Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 66(6): 065017, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33545708

RESUMO

We present a robust deep learning-based framework for dose calculations of abdominal tumours in a 1.5 T MRI radiotherapy system. For a set of patient plans, a convolutional neural network is trained on the dose of individual multi-leaf-collimator segments following the DeepDose framework. It can then be used to predict the dose distribution per segment for a set of patient anatomies. The network was trained using data from three anatomical sites of the abdomen: prostate, rectal and oligometastatic tumours. A total of 216 patient fractions were used, previously treated in our clinic with fixed-beam IMRT using the Elekta MR-linac. For the purpose of training, 176 fractions were used with random gantry angles assigned to each segment, while 20 fractions were used for the validation of the network. The ground truth data were calculated with a Monte Carlo dose engine at 1% statistical uncertainty per segment. For a total of 20 independent abdominal test fractions with the clinical angles, the network was able to accurately predict the dose distributions, achieving 99.4% ± 0.6% for the whole plan prediction at the 3%/3 mm gamma test. The average dose difference and standard deviation per segment was 0.3% ± 0.7%. Additional dose prediction on one cervical and one pancreatic case yielded high dose agreement of 99.9% and 99.8% respectively for the 3%/3 mm criterion. Overall, we show that our deep learning-based dose engine calculates highly accurate dose distributions for a variety of abdominal tumour sites treated on the MR-linac, in terms of performance and generality.


Assuntos
Neoplasias Abdominais/diagnóstico por imagem , Neoplasias Abdominais/radioterapia , Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Método de Monte Carlo , Metástase Neoplásica , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/tratamento farmacológico , Reprodutibilidade dos Testes
2.
Jpn J Radiol ; 39(4): 387-394, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33136255

RESUMO

PURPOSE: This study aimed to assess whether a Monte Carlo (MC)-based algorithm reflects the influence of totally implantable venous access ports (TIVAPs) in external radiation therapy. MATERIALS AND METHODS: The present study comprised two steps: experimental measurements of depth doses and surface doses with and without TIVAPs and calculation with an MC-based algorithm. RESULTS: The TIVAP-associated maximum dose reduction compared with the dose at the same depths without TIVAPs was 7.8% at 4 MV, 6.9% at 6 MV, and 5.7% at 10 MV in measurement, and 7.4% at 4 MV, 6.6% at 6 MV, and 5.5% at 10 MV in calculation. Relative surface doses were higher with TIVAPs made of titanium, due to a higher fluence of backscattered electrons from the TIVAPs, than with plastic TIVAPs. There were no significant differences in the relative differences between the measured and calculated doses of the titanium TIVAP group and the plastic TIVAP group at 4 MV (p = 0.99), 6 MV (p = 0.67), and 10 MV (p = 0.54). CONCLUSION: TIVAPs caused target dose reductions and dose increase near the TIVAP, especially when made of titanium. The influences are reflected in the MC-based algorithm.


Assuntos
Algoritmos , Cateterismo Venoso Central , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/instrumentação
3.
J Cancer Res Ther ; 16(6): 1454-1458, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33342812

RESUMO

AIM: The main objective of this study is to evaluate the new proposed boron neutron capture therapy (BNCT) neutron beam based on the use of Tehran Research Reactor medical room to treat deep-seated brain tumors. MATERIAL AND METHODS: The Snyder head phantom has been simulated through the MCNPX Monte Carlo code to calculate different dose profiles and desired medical merits. The simulation consists of the full geometry of new beamline and the phantom. RESULTS: The medical merits related to the new proposed BNCT beamline have a good agreement with other facilities, which indicates the potential use of this new beam for treatment of deep-seated brain tumors. CONCLUSION: The obtained results show the capability of the new setup to treat deep-seated brain tumor, which was located up to ~5 cm of the skin surface.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Neoplasias Encefálicas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Simulação por Computador , Cabeça/diagnóstico por imagem , Humanos , Irã (Geográfico) , Método de Monte Carlo , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/instrumentação
4.
J Cancer Res Ther ; 16(4): 878-883, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32930134

RESUMO

AIM OF STUDY: The goal of this research was to investigate if application of optimized imaging parameters, recommended in literature, would be effective in producing the image quality required for treatment planning of spinal radiation fields with metallic implants. MATERIALS AND METHODS: CT images from an anthropomorphic torso phantom with and without spinal implants were acquired using different imaging protocols: raising kVp and mAs, reducing the pitch and applying an extended CT scale (ECTS) technique. Profiles of CT number (CT#) were produced using DICOM data of each image. The effect of artifact on dose calculation accuracy was investigated using the image data in the absence of implant as a reference and the recommended electron density tolerance levels (Δρe). RESULTS: Raising the kVp was the only method that produced improvement to some degree in CT# in artifact regions. Application of ECTS improved CT# values only for metal. CONCLUSIONS: Although raising the kVp was effective in reducing metallic artifact, the significance of this effect on Δρe values in corrected images depends on the required tolerance for treatment planning dose calculation accuracy. ECTS method was only successful in correcting the CT number range in the metal. Although, application of ECTS method did not have any effect on artifact regions, its use is necessary in order to improve delineation of metal and accuracy of attenuation calculations in metal, provided that the treatment planning system can use an extended CT# calibration curve. Also, for Monte Carlo calculations using patient's images, ECTS-post-processed-CT images improve dose calculation accuracy for impure metals.


Assuntos
Metais , Imagens de Fantasmas , Próteses e Implantes , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/radioterapia , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Artefatos , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Procedimentos de Cirurgia Plástica/métodos , Neoplasias da Coluna Vertebral/patologia , Tomografia Computadorizada por Raios X/instrumentação
5.
Phys Med Biol ; 65(15): 155016, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32442990

RESUMO

Monte Carlo simulations are used to investigate skin dose resulting from chest wall radiotherapy with bolus. A simple model of a female thorax is developed, which includes a 2 mm-thick skin layer. Two representative 6 MV source models are considered: a tangents source model consisting of a parallel opposed pair of medial and lateral fields and subfields, and an arc source model. Tissue equivalent (TE) boluses (thicknesses of 3, 5 and 10 mm) and brass mesh bolus are considered. Skin dose distributions depend on incident photon obliquity: for tangents, radiation is incident more obliquely, resulting in longer path lengths through the bolus and higher skin dose compared to the arc source model in most cases. However, for thicker TE boluses, attenuation of oblique photons becomes apparent. Brass bolus and 3 mm TE bolus result in similar mean skin dose. This relatively simple computational model allows for consideration of different bolus thicknesses, materials and usage schedules based on desired skin dose and choice of either tangents or an arc beam technique. For example, using a 5 mm TE bolus every second treatment would result in mean skin doses of 89% and 85% for tangents and the arc source model, respectively. The hot spot metric D[Formula: see text] would be 103% and 99%, respectively.


Assuntos
Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Pele/efeitos da radiação , Parede Torácica/efeitos da radiação , Feminino , Humanos , Órgãos em Risco/efeitos da radiação , Fótons/efeitos adversos , Fótons/uso terapêutico , Radiometria , Dosagem Radioterapêutica
6.
J Radiat Res ; 61(3): 410-418, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32211851

RESUMO

This study characterized a new unshielded diode detector, the microSilicon (model 60023), for small-field photon beam dosimetry by evaluating the photon beams generated by a TrueBeam STx and a CyberKnife. Temperature dependence was evaluated by irradiating photons and increasing the water temperature from 11.5 to 31.3°C. For Diode E, microSilicon, microDiamond and EDGE detectors, dose linearity, dose rate dependence, energy dependence, percent-depth-dose (PDD), beam profiles and detector output factor (OFdet) were evaluated. The OFdet of the microSilicon detector was compared to the field output factors of the other detectors. The microSilicon exhibited small temperature dependence within 0.4%, although the Diode E showed a linear variation with a ratio of 0.26%/°C. The Diode E and EDGE detectors showed positive correlations between the detector reading and dose rate, whereas the microSilicon showed a stable response within 0.11%. The Diode E and microSilicon demonstrated negative correlations with the beam energy. The OFdet of microSilicon was the smallest among all the detectors. The maximum differences between the OFdet of microSilicon and the field output factors of microDiamond were 2.3 and 1.6% for 5 × 5 mm2 TrueBeam and 5 mm φ CyberKnife beams, respectively. The PDD data exhibited small variations in the dose fall-off region. The microSilicon and microDiamond detectors yielded similar penumbra widths, whereas the other detectors showed steeper penumbra profiles. The microSilicon demonstrated favorable characteristics including small temperature and dose rate dependence as well as the small spatial resolution and output factors suitable for small field dosimetry.


Assuntos
Fótons , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Silício/química , Relação Dose-Resposta à Radiação , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Radiocirurgia/instrumentação , Espalhamento de Radiação , Temperatura
7.
Phys Med ; 70: 123-132, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32007601

RESUMO

PURPOSE: This work describes the integration of the M6 Cyberknife in the Moderato Monte Carlo platform, and introduces a machine learning method to accelerate the modelling of a linac. METHODS: The MLC-equipped M6 Cyberknife was modelled and integrated in Moderato, our in-house platform offering independent verification of radiotherapy dose distributions. The model was validated by comparing TPS dose distributions with Moderato and by film measurements. Using this model, a machine learning algorithm was trained to find electron beam parameters for other M6 devices, by simulating dose curves with varying spot size and energy. The algorithm was optimized using cross-validation and tested with measurements from other institutions equipped with a M6 Cyberknife. RESULTS: Optimal agreement in the Monte Carlo model was reached for a monoenergetic electron beam of 6.75 MeV with Gaussian spatial distribution of 2.4 mm FWHM. Clinical plan dose distributions from Moderato agreed within 2% with the TPS, and film measurements confirmed the accuracy of the model. Cross-validation of the prediction algorithm produced mean absolute errors of 0.1 MeV and 0.3 mm for beam energy and spot size respectively. Prediction-based simulated dose curves for other centres agreed within 3% with measurements, except for one device where differences up to 6% were detected. CONCLUSIONS: The M6 Cyberknife was integrated in Moderato and validated through dose re-calculations and film measurements. The prediction algorithm was successfully applied to obtain electron beam parameters for other M6 devices. This method would prove useful to speed up modelling of new machines in Monte Carlo systems.


Assuntos
Aprendizado de Máquina , Aceleradores de Partículas/instrumentação , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Desenho de Equipamento/instrumentação , Humanos , Modelos Biológicos , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Raios X
8.
Med Phys ; 47(2): 781-789, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31705815

RESUMO

PURPOSE: To estimate relative biological effectiveness (RBE) ascribed to secondary fragments in a lateral distribution of carbon ion irradiation. The RBE was estimated with the microdosimetric kinetic (MK) model and measured linear energy transfer (LET) obtained with CR-39 plastic detectors. METHODS: A water phantom was irradiated by a 12 C pencil beam with energy of 380 MeV/u at the Gunma University Heavy Ion Medical Center (GHMC), and CR-39 detectors were exposed to secondary fragments. Because CR-39 was insensitive to low LET, we conducted Monte Carlo simulations with Geant4 to calculate low LET particles. The spectra of low LET particles were combined with experimental spectra to calculate RBE. To estimate accuracy of RBE, we calculated RBE by changing yield of low LET particles by ± 10% and ± 40%. RESULTS: At a small angle, maximum RBE by secondary fragments was 1.3 for 10% survival fractions. RBE values of fragments gradually decreased as the angle became larger. The shape of the LET spectra in the simulation reproduced the experimental spectra, but there was a discrepancy between the simulation and experiment for the relative yield of fragments. When the yield of low LET particles was changed by ± 40%, the change in RBE was smaller than 10%. CONCLUSIONS: An RBE of 1.3 was expected for secondary fragments emitted at a small angle. Although, we observed a discrepancy in the relative yield of secondary fragments between simulation and experiment, precision of RBE was not so sensitive to the yield of low LET particles.


Assuntos
Carbono/química , Radioterapia com Íons Pesados/instrumentação , Radioterapia com Íons Pesados/métodos , Polietilenoglicóis/química , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Eficiência Biológica Relativa , Cinética , Transferência Linear de Energia , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Dosímetros de Radiação , Reprodutibilidade dos Testes
9.
Med Phys ; 47(2): 693-702, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31722113

RESUMO

PURPOSE: To evaluate the use of the absorbed depth-dose as a surrogate of the half-value layer in the calibration of a high-dose-rate electronic brachytherapy (eBT) equipment. The effect of the manufacturing tolerances and the absorbed depth-dose measurement uncertainties in the calibration process are also addressed. METHODS: The eBT system Esteya® (Elekta Brachytherapy, Veenendaal, The Netherlands) has been chosen as a proof-of-concept to illustrate the feasibility of the proposed method, using its 10 mm diameter applicator. Two calibration protocols recommended by the AAPM (TG-61) and the IAEA (TRS-398) for low-energy photon beams were evaluated. The required Monte Carlo (MC) simulations were carried out using PENELOPE2014. Several MC simulations were performed modifying the flattening filter thickness and the x-ray tube potential, generating one absorbed depth-dose curve and a complete set of parameters required in the beam calibration (i.e., HVL, backscatter factor (Bw ), and mass energy-absorption coefficient ratios (µen /ρ)water,air ), for each configuration. Fits between each parameter and some absorbed dose-ratios calculated from the absorbed depth-dose curves were established. The effect of the manufacturing tolerances and the absorbed dose-ratio uncertainties over the calibration process were evaluated by propagating their values over the fitting function, comparing the overall calibration uncertainties against reference values. We proposed four scenarios of uncertainty (from 0% to 10%) in the dose-ratio determination to evaluate its effect in the calibration process. RESULTS: The manufacturing tolerance of the flattening filter (±0.035 mm) produces a change of 1.4% in the calculated HVL and a negligible effect over the Bw , (µen /ρ)water,air , and the overall calibration uncertainty. A potential variation of 14% of the electron energies due to manufacturing tolerances in the x-ray tube (69.5 ± ~10 keV) generates a variation of 10% in the HVL. However, this change has a negligible effect over the Bw and (µen /ρ)water,air , adding 0.1% to the overall calibration uncertainty. The fitting functions reproduce the data with an uncertainty (k = 2) below 1%, 0.5%, and 0.4% for the HVL, Bw , and (µen /ρ)water,air , respectively. The four studied absorbed dose-ratio uncertainty scenarios add, in the worst-case scenario, 0.2% to the overall uncertainty of the calibration process. CONCLUSIONS: This work shows the feasibility of using the absorbed depth-dose curve in the calibration of an eBT system with minimal loss of precision.


Assuntos
Braquiterapia/instrumentação , Radiometria/instrumentação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Ar , Calibragem , Desenho de Equipamento , Método de Monte Carlo , Permeabilidade , Reprodutibilidade dos Testes , Incerteza , Água , Raios X
10.
Phys Med Biol ; 64(24): 245009, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31726432

RESUMO

The leaf width of a multileaf collimator (MLC) determines the dose conformity to the target volume. The objective of this study was to investigate the feasibility of a two-dimensional dynamic MLC (2DDMLC) to improve the treatment plan quality with a fixed leaf width. The treatment head of the Clinac™ linear accelerator with the Millennium 120™ MLC was modelled with the Geant4 (for GEometry ANd Tracking) tollkit using the Monte Carlo (MC) method. The 2DDMLC produces a beam aperture by moving the MLC bank vertically to the leaf movement. Thus, the effect of the 2DDMLC motion on beam divergence and beam fluence resolution was evaluated by comparing the dose distributions between the conventional MLC motion and the 2DDMLC. Finally, the 2DDMLC was employed for dynamic conformal arc therapy for 13 brain cancer patients. The dose-volumetric parameters, including the dose delivered to 98% of the target volume (D 98%), percent volume given 20% of the prescribed dose (V 20%), and conformity index (CI) were compared with those of the conventional MLC. For the 6 MV beam of the MC model, the depth dose and lateral dose distribution differed by less than 2% between the simulation and measurement. The 2DDMLC did not significantly influence beam divergence and sharpened the beam. In clinical use, the dose delivered to the target was almost identical between the 2DDMLC and conventional MLC (D 98% = 29.74 Gy versus 29.71 Gy, p  = 0.18). The CI was improved with the use of the 2DDMLC (CI = 1.49 versus 1.47, p  = 0.14). Moreover, irradiation of normal tissue was reduced with the 2DDMLC compared with conventional MLC (V 20% = 17.22% versus 17.45%, p  < 0.001). The 2DDMLC improved the dose conformity to the target volume and reduced the irradiation of the normal tissue compared with the conventional MLC.


Assuntos
Neoplasias Encefálicas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Estudo de Prova de Conceito , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia Conformacional/instrumentação
11.
J Med Imaging Radiat Sci ; 50(2): 297-307, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31176438

RESUMO

BACKGROUND: CT simulator for radiation therapy aims to produce high-quality images for dose calculation and delineation of target and organs at risk in the process of treatment planning. Selection of CT imaging protocols that achieve a desired image quality while minimizing patient dose depends on technical CT parameters and their relationship with image quality and radiation dose. For similar imaging protocols using comparable technical CT parameters, there are also variations in image quality metrics between different CT simulator models. Understanding the relationship and variation is important for selecting appropriate imaging protocol and standardizing QC process. Here, we proposed an automated method to determine the relationship between image quality and radiation dose for various CT technical parameters. MATERIAL AND METHOD: The impact of scan parameters on various aspects of image quality and volumetric CT dose index for a Philips Brilliance Big Bore and a Toshiba Aquilion One CT scanners were determined by using commercial phantom and automated image quality analysis software and cylindrical radiation dose phantom. RESULTS AND DISCUSSION: Both scanners had very similar and satisfactory performance based on the diagnostic acceptance criteria recommended by ACR, International Atomic Energy Agency, and American Association of Physicists in Medicine. However, our results showed a compromise between different image quality components such as low-contrast and spatial resolution with the change of scanning parameters and revealed variations between the two scanners on their image quality performance. Measurement using a generic phantom and analysis by automated software was unbiased and efficient. CONCLUSION: This method provides information that can be used as a baseline for CT scanner image quality and dosimetric QC for different CT scanner models in a given institution or across sites.


Assuntos
Doses de Radiação , Planejamento da Radioterapia Assistida por Computador , Tomógrafos Computadorizados/normas , Tomografia Computadorizada por Raios X/instrumentação , Algoritmos , Simulação por Computador , Humanos , Imagens de Fantasmas , Controle de Qualidade , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/normas
12.
Phys Med Biol ; 64(13): 13NT02, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31158829

RESUMO

Radiotherapy (RT) treatment planning systems (TPS) are designed for the fast calculation of dose to the tumor bed and nearby organs at risk using x-ray computed tomography (CT) images. However, CT images for a patient are typically available for only a small portion of the body, and in some cases, such as for retrospective epidemiological studies, no images may be available at all. When dose to organs that lie out-of-scan must be estimated, a convenient alternative for the unknown patient anatomy is to use a matching whole-body computational phantom as a surrogate. The purpose of the current work is to connect such computational phantoms to commercial RT TPS for retrospective organ dose estimation. A custom software with graphical user interface (GUI), called the DICOM-RT Generator, was developed in MATLAB to convert voxel computational phantoms into the digital imaging and communications in medicine radiotherapy (DICOM-RT) format, compatible with commercial TPS. DICOM CT image sets for the phantoms are created via a density-to-Hounsfield unit (HU) conversion curve. Accompanying structure sets containing the organ contours are automatically generated by tracing binary masks of user-specified organs on each phantom CT slice. The software was tested on a library of body size-dependent phantoms, the International Commission on Radiological Protection reference phantoms, and a canine voxel phantom, taking only a few minutes per conversion. The resulting DICOM-RT files were tested on several commercial TPS. As an example application, a library of converted phantoms was used to estimate organ doses for members of the National Wilms Tumor Study (NWTS) cohort. The converted phantom library, in DICOM format, and a standalone MATLAB-compiled executable of the DICOM-RT Generator are available for others to use for research purposes (http://ncidose.cancer.gov).


Assuntos
Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia Guiada por Imagem/efeitos adversos , Tomografia Computadorizada por Raios X , Animais , Tamanho Corporal , Criança , Cães , Humanos , Masculino , Proteção Radiológica , Software
13.
Health Phys ; 117(5): 489-503, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31033708

RESUMO

Out-of-field scattered and transmitted extrafocal radiation may induce secondary cancer in long-term survivors of external radiotherapy. Pediatric patients have higher life expectancy and tend to receive higher secondary radiation damage due to geometric and biological factors. The goal of this study is to characterize the location and the magnitude of extrafocal dose regions in the case of three-dimensional conformal radiotherapy and volumetric arc therapy, to apply this information to clinical treatment cases, and to provide mitigation strategies. Extrafocal dose has been investigated in a Varian TrueBeam linac equipped with a high-definition 120 multileaf collimator using different physical and virtual phantoms, dose calculation (including Monte Carlo techniques), and dose measurement methods. All Monte Carlo calculations showed excellent agreement with measurements. Treatment planning system calculations failed to provide reliable results out of the treatment field. Both Monte Carlo calculations and dose measurements showed regions with higher dose (extrafocal dose areas) when compared to the background. These areas start to be noticeable beyond 11 cm from the isocenter in the direction perpendicular to the multileaf collimator leaves' travel direction. Out-of-field extrafocal doses up to 160% of the mean dose transmitted through the closed multileaf collimator were registered. Two overlapping components were observed in the extrafocal distribution: the first is an almost elliptical blurred dose distribution, and the second is a well-defined rectangular dose distribution. Extra precautions should be taken into consideration when treating pediatric patients with a high-definition 120 multileaf collimator to avoid directing the extrafocal radiation into a radiosensitive organ during external beam therapy.


Assuntos
Simulação por Computador , Método de Monte Carlo , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia de Intensidade Modulada/instrumentação , Humanos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
14.
Phys Med Biol ; 64(7): 075014, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30875697

RESUMO

The current study evaluates dosimetric and spectral effects when platinum (Pt)-based chemotherapeutics and less toxic tungstophosphoric-acid (TPA) organometallics are present during x-ray radiotherapy. We hypothesize that the use of high energy photon beams (i.e. 18 MV) will increase absorbed dose due to increased pair production from high-Z elements and thus result in additional tumor cell kill. EGSnrc code was used to examine the contribution of pair production to dose in the presence of the high-Z material (TPA, Pt mixtures and tungsten, W) as a function of beam energy. Variables included different concentrations (100 µmolar, 1 mmolar), depths (5 mm, 10 cm), thicknesses (5 mm, 5 cm) and energies (6, 18 MV). Overall, for the deeper depth, the 511 keV photon fluence increase was up 31% (18 MV-1 mmolar) while at 6 MV it was between 10%-11% depending on the concentration. For the shallower depth, 18 MV fluence increase was up 14.6% (1 mmolar) and 18.6% (1 mmolar) for the 6 MV. The dose enhancement effect due to pair production was up 25%-30% and a total 33%-58% depending on the depth. The benefit related to pair production was more for 18 MV and under conditions that simulated a realistic clinical setup. While part of the effect could be attributed to photoabsorption, a significant contribution of dose could result from pair production. Experimental clonogenic survival assay was consistent with the theory in that the low dose shoulder region of a cell survival curve was reduced using TPA and 18 MV compared with TPA and 6 MV or compared with no TPA and 18 MV; RBE was approximately 2 at the dose commonly used in conventional fractionated clinical radiotherapy. This suggests a potential new strategy for dose enhancement based on pair production using higher energy beamlines.


Assuntos
Método de Monte Carlo , Compostos Organometálicos/química , Imagens de Fantasmas , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Células A549 , Humanos , Radiometria , Dosagem Radioterapêutica
15.
J Cancer Res Ther ; 15(1): 237-244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880784

RESUMO

AIM: The aim of this study is to evaluate soft-tissue composition effect on dose distribution for various soft tissues in radiotherapy with a 6 MV photon beam of a medical linac. BACKGROUND: The compositions of various soft tissues are different which could affect dose calculations. MATERIALS AND METHODS: A phantom and Siemens Primus linear accelerator were simulated using MCNPX Monte Carlo code. In a homogeneous cubic phantom, six types of soft tissue and three types of tissue-equivalent materials were defined separately. The soft tissues were muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-component), and soft tissue (4-component). The tissue-equivalent materials included water, A-150 tissue equivalent plastic and perspex. Photon dose relative to dose in 9-component soft tissue at various depths on the beam's central axis was determined for the 6 MV photon beam. The relative dose was also calculated and compared for various MCNPX tallies including *F8, F6, and *F4. RESULTS: The results of the relative photon dose in various materials relative to dose in 9-component soft tissue using different tallies are reported in the form of tabulated data. Minor differences between dose distributions in various soft tissues and tissue-equivalent materials were observed. The results from F6 and F4 were practically the same but differ with the *F8 tally. CONCLUSIONS: Based on the calculations performed, the differences in dose distributions in various soft tissues and tissue-equivalent materials are minor but they could be corrected in radiotherapy calculations to upgrade the accuracy of the dosimetric calculations.


Assuntos
Aceleradores de Partículas , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Método de Monte Carlo , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Radiometria/instrumentação , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação
16.
J Cancer Res Ther ; 15(Supplement): S127-S134, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30900634

RESUMO

INTRODUCTION: Calculations from a treatment planning system (TPS) in heterogeneous regions may present significant inaccuracies due to loss of electronic equilibrium. The purpose of this study is to evaluate and quantify the differences of dose distributions computed by some of the newest dose calculation algorithms, including collapsed cone convolution (CCC), fast Fourier transform (FFT) convolution, and superposition convolution, in heterogeneity of the lung. MATERIALS AND METHODS: A 6-MV Siemens Primus linear accelerator was simulated by MCNPX Monte Carlo (MC) code, and the results of percentage depth dose (PDD) and dose profile values were compared with measured data. The ISOgray TPS was used and PDDs of CCC, FFT, and superposition convolution algorithms were compared with the results obtained by MCNPX code. CT2MCNP software was used to convert the computed tomography images of the lung tissue to MC input files, and dose distributions from the three algorithms were compared to MC method. RESULTS: For PDD curves in buildup region, the maximum underdosage of ISOgray TPS was at the surface (19%) and comes in closer agreement when depth increases (average 7.08%). Dose differences (DD) between different algorithms and MC were typically 4.81% (range: 1.95% to 7.30%), -1.55% (range: -5.14% to 5.26%) and 4.96% (range: 2.00% to 7.4%) in the lung for the CCC, FFT, and superposition algorithms, respectively. The difference between monitor units and maximum dose calculated using the three algorithms were 0.5% and 1.61%, respectively. The maximum DD of 7% was observed between MC and TPS results. CONCLUSION: Significant differences were found when the calculation algorithms were compared with MC method in lung tissue, and this difference is not negligible. It is recommended to use of MC-based TPS for the treatment fields including lung tissue.


Assuntos
Pulmão/efeitos da radiação , Modelos Biológicos , Planejamento da Radioterapia Assistida por Computador/instrumentação , Algoritmos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Software
17.
J Xray Sci Technol ; 27(1): 161-175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30614811

RESUMO

OBJECTIVE: To evaluate the dose calculation accuracy in the Prowess Panther treatment planning system (TPS) using the collapsed cone convolution (CCC) algorithm. METHODS: The BEAMnrc Monte Carlo (MC) package was used to predict the dose distribution of photon beams produced by the Oncor® linear accelerator (linac). The MC model of an 18 MV photon beam was verified by measurement using a p-type diode dosimeter. Percent depth dose (PDD) and dose profiles were used for comparison based on three field sizes: 5×5, 10×10, and 20×20cm2. The accuracy of the CCC dosimetry was also evaluated using a plan composed of a simple parallel-opposed field (11×16cm2) in a lung phantom comprised of four tissue simulating media namely, lung, soft tissue, bone and spinal cord. The CCC dose calculation accuracy was evaluated by MC simulation and measurements according to the dose difference and 3D gamma analysis. Gamma analysis was carried out through comparison of the Monte Carlo simulation and the TPS calculated dose. RESULTS: Compared to the dosimetric results measured by the Farmer chamber, the CCC algorithm underestimated dose in the planning target volume (PTV), right lung and lung-tissue interface regions by about -0.11%, -1.6 %, and -2.9%, respectively. Moreover, the CCC algorithm underestimated the dose at the PTV, right lung and lung-tissue interface regions in the order of -0.34%, -0.4% and -3.5%, respectively, when compared to the MC simulation. Gamma analysis results showed that the passing rates within the PTV and heterogeneous region were above 59% and 76%. For the right lung and spinal cord, the passing rates were above 80% for all gamma criteria. CONCLUSIONS: This study demonstrates that the CCC algorithm has potential to calculate dose with sufficient accuracy for 3D conformal radiotherapy within the thorax where a significant amount of tissue heterogeneity exists.


Assuntos
Algoritmos , Pulmão/efeitos da radiação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Método de Monte Carlo , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia Conformacional
18.
Brachytherapy ; 17(6): 1030-1036, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30181054

RESUMO

PURPOSE: The direction modulated brachytherapy (DMBT) magnetic resonance-compatible tandem applicator, made from a tungsten alloy rod, has six symmetric peripheral grooves, designed specifically to enhance intensity modulation capacity through achieving directional radiation dose profiles. In this work, the directional dose distributions of the DMBT tandem were modeled and calculated with the Oncentra Brachy advanced collapsed cone engine (ACE), which was validated against Monte Carlo (MC) calculations. METHODS AND MATERIAL: The prototype 3D tandem applicator model was created for use in the Oncentra Brachy treatment planning system. The 192Ir source was placed inside a DMBT tandem in one and six channels as a single dwell position (DP) per channel with the same index length, as well as 1 DP in a standard tandem. Dose distributions were calculated in a water medium by both ACE and MC and compared. RESULTS: For 1DP/6DP inside the DMBT and 1DP inside the standard tandem, respectively, the mean dose differences were 3.5/3.3% and <2.8% with the range of 0.1%-6.5%/0.2%-5% and 0.1%-5%, between ACE and MC, respectively. CONCLUSIONS: The DMBT tandem is successfully modeled in a commercial treatment planning system. The ACE algorithm is capable of accurately calculating highly directional dose distributions generated by a dense tungsten alloy contained within the DMBT tandem, with agreements achieved within <3.5%.


Assuntos
Braquiterapia/instrumentação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Algoritmos , Braquiterapia/métodos , Humanos , Radioisótopos de Irídio/administração & dosagem , Método de Monte Carlo , Imagens de Fantasmas , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
19.
Brachytherapy ; 17(6): 1037-1044, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30122346

RESUMO

PURPOSE: Dose escalation to rectal tumors leads to higher complete response rates and may thereby enable omission of surgery. Important advantages of endoluminal boosting techniques include the possibility to apply a more selective/localized boost than using external beam radiotherapy. A novel brachytherapy (BT) rectal applicator with lateral shielding was designed to be used with a rectoscope for eye-guided positioning to deliver a dose distribution similar to the one of contact x-ray radiotherapy devices, using commonly available high-dose-rate 192Ir BT sources. METHODS AND MATERIALS: A cylindrical multichannel BT applicator with lateral shielding was designed by Monte Carlo modeling, validated experimentally with film dosimetry and compared with results found in the literature for the Papillon 50 (P50) contact x-ray radiotherapy device regarding rectoscope dimensions, radiation beam shape, dose fall-off, and treatment time. RESULTS: The multichannel applicator designed is able to deliver 30 Gy under 13 min with a 20350 U (5 Ci) source. The use of multiple channels and lateral shielding provide a uniform circular treatment surface with 22 mm in diameter. The resulting dose fall-off is slightly steeper (maximum difference of 5%) than the one generated by the P50 device with the 22 mm applicator. CONCLUSIONS: A novel multichannel rectal applicator for contact radiotherapy with high-dose-rate 192Ir sources that can be integrated with commercially available treatment planning systems was designed to produce a dose distribution similar to the one obtained by the P50 device.


Assuntos
Braquiterapia/instrumentação , Radioisótopos de Irídio/administração & dosagem , Planejamento da Radioterapia Assistida por Computador/instrumentação , Neoplasias Retais/radioterapia , Braquiterapia/métodos , Desenho de Equipamento/métodos , Dosimetria Fotográfica/métodos , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reto/efeitos da radiação
20.
Pediatr Blood Cancer ; 65(12): e27395, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30101560

RESUMO

PURPOSE: This pilot study was done to determine the feasibility and accuracy of University of Florida/National Cancer Institute (UF/NCI) phantoms and Monte Carlo (MC) retrospective dosimetry and had two aims: (1) to determine the anatomic accuracy of UF/NCI phantoms by comparing 3D organ doses in National Wilms Tumor Study (NWTS) patient-matched UF/NCI phantoms to organ doses in corresponding patient-matched CT scans and (2) to compare infield and out-of-field organ dosimetry using two dosimetry methods-standard radiation therapy (RT) treatment planning systems (TPS) and MC dosimetry in these two anatomic models. METHODS: Twenty NWTS patient-matched Digital Imaging and Communications in Medicine (DICOM) files of UF/NCI phantoms and CT scans were imported into the Pinnacle RT TPS. The NWTS RT fields (whole abdomen, flank, whole lung, or a combination) and RT doses (10-45 Gy) were reconstructed in both models. Both TPS and MC dose calculations were performed. For aim 1, the mean doses to the heart, kidney, thyroid gland, testes, and ovaries using TPS and MC in both models were statistically compared. For aim 2, the TPS and MC dosimetry for these organs in both models were statistically compared. RESULTS: For aim 1, there was no significant difference between phantom and CT scan dosimetry for any of the organs using either TPS or MC dosimetry. For aim 2, there was a significant difference between TPS and MC dosimetry for both CT scan and phantoms for all organs. Although the doses for infield organs were similar for both TPS and MC, the doses for near-field and out-of-field organs were consistently higher for 90% to 100% of MC doses; however, the absolute dose difference was small (<1 Gy). CONCLUSIONS: This pilot study has demonstrated that the patient-matched UF/NCI phantoms together with MC dosimetry is an accurate model for performing retrospective 3D dosimetry in large-scale epidemiology studies such as the NWTS.


Assuntos
Neoplasias Renais/radioterapia , Imagens de Fantasmas , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tumor de Wilms/radioterapia , Criança , Pré-Escolar , Estudos de Viabilidade , Feminino , Humanos , Lactente , Masculino , Método de Monte Carlo , Órgãos em Risco/efeitos da radiação , Projetos Piloto , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA