Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Dev Comp Immunol ; 156: 105175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574831

RESUMO

Peroxiredoxin-1 (Prdx1) is a thiol-specific antioxidant enzyme that detoxifies reactive oxygen species (ROS) and regulates the redox status of cells. In this study, the Prdx1 cDNA sequence was isolated from the pre-established Amphiprion clarkii (A. clarkii) (AcPrdx1) transcriptome database and characterized structurally and functionally. The AcPrdx1 coding sequence comprises 597 bp and encodes 198 amino acids with a molecular weight of 22.1 kDa and a predicted theoretical isoelectric point of 6.3. AcPrdx1 is localized and functionally available in the cytoplasm and nucleus of cells. The TXN domain of AcPrdx1 comprises two peroxiredoxin signature VCP motifs, which contain catalytic peroxidatic (Cp-C52) and resolving cysteine (CR-C173) residues. The constructed phylogenetic tree and sequence alignment revealed that AcPrdx1 is evolutionarily conserved, and its most closely related counterpart is Amphiprion ocellaris. Under normal physiological conditions, AcPrdx1 was ubiquitously detected in all tissues examined, with the most robust expression in the spleen. Furthermore, AcPrdx1 transcripts were significantly upregulated in the spleen, head kidney, and blood after immune stimulation by polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharide (LPS), and Vibrio harveyi injection. Recombinant AcPrdx1 (rAcPrdx1) demonstrated antioxidant and DNA protective properties in a concentration-dependent manner, as evidenced by insulin disulfide reduction, peroxidase activity, and metal-catalyzed oxidation (MCO) assays, whereas cells transfected with pcDNA3.1(+)/AcPrdx1 showed significant cytoprotective function under oxidative and nitrosative stress. Overexpression of AcPrdx1 in fathead minnow (FHM) cells led to a lower viral copy number following viral hemorrhagic septicemia virus (VHSV) infection, along with upregulation of several antiviral genes. Collectively, this study provides insights into the function of AcPrdx1 in defense against oxidative stressors and its role in the immune response against pathogenic infections in A. clarkii.


Assuntos
Proteínas de Peixes , Peroxirredoxinas , Filogenia , Vibrioses , Animais , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Vibrioses/imunologia , Poli I-C/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata , Vibrio/imunologia , Vibrio/fisiologia , Clonagem Molecular , Sequência de Aminoácidos , Perciformes/imunologia , Lipopolissacarídeos/imunologia , Alinhamento de Sequência , Espécies Reativas de Oxigênio/metabolismo
2.
FEBS J ; 291(4): 778-794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985387

RESUMO

We have studied the reduction reactions of two cytosolic human peroxiredoxins (Prx) in their disulfide form by three thioredoxins (Trx; two human and one bacterial), with the aim of better understanding the rate and mechanism of those reactions, and their relevance in the context of the catalytic cycle of Prx. We have developed a new methodology based on stopped-flow and intrinsic fluorescence to study the bimolecular reactions, and found rate constants in the range of 105 -106 m-1 s-1 in all cases, showing that there is no marked kinetic preference for the expected Trx partner. By combining experimental findings and molecular dynamics studies, we found that the reactivity of the nucleophilic cysteine (CN ) in the Trx is greatly affected by the formation of the Prx-Trx complex. The protein-protein interaction forces the CN thiolate into an unfavorable hydrophobic microenvironment that reduces its hydration and results in a remarkable acceleration of the thiol-disulfide exchange reactions by more than three orders of magnitude and also produces a measurable shift in the pKa of the CN . This mechanism of activation of the thiol disulfide exchange may help understand the reduction of Prx by alternative reductants involved in redox signaling.


Assuntos
Peroxirredoxinas , Tiorredoxinas , Humanos , Tiorredoxinas/química , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Oxirredução , Compostos de Sulfidrila/química , Dissulfetos/química
3.
Curr Opin Infect Dis ; 33(5): 411-418, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32833689

RESUMO

PURPOSE OF REVIEW: With its impact on quality of life and increasing awareness, postinfectious irritable bowel syndrome (PI-IBS) is now gaining attention as one of the major health problems commonly encountered in gastrointestinal practice. Literature investigating the various pathogenic mechanisms involved is rapidly emerging. The objective of the current review is to provide an update on recent evidence published in the past 2 years describing advances in our understanding of the epidemiology, pathogenesis, diagnosis, and treatment of PI-IBS. RECENT FINDINGS: Significant proportion of research in the recent past was preclinical in nature. Epidemiological studies continue to highlight the risk of IBS after infection, with recent studies documenting postprotozoal effects. Advances in pathogenic mechanisms included clinical studies, which documented micro-RNA down-regulation and Peroxiredoxin-1 up-regulation in colonic mucosa of PI-IBS patients. Protease-activated receptor-2 (PAR-2) activation in PI-IBS mice models resulted in increase in epithelial permeability, mucosal inflammation, visceral hypersensitivity. Moxibustion and rifamycin reduced intestinal inflammation by inhibiting cytokine and chemokine release via different mechanisms. Miltefosine reduced mast cell degranulation and TRPV1 activation, thereby reducing visceral hypersensitivity. SUMMARY: At present, generalization of limited diagnostic and therapeutic strategies across a heterogeneous prevalent patient population impedes the ability to provide effective personalized care in PI-IBS. Further development in pathogenesis discovery, diagnostic tool development are needed in order to design well tolerated and effective therapies that guide treatments based on distinct pathways of disease.


Assuntos
Síndrome do Intestino Irritável/diagnóstico , Síndrome do Intestino Irritável/terapia , Adulto , Animais , Antibacterianos/uso terapêutico , Criança , Colo/metabolismo , Gastroenterite/complicações , Humanos , Infecções/complicações , Inflamação/epidemiologia , Inflamação/terapia , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/epidemiologia , Síndrome do Intestino Irritável/etiologia , Mastócitos/metabolismo , Camundongos , Moxibustão/métodos , Peroxirredoxinas/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapêutico , Reação em Cadeia da Polimerase/métodos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptor PAR-2/metabolismo , Rifamicinas/uso terapêutico
4.
Antioxid Redox Signal ; 15(1): 167-74, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21254838

RESUMO

Hydrogen peroxide acts as a second messenger in growth factor signaling where it can oxidize and modify the function of redox-sensitive proteins. While selective thiol oxidation has been measured, there has been no global assessment of protein oxidation following growth factor activation. Significant changes to the abundant and widely distributed redox sensitive thiol proteins were observed in A431 epidermoid carcinoma cells exposed to hydrogen peroxide, but no changes were observed following treatment with epidermal growth factor (EGF). This included members of the peroxiredoxin family, which were also monitored in the presence of the thioredoxin reductase inhibitor auranofin to limit their capacity to recycle to the reduced form. We conclude that widespread thiol oxidation does not occur in cells during EGF signaling, and that hydrogen peroxide must act in a highly localized or selective manner.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Peróxido de Hidrogênio/farmacologia , Oxirredução/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Humanos , Peroxirredoxinas/metabolismo , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA