus/plus pharmacological or genetic inhibition of redox buffering circuits. Here we show during both non-ADP- and low-ADP-stimulated respiration that accelerating flux through ß-oxidation generates a corresponding increase in mitochondrial JH2O2 production, that the majority (∼70-80%) of H2O2 produced is reduced to H2O by electrons drawn from redox buffering circuits supplied by NADPH, and that the rate of electron flux through redox buffering circuits is directly linked to changes in oxygen consumption mediated by NNT. These findings provide evidence that redox reactions within ß-oxidation and the electron transport system serve as a barometer of substrate flux relative to demand, continuously adjusting JH2O2 production and, in turn, the rate at which energy is expended via NNT-mediated proton conductance. This variable flux through redox circuits provides a potential compensatory mechanism for fine-tuning energy expenditure to energy balance in real time.


Assuntos
Metabolismo Energético , Mitocôndrias Musculares/enzimologia , NADP Trans-Hidrogenase Específica para A ou B/metabolismo , Consumo de Oxigênio , Difosfato de Adenosina/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Proteínas Mitocondriais/metabolismo , Oxirredução
17.
J Vis Exp ; (160)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32628158

RESUMO

Measuring the intracellular oxidation/reduction balance provides an overview of the physiological and/or pathophysiological redox status of an organism. Thiols are especially important for illuminating the redox status of cells via their reduced dithiol and oxidized disulfide ratios. Engineered cysteine-containing fluorescent proteins open a new era for redox-sensitive biosensors. One of them, redox-sensitive green fluorescent protein (roGFP), can easily be introduced into cells with adenoviral transduction, allowing the redox status of subcellular compartments to be evaluated without disrupting cellular processes. Reduced cysteines and oxidized cystines of roGFP have excitation maxima at 488 nm and 405 nm, respectively, with emission at 525 nm. Assessing the ratios of these reduced and oxidized forms allows the convenient calculation of redox balance within the cell. In this method article, immortalized human triple-negative breast cancer cells (MDA-MB-231) were used to assess redox status within the living cell. The protocol steps include MDA-MB-231 cell line transduction with adenovirus to express cytosolic roGFP, treatment with H2O2, and assessment of cysteine and cystine ratio with both flow cytometry and fluorescence microscopy.


Assuntos
Compartimento Celular , Proteínas de Fluorescência Verde/metabolismo , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Cisteína/metabolismo , Cistina/metabolismo , Citosol/metabolismo , Análise de Dados , Humanos , Peróxido de Hidrogênio/metabolismo , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Oxirredução , Frações Subcelulares/metabolismo , Transdução Genética
18.
Genes (Basel) ; 11(5)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455735

RESUMO

Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) and plastid glyceraldehyde-3-phosphate dehydrogenase (GAPCp) are key enzymes in glycolysis. Besides their catalytic function, GAPC/GAPCp participates in the regulation of plant stress response and growth and development. However, the involvement of GAPC/GAPCp in the regulation of fruit ripening is unclear. In this study, FaGAPC2 and FaGAPCp1 in strawberries were isolated and analyzed. FaGAPC2 and FaGAPCp1 transcripts showed high transcript levels in the fruit. Transient overexpression of FaGAPC2 and FaGAPCp1 delayed fruit ripening, whereas RNA interference promoted fruit ripening and affected fruit anthocyanins and sucrose levels. Change in the expression patterns of FaGAPC2 and FaGAPCp1 also influenced the expression of several glycolysis-related and ripening-related genes such as CEL1, CEL2, SS, ANS, MYB5, NCED1, ABI1, ALDO, PK, and G6PDH, and H2O2 level and reduced glutathione (GSH)/glutathione disulfide (GSSG) redox potential. Meanwhile, metabolomics experiments showed that transient overexpression of FaGAPCp1 resulted in a decrease in anthocyanins, flavonoids, organic acid, amino acids, and their derivatives. In addition, abscisic acid (ABA) and sucrose treatment induced the production of large amounts of H2O2 and inhibited the expression of FaGAPC2/FaGAPCp1 in strawberry fruit. These results revealed that FaGAPC2/FaGAPCp1 is a negative regulator of ABA and sucrose mediated fruit ripening which can be regulated by oxidative stress.


Assuntos
Fragaria/genética , Frutas/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Peróxido de Hidrogênio/metabolismo , Ácido Abscísico/metabolismo , Antocianinas/genética , Citosol/enzimologia , Fragaria/enzimologia , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Peróxido de Hidrogênio/economia , Interferência de RNA , Transdução de Sinais/genética , Sacarose/metabolismo
19.
Nat Commun ; 11(1): 1735, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269223

RESUMO

The therapeutic effect of reactive oxygen species (ROS)-involved cancer therapies is significantly limited by shortage of oxy-substrates, such as hypoxia in photodynamic therapy (PDT) and insufficient hydrogen peroxide (H2O2) in chemodynamic therapy (CDT). Here, we report a H2O2/O2 self-supplying nanoagent, (MSNs@CaO2-ICG)@LA, which consists of manganese silicate (MSN)-supported calcium peroxide (CaO2) and indocyanine green (ICG) with further surface modification of phase-change material lauric acid (LA). Under laser irradiation, ICG simultaneously generates singlet oxygen and emits heat to melt the LA. The exposed CaO2 reacts with water to produce O2 and H2O2 for hypoxia-relieved ICG-mediated PDT and H2O2-supplying MSN-based CDT, acting as an open source strategy for ROS production. Additionally, the MSNs-induced glutathione depletion protects ROS from scavenging, termed reduce expenditure. This open source and reduce expenditure strategy is effective in inhibiting tumor growth both in vitro and in vivo, and significantly improves ROS generation efficiency from multi-level for ROS-involved cancer therapies.


Assuntos
Tratamento Farmacológico , Fotoquimioterapia , Espécies Reativas de Oxigênio/metabolismo , Animais , Circulação Sanguínea , Compostos de Cálcio/química , Linhagem Celular Tumoral , Sobrevivência Celular , Sinergismo Farmacológico , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Verde de Indocianina/química , Ácidos Láuricos/sangue , Ácidos Láuricos/química , Imageamento por Ressonância Magnética , Manganês/química , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/ultraestrutura , Óxidos/química , Silicatos/química , Superóxidos/metabolismo , Distribuição Tecidual
20.
Nano Lett ; 20(4): 2432-2442, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32097014

RESUMO

Near-infrared (nIR) fluorescent single-walled carbon nanotubes (SWCNTs) were designed and interfaced with leaves of Arabidopsis thaliana plants to report hydrogen peroxide (H2O2), a key signaling molecule associated with the onset of plant stress. The sensor nIR fluorescence response (>900 nm) is quenched by H2O2 with selectivity against other stress-associated signaling molecules and within the plant physiological range (10-100 H2O2 µM). In vivo remote nIR imaging of H2O2 sensors enabled optical monitoring of plant health in response to stresses including UV-B light (-11%), high light (-6%), and a pathogen-related peptide (flg22) (-10%), but not mechanical leaf wounding (<3%). The sensor's high biocompatibility was reflected on similar leaf cell death (<5%) and photosynthetic rates to controls without SWCNT. These optical nanosensors report early signs of stress and will improve our understanding of plant stress communication, provide novel tools for precision agriculture, and optimize the use of agrochemicals in the environment.


Assuntos
Arabidopsis/metabolismo , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/metabolismo , Aptâmeros de Nucleotídeos/química , Arabidopsis/química , Corantes Fluorescentes/química , Peróxido de Hidrogênio/análise , Nanotubos de Carbono/química , Imagem Óptica/métodos , Folhas de Planta/química , Folhas de Planta/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA