Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(1): e0242721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107356

RESUMO

Considered a serious threat by the Centers for Disease Control and Prevention, multidrug-resistant Enterococcus faecium is an increasing cause of hospital-acquired infection. Here, we provide details on a single-plasmid CRISPR-Cas12a system for generating clean deletions and insertions. Single manipulations were carried out in under 2 weeks, with successful deletions/insertions present in >80% of the clones tested. Using this method, we generated three individual clean deletion mutations in the acpH, treA, and lacL genes and inserted codon-optimized unaG, enabling green fluorescent protein (GFP)-like fluorescence under the control of the trehalase operon. The use of in vivo recombination for plasmid construction kept costs to a minimum. IMPORTANCE Enterococcus faecium is increasingly associated with hard-to-treat antibiotic-resistant infections. The ability to generate clean genomic alterations is the first step in generating a complete mechanistic understanding of how E. faecium acquires pathogenic traits and causes disease. Here, we show that CRISPR-Cas12a can be used to quickly (under 2 weeks) and cheaply delete or insert genes into the E. faecium genome. This substantial improvement over current methods should speed up research on this important opportunistic pathogen.


Assuntos
Sistemas CRISPR-Cas , Enterococcus faecium/genética , Edição de Genes/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterococcus faecium/metabolismo , Edição de Genes/economia , Genoma Bacteriano , Mutagênese Insercional , Plasmídeos/genética , Plasmídeos/metabolismo , Deleção de Sequência
2.
J Microbiol ; 60(1): 18-30, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34964942

RESUMO

We evaluated the Cre-lox and CRISPR-Cas9 systems as marker-recycling tools in Saccharomyces cerevisiae recombinants containing multiple-integrated expression cassettes. As an initial trial, we constructed rDNA-nontranscribed spacer- or Ty4-based multiple integration vectors containing the URA3 marker flanked by the loxP sequence. Integrants harboring multiple copies of tHMG1 and NNV-CP expression cassettes were obtained and subsequently transformed with the Cre plasmid. However, the simultaneous pop-out of the expression cassettes along with the URA3 marker hampered the use of Cre-lox as a marker-recycling tool in multiple integrants. As an alternative, we constructed a set of CRISPR-Cas9-gRNA vectors containing gRNA targeted to auxotrophic marker genes. Transformation of multiple integrants of tHMG1 and NNV-CP cassettes by the Cas9-gRNA vector in the presence of the URA3 (stop) donor DNA fragments generated the Ura- transformants retaining multiple copies of the expression cassettes. CRISPR-Cas9-based inactivation led to the recycling of the other markers, HIS3, LEU2, and TRP1, without loss of expression cassettes in the recombinants containing multiple copies of tHMG1, NNV-CP, and SfBGL1 cassettes, respectively. Reuse of the same selection marker in marker-inactivated S. cerevisiae was validated by multiple integrations of the TrEGL2 cassette into the S. cerevisiae strain expressing SfBGL1. These results demonstrate that introducing stop codons into selection marker genes using the CRISPR-Cas9 system with donor DNA fragments is an efficient strategy for markerrecycling in multiple integrants. In particular, the continual reuse of auxotrophic markers would facilitate the construction of a yeast cell factory containing multiple copies of expression cassettes without antibiotic resistance genes.


Assuntos
Sistemas CRISPR-Cas , Saccharomyces cerevisiae/genética , Marcadores Genéticos , Integrases/genética , Integrases/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Int J Food Microbiol ; 346: 109164, 2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-33813365

RESUMO

The aim of the study was to assess the presence of genes in ESBL-producing E. coli (ESBL-Ec) isolated from retail raw food in Nha Trang, Vietnam. A total of 452 food samples comprising chicken (n = 116), pork (n = 112), fish (n = 112) and shrimp (n = 112) collected between 2015 and 2017 were examined for the prevalence of ESBL-Ec. ESBL-Ec were detected in 46.0% (208/452) of retail food samples, particularly in 66.4% (77/116), 55.4% (62/112), 42.0% (47/112) 19.6% (22/112) of chicken, pork, fish and shrimp, respectively. Sixty-five out of the 208 (31.3%) ESBL-Ec isolates were positive for mcr genes including mcr-1, mcr-3 and both mcr-1 and mcr-3 genes in 56/208 (26.9%), 1/208 (0.5%) and 8/208 (3.9%) isolates, respectively. Particularly, there was higher prevalence of mcr-1 in ESBL-Ec isolates from chicken (53.2%, 41/77) in comparison to shrimp (22.7%, 5/22), pork (11.3%, 7/62) and fish (6.4%, 3/47). mcr-3 gene was detected in co-existence with mcr-1 in ESBL-Ec isolates from shrimp (9.1%, 2/22), pork (8.1%, 5/62) and fish (2.1%, 1/47) but not chicken. The 65 mcr-positive ESBL-Ec (mcr-ESBL-Ec) were colistin-resistant with the MICs of 4-8 µg/mL. All mcr-3 gene-positive isolates belonged to group A, whereas phylogenetic group distribution of isolates harboring only mcr-1 was B1 (44.6%), A (28.6%) and D (26.8%). PFGE analysis showed diverse genotypes, although some isolates demonstrated nearly clonal relationships. S1-PFGE and Southern hybridization illustrated that the mcr-1 and mcr-3 genes were located either on chromosomes or on plasmids. However, the types of mcr genes were harbored on different plasmids with varied sizes of 30-390 kb. Besides, the ESBL genes of CTX-M-1 or CTX-M-9 were also detected to be located on plasmids. Noteworthy, co-location of CTX-M-1 with mcr-1 or mcr-3 genes on the same plasmid was identified. The conjugation experiment indicated that the mcr-1 or mcr-3 was horizontally transferable. All mcr-ESBL-Ec isolates were multidrug resistance (resistance to ≥3 antimicrobial classes). Moreover, ß-Lactamase-encoding genes of the CTX-M-1 (78.5%), CTX-M-9 (21.5%), TEM (61.5%) groups were found in mcr-ESBL-Ec. The astA gene was detected in 27 (41.5%) mcr-ESBL-Ec isolates demonstrating their potential virulence. In conclusion, mcr-1 and mcr-3 genes existed individually or concurrently in ESBL-Ec isolates recovered from retail raw food in Nha Trang city, which might further complicate the antimicrobial-resistant situation in Vietnam, and is a possible health risk for human.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Carne/microbiologia , Alimentos Crus/microbiologia , beta-Lactamases/genética , Animais , Galinhas , Farmacorresistência Bacteriana , Escherichia coli/classificação , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peixes , Contaminação de Alimentos/análise , Contaminação de Alimentos/estatística & dados numéricos , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Plasmídeos/metabolismo , Prevalência , Alimentos Crus/economia , Suínos , Vietnã , beta-Lactamases/metabolismo
4.
Nat Chem Biol ; 16(12): 1427-1433, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32839605

RESUMO

Moving cannabinoid production away from the vagaries of plant extraction and into engineered microbes could provide a consistent, purer, cheaper and environmentally benign source of these important therapeutic molecules, but microbial production faces notable challenges. An alternative to microbes and plants is to remove the complexity of cellular systems by employing enzymatic biosynthesis. Here we design and implement a new cell-free system for cannabinoid production with the following features: (1) only low-cost inputs are needed; (2) only 12 enzymes are employed; (3) the system does not require oxygen and (4) we use a nonnatural enzyme system to reduce ATP requirements that is generally applicable to malonyl-CoA-dependent pathways such as polyketide biosynthesis. The system produces ~0.5 g l-1 cannabigerolic acid (CBGA) or cannabigerovarinic acid (CBGVA) from low-cost inputs, nearly two orders of magnitude higher than yeast-based production. Cell-free systems such as this may provide a new route to reliable cannabinoid production.


Assuntos
Canabinoides/biossíntese , Sistema Livre de Células/metabolismo , Malonil Coenzima A/metabolismo , Engenharia Metabólica/métodos , Policetídeos/metabolismo , Terpenos/metabolismo , Trifosfato de Adenosina/biossíntese , Benzoatos/isolamento & purificação , Benzoatos/metabolismo , Canabinoides/isolamento & purificação , Sistema Livre de Células/química , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Humanos , Cinética , Engenharia Metabólica/economia , Organofosfatos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Policetídeos/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Terpenos/química , Termodinâmica
5.
ACS Synth Biol ; 9(7): 1581-1590, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32525658

RESUMO

Robustness to temperature variation is an important specification in biomolecular circuit design. While the cancellation of parametric temperature dependencies has been shown to improve the temperature robustness of the period in a synthetic oscillator design, the performance of other biomolecular circuit designs in different temperature conditions is relatively unclear. Using a combination of experimental measurements and mathematical models, we assessed the temperature robustness of two biomolecular circuit motifs-a negative feedback loop and a feedforward loop. We found that the measured responses of both the circuits changed with temperature, both in the amplitude and in the transient response. We also found that, in addition to the cancellation of parametric temperature dependencies, certain parameter regimes could facilitate the temperature robustness of the negative feedback loop, although at a performance cost. We discuss these parameter regimes in the context of the measured data for the negative feedback loop. These results should help develop a framework for assessing and designing temperature robustness in biomolecular circuits.


Assuntos
Retroalimentação Fisiológica , Modelos Biológicos , Fator de Transcrição AraC/genética , Escherichia coli/metabolismo , Expressão Gênica , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Temperatura
6.
Nucleic Acids Res ; 48(1): e1, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31612958

RESUMO

Multiplex genetic assays can simultaneously test thousands of genetic variants for a property of interest. However, limitations of existing multiplex assay methods in cultured mammalian cells hinder the breadth, speed and scale of these experiments. Here, we describe a series of improvements that greatly enhance the capabilities of a Bxb1 recombinase-based landing pad system for conducting different types of multiplex genetic assays in various mammalian cell lines. We incorporate the landing pad into a lentiviral vector, easing the process of generating new landing pad cell lines. We also develop several new landing pad versions, including one where the Bxb1 recombinase is expressed from the landing pad itself, improving recombination efficiency more than 2-fold and permitting rapid prototyping of transgenic constructs. Other versions incorporate positive and negative selection markers that enable drug-based enrichment of recombinant cells, enabling the use of larger libraries and reducing costs. A version with dual convergent promoters allows enrichment of recombinant cells independent of transgene expression, permitting the assessment of libraries of transgenes that perturb cell growth and survival. Lastly, we demonstrate these improvements by assessing the effects of a combinatorial library of oncogenes and tumor suppressors on cell growth. Collectively, these advancements make multiplex genetic assays in diverse cultured cell lines easier, cheaper and more effective, facilitating future studies probing how proteins impact cell function, using transgenic variant libraries tested individually or in combination.


Assuntos
Bioensaio , Biblioteca Gênica , Plasmídeos/química , Transgenes , Animais , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HT29 , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Células NIH 3T3 , Oncogenes , Plasmídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinases/genética , Recombinases/metabolismo , Recombinação Genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína Vermelha Fluorescente
7.
Sci Rep ; 9(1): 19624, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873110

RESUMO

Antimicrobial resistance is rapidly expanding, in a large part due to mobile genetic elements. We screened 94 fecal fluoroquinolone-resistant Escherichia coli isolates from Nigeria for six plasmid-mediated quinolone resistance (PMQR) genes. Sixteen isolates harbored at least one of the PMQR genes and four were positive for aac-6-Ib-cr. In one strain, aac-6-Ib-cr was mapped to a 125 Kb self-transmissible IncFII plasmid, pMB2, which also bears blaCTX-M-15, seven other functional resistance genes and multiple resistance pseudogenes. Laboratory strains carrying pMB2 grew faster than isogenic strains lacking the plasmid in both rich and minimal media. We excised a 32 Kb fragment containing transporter genes and several open-reading frames of unknown function. The resulting 93 Kb mini-plasmid conferred slower growth rates and lower fitness than wildtype pMB2. Trans-complementing the deletion with the cloned sitABCD genes confirmed that they accounted for the growth advantage conferred by pMB2 in iron-depleted media. pMB2 is a large plasmid with a flexible resistance region that contains loci that can account for evolutionary success in the absence of antimicrobials. Ancillary functions conferred by resistance plasmids can mediate their retention and transmissibility, worsening the trajectory for antimicrobial resistance and potentially circumventing efforts to contain resistance through restricted use.


Assuntos
Conjugação Genética , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Plasmídeos/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fluoroquinolonas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Nigéria , Plasmídeos/metabolismo
8.
ACS Synth Biol ; 8(9): 2163-2173, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31393707

RESUMO

RNA-based devices controlling gene expression bear great promise for synthetic biology, as they offer many advantages such as short response times and light metabolic burden compared to protein-circuits. However, little work has been done regarding their integration to multilevel regulated circuits. In this work, we combined a variety of small transcriptional activator RNAs (STARs) and toehold switches to build highly effective AND-gates. To characterize the components and their dynamic range, we used an Escherichia coli (E. coli) cell-free transcription-translation (TX-TL) system dispensed via nanoliter droplets. We analyzed a prototype gate in vitro as well as in silico, employing parametrized ordinary differential equations (ODEs), for which parameters were inferred via parallel tempering, a Markov chain Monte Carlo (MCMC) method. On the basis of this analysis, we created nine additional AND-gates and tested them in vitro. The functionality of the gates was found to be highly dependent on the concentration of the activating RNA for either the STAR or the toehold switch. All gates were successfully implemented in vivo, offering a dynamic range comparable to the level of protein circuits. This study shows the potential of a rapid prototyping approach for RNA circuit design, using cell-free systems in combination with a model prediction.


Assuntos
Escherichia coli/metabolismo , RNA/metabolismo , Biologia Sintética/métodos , Sistema Livre de Células , Escherichia coli/genética , Modelos Teóricos , Método de Monte Carlo , Plasmídeos/genética , Plasmídeos/metabolismo
9.
J Biol Chem ; 293(44): 17291-17305, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30190322

RESUMO

RNA-guided, engineered nucleases derived from the prokaryotic adaptive immune system CRISPR-Cas represent a powerful platform for gene deletion and editing. When used as a therapeutic approach, direct delivery of Cas9 protein and single-guide RNA (sgRNA) could circumvent the safety issues associated with plasmid delivery and therefore represents an attractive tool for precision genome engineering. Gene deletion or editing in adipose tissue to enhance its energy expenditure, fatty acid oxidation, and secretion of bioactive factors through a "browning" process presents a potential therapeutic strategy to alleviate metabolic disease. Here, we developed "CRISPR-delivery particles," denoted CriPs, composed of nano-size complexes of Cas9 protein and sgRNA that are coated with an amphipathic peptide called Endo-Porter that mediates entry into cells. Efficient CRISPR-Cas9-mediated gene deletion of ectopically expressed GFP by CriPs was achieved in multiple cell types, including a macrophage cell line, primary macrophages, and primary pre-adipocytes. Significant GFP loss was also observed in peritoneal exudate cells with minimum systemic toxicity in GFP-expressing mice following intraperitoneal injection of CriPs containing Gfp-targeting sgRNA. Furthermore, disruption of a nuclear co-repressor of catabolism, the Nrip1 gene, in white adipocytes by CriPs enhanced adipocyte browning with a marked increase of uncoupling protein 1 (UCP1) expression. Of note, the CriP-mediated Nrip1 deletion did not produce detectable off-target effects. We conclude that CriPs offer an effective Cas9 and sgRNA delivery system for ablating targeted gene products in cultured cells and in vivo, providing a potential therapeutic strategy for metabolic disease.


Assuntos
Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Marcação de Genes/métodos , Proteína 1 de Interação com Receptor Nuclear/genética , Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Genes Reporter , Humanos , Camundongos Endogâmicos C57BL , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
10.
Integr Biol (Camb) ; 10(9): 502-515, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30101242

RESUMO

In bacterial type 3 secretion, substrate proteins are actively transported from the bacterial cytoplasm into the host cell cytoplasm by a large membrane-embedded machinery called the injectisome. Injectisomes transport secretion substrates in response to specific environmental signals, but the molecular details by which the cytosolic secretion substrates are selected and transported through the type 3 secretion pathway remain unclear. Secretion activity and substrate selectivity are thought to be controlled by a sorting platform consisting of the proteins SctK, SctQ, SctL, and SctN, which together localize to the cytoplasmic side of membrane-embedded injectisomes. However, recent work revealed that sorting platform proteins additionally exhibit substantial cytosolic populations and that SctQ reversibly binds to and dissociates from the cytoplasmic side of membrane-embedded injectisomes. Based on these observations, we hypothesized that dynamic molecular turnover at the injectisome and cytosolic assembly among sorting platform proteins is a critical regulatory component of type 3 secretion. To determine whether sorting platform complexes exist in the cytosol, we measured the diffusive properties of the two central sorting platform proteins, SctQ and SctL, using live cell high-throughput 3D single-molecule tracking microscopy. Single-molecule trajectories, measured in wild-type and mutant Yersinia enterocolitica cells, reveal that both SctQ and SctL exist in several distinct diffusive states in the cytosol, indicating that these proteins form stable homo- and hetero-oligomeric complexes in their native environment. Our findings provide the first diffusive state-resolved insights into the dynamic regulatory network that interfaces stationary membrane-embedded injectisomes with the soluble cytosolic components of the type 3 secretion system.


Assuntos
Proteínas de Bactérias/metabolismo , Citosol/metabolismo , Imagem Individual de Molécula/instrumentação , Imagem Individual de Molécula/métodos , Yersinia enterocolitica/metabolismo , Algoritmos , Membrana Celular/metabolismo , Flagelos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência , Método de Monte Carlo , Plasmídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Especificidade por Substrato , Virulência
11.
Nat Commun ; 9(1): 1457, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654285

RESUMO

Translating heterologous proteins places significant burden on host cells, consuming expression resources leading to slower cell growth and productivity. Yet predicting the cost of protein production for any given gene is a major challenge, as multiple processes and factors combine to determine translation efficiency. To enable prediction of the cost of gene expression in bacteria, we describe here a standard cell-free lysate assay that provides a relative measure of resource consumption when a protein coding sequence is expressed. These lysate measurements can then be used with a computational model of translation to predict the in vivo burden placed on growing E. coli cells for a variety of proteins of different functions and lengths. Using this approach, we can predict the burden of expressing multigene operons of different designs and differentiate between the fraction of burden related to gene expression compared to action of a metabolic pathway.


Assuntos
Sistema Livre de Células , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Simulação por Computador , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Biblioteca Gênica , Modelos Genéticos , Óperon , Plasmídeos/metabolismo , Biossíntese de Proteínas , Proteômica , RNA Mensageiro/metabolismo , Software , beta Caroteno/metabolismo
12.
J Food Drug Anal ; 26(2): 869-878, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29567259

RESUMO

The stability and bio-distribution of genes or drug complexes with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, Pluronic F-68) polymeric micelles (PM) are essential for an effective nanosized PM delivery system. We used Förster resonance energy transfer (FRET) pairs with PM and measured the FRET ratio to assess the stability of PM in vitro and in vivo on the cornea. The FRET ratio reached a plateau at 0.8 with 3% PM. Differential scanning calorimetry measurement confirmed the complex formation of FRET pairs with PM. Confocal imaging with the fluorophores fluorescein isothiocyanate isomer I (FITC) and rhodamine B base (RhB) also showed the occurrence of FRET pairs in vitro. The fluorophores were mixed with 3% PM solution or the FITC-labeled PEO-PPO-PEO polymers (FITC-P) were mixed with RhB-labeled plasmids (RhB-DNA). In addition, the in vitro corneal permeation of FRET pair complexes with PM reached a 0.8 FRET ratio. One hour after eye drop administration, FRET pairs colocalized in the cytoplasm, and surrounded and entered the nuclei of cells in the cornea, and the polymers were located in the corneal epithelial layers, as detected through anti-PEG immunohistochemistry. Furthermore, fluorescence colocalization in the cytoplasm and cell nucleus of the corneal epithelium was confirmed in tissues where RhB or RhB-DNA complexed with FITC-P was found to accumulate. We demonstrate that at a concentration of 3%, PM can encapsulate FRET pairs or RhB-DNA and retain their integrity within the cornea 1 h after administration, suggesting the feasibility and stability of PEO-PPO-PEO polymers as a vehicle for drug delivery.


Assuntos
Córnea/química , Sistemas de Liberação de Medicamentos/métodos , Soluções Oftálmicas/química , Plasmídeos/química , Polietilenoglicóis/química , Propilenoglicóis/química , Animais , Córnea/efeitos dos fármacos , Córnea/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/instrumentação , Transferência Ressonante de Energia de Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Soluções Oftálmicas/metabolismo , Soluções Oftálmicas/farmacologia , Plasmídeos/metabolismo , Polietilenoglicóis/metabolismo , Propilenoglicóis/metabolismo
13.
Microbiol Immunol ; 61(12): 554-557, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29052266

RESUMO

In this study, the presence of the mcr-1 gene in Escherichia coli from retail meat in Japan was investigated. Nine E. coli isolates (eight from chickens and one from pork) carried the mcr-1 gene on the plasmid. In six isolates from domestic chickens, mcr-1 was located on the IncI2 plasmid, which is approximately 60 kb in size. In the remaining three isolates from imported chicken and pork, mcr-1 was located on the IncX4 plasmid (30 kb).


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Carne/microbiologia , Animais , Galinhas , Escherichia coli/classificação , Proteínas de Escherichia coli/metabolismo , Contaminação de Alimentos/análise , Contaminação de Alimentos/economia , Contaminação de Alimentos/estatística & dados numéricos , Japão , Carne/economia , Plasmídeos/genética , Plasmídeos/metabolismo , Suínos
14.
Microbiol Spectr ; 5(5)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28944751

RESUMO

Plasmids mediate the horizontal transmission of genetic information between bacteria, facilitating their adaptation to multiple environmental conditions. An especially important example of the ability of plasmids to catalyze bacterial adaptation and evolution is their instrumental role in the global spread of antibiotic resistance, which constitutes a major threat to public health. Plasmids provide bacteria with new adaptive tools, but they also entail a metabolic burden that, in the absence of selection for plasmid-encoded traits, reduces the competitiveness of the plasmid-carrying clone. Although this fitness reduction can be alleviated over time through compensatory evolution, the initial cost associated with plasmid carriage is the main constraint on the vertical and horizontal replication of these genetic elements. The fitness effects of plasmids therefore have a crucial influence on their ability to associate with new bacterial hosts and consequently on the evolution of plasmid-mediated antibiotic resistance. However, the molecular mechanisms underlying plasmid fitness cost remain poorly understood. Here, we analyze the literature in the field and examine the potential fitness effects produced by plasmids throughout their life cycle in the host bacterium. We also explore the various mechanisms evolved by plasmids and bacteria to minimize the cost entailed by these mobile genetic elements. Finally, we discuss potential future research directions in the field.


Assuntos
Bactérias/genética , Plasmídeos/genética , Adaptação Fisiológica , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Evolução Biológica , Transferência Genética Horizontal , Plasmídeos/metabolismo
15.
Emerg Infect Dis ; 23(9): 1574-1576, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28820386
16.
Plasmid ; 91: 96-104, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28461122

RESUMO

Some plasmids can be transferred by conjugation to other bacterial hosts. But almost half of the plasmids are non-transmissible. These plasmid types can only be transmitted to the daughter cells of their host after bacterial fission. Previous studies suggest that non-transmissible plasmids become extinct in the absence of selection of their encoded traits, as plasmid-free bacteria are more competitive. Here, we aim to identify mechanisms that enable non-transmissible plasmids to persist, even if they are not beneficial. For this purpose, an individual-based model for plasmid population dynamics was set up and carefully tested for structural consistency and plausibility. Our results demonstrate that non-transmissible plasmids can be stably maintained in a population, even if they impose a substantial burden on their host cells growth. A prerequisite is the co-occurrence of an incompatible and costly conjugative plasmid type, which indirectly facilitates the preservation of the non-transmissible type. We suggest that this constellation might be considered as a potential mechanism maintaining plasmids and associated antibiotic resistances. It should be investigated in upcoming laboratory experiments.


Assuntos
Bactérias/genética , Conjugação Genética , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Modelos Estatísticos , Plasmídeos/química , Bactérias/metabolismo , Simulação por Computador , Aptidão Genética , Plasmídeos/metabolismo , Seleção Genética , Fatores de Tempo
17.
Infect Genet Evol ; 51: 211-218, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28404482

RESUMO

Vibrio parahaemolyticus is a causative agent of acute hapatopancreatic necrosis syndrome (AHPNS) which causes early mortality in white shrimp. Emergence of AHPNS has caused tremendous economic loss for aquaculture industry particularly in Asia since 2010. Previous studies reported that strains causing AHPNS harbor a 69-kb plasmid with possession of virulence genes, pirA and pirB. However, genetic variation of the 69-kb plasmid among AHPNS related strains has not been investigated. This study aimed to analyze genetic composition and diversity of the 69-kb plasmid in strains isolated from shrimps affected by AHPNS. Plasmids recovered from V. parahaemolyticus strain VPE61 which represented typical AHPNS pathogenicity, strain VP2HP which did not represent AHPNS pathogenicity but was isolated from AHPNS affected shrimp and other AHPNS V. parahaemolyticus isolates in Genbank were investigated. Protein coding genes of the 69-kb plasmid from the strain VPE61 were identical to that of AHPNS strain from Vietnam except the inverted complement 3.4-kb transposon covering pirA and pirB. The strain VP2HP possessed remarkable large 183-kb plasmid which shared similar protein coding genes to those of the 69-kb plasmid from strain VPE61. However, the 3.4-kb transposon covering pirA and pirB was absent from the 183-kb plasmid in strain VP2HP. A number of protein coding genes from the 183-kb plasmid were also detected in other AHPNS strains. In summary, this study identified a novel 183-kb plasmid that is related to AHPNS causing strains. Homologous recombination of the 69-kb AHPNS plasmid and other naturally occurring plasmids together with loss and gain of AHPNS virulence genes in V. parahaemolyticus were observed. The outcome of this research enables understanding of plasmid dynamics that possibly affect variable degrees of AHPNS pathogenicity.


Assuntos
Proteínas de Bactérias/genética , Hepatopâncreas/virologia , Penaeidae/microbiologia , Plasmídeos/química , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidade , Animais , Aquicultura/economia , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Variação Genética , Hepatopâncreas/patologia , Filogenia , Plasmídeos/metabolismo , Vibrio parahaemolyticus/classificação , Vietnã , Virulência
18.
Mol Ther ; 25(7): 1606-1615, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28236576

RESUMO

Neovascular age-related macular degeneration (AMD) is treated with anti-VEGF intravitreal injections, which can cause geographic atrophy, infection, and retinal fibrosis. To minimize these toxicities, we developed a nanoparticle delivery system for recombinant Flt23k intraceptor plasmid (RGD.Flt23k.NP) to suppress VEGF intracellularly within choroidal neovascular (CNV) lesions in a laser-induced CNV mouse model through intravenous administration. In the current study, we examined the efficacy and safety of RGD.Flt23k.NP in mice. The effect of various doses was determined using fluorescein angiography and optical coherence tomography to evaluate CNV leakage and volume. Efficacy was determined by the rate of inhibition of CNV volume at 2 weeks post-treatment. RGD.Flt23k.NP had peak efficacy at a dose range of 30-60 µg pFlt23k/mouse. Using the lower dose (30 µg pFlt23k/mouse), RGD.Flt23k.NP safety was determined both in single-dose groups and in repeat-dose (three times) groups by measuring body weight, organ weight, hemoglobin levels, complement C3 levels, and histological changes in vital organs. Neither toxicity nor inflammation from RGD.Flt23k.NP was detected. No side effect was detected on visual function. Thus, systemic RGD.Flt23k.NP may be an alternative to standard intravitreal anti-VEGF therapy for the treatment of neovascular AMD.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Neovascularização de Coroide/terapia , Portadores de Fármacos , Degeneração Macular/terapia , Plasmídeos/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/química , Animais , Corioide/irrigação sanguínea , Corioide/metabolismo , Corioide/patologia , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Complemento C3/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Regulação da Expressão Gênica , Hemoglobinas/metabolismo , Humanos , Injeções Intravenosas , Injeções Intravítreas , Lasers , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/química , Plasmídeos/química , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 599-606, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770932

RESUMO

Chitosan nanoparticles modified with 10 and 30% urocanic acid (CUA) via carbodiimide crosslinking were examined for an efficient gene delivery carrier. The CUA gene carrier was characterized by FTIR, TEM, SEM and the in vitro transfection efficiency CUA polyplex was tested with HeLa and 3T3 cells. The loading efficiency of CUA complexes with DNA was assessed at different N/P ratio of 1, 2, 4, 6, 8, and 10. The DNA loading efficiency was found be to >85% for chitosan, CUA10 and CUA30% and the DNA protection ability of CUA10 and CUA30 nanoparticle complexes was confirmed upon incubation with NheI and HindIII. The cell toxicity and cell viability results have supported the non-toxic nature of CUA10 and CUA30 nanoparticles. In vitro transfection efficiency of CUA10 and CUA30 polyplex was tested for EGFP expression in 3T3 and HeLa cells and a relative maximum % transfection of about 10% was confirmed by CUA10 and CUA30 after 96h transfection. The feasibility and biocompatibility of CUA gene carrier in transgenic chickens was also demonstrated. The in vitro transfection and in vivo embryonic viability studies further confirmed the CUA as promising gene carrier because of the improved biocompatibility and DNA protection ability.


Assuntos
Quitosana/química , Técnicas de Transferência de Genes , Ácido Urocânico/química , Células 3T3 , Animais , Animais Geneticamente Modificados , Morte Celular , Sobrevivência Celular , Embrião de Galinha , DNA/metabolismo , Endonucleases/metabolismo , Células HeLa , Humanos , Camundongos , Nanopartículas/química , Ninidrina/química , Tamanho da Partícula , Plasmídeos/metabolismo , Mapeamento por Restrição , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Transfecção
20.
Artigo em Inglês | MEDLINE | ID: mdl-27777628

RESUMO

BACKGROUND: Chromatin proteins control gene activity in a concerted manner. We developed a high-throughput assay to study the effects of the local chromatin environment on the regulatory activity of a protein of interest. The assay combines a previously reported multiplexing strategy based on barcoded randomly integrated reporters with Gal4-mediated tethering. We applied the assay to Drosophila heterochromatin protein 1a (HP1a), which is mostly known as a repressive protein but has also been linked to transcriptional activation. RESULTS: Recruitment to over 1000 genomic locations revealed that HP1a is a potent repressor able to silence even highly expressing reporter genes. However, the local chromatin context can modulate HP1a function. In pericentromeric regions, HP1a-induced repression was enhanced by twofold. In regions marked by a H3K36me3-rich chromatin signature, HP1a-dependent silencing was significantly decreased. We found no evidence for an activating function of HP1a in our experimental system. Furthermore, we did not observe stable transmission of repression over mitotic divisions after loss of targeted HP1a. CONCLUSIONS: The multiplexed tethered reporter assay should be applicable to a large number of chromatin proteins and will be a useful tool to dissect combinatorial regulatory interactions in chromatin.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Animais , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Inativação Gênica , Histonas/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA