Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 362: 142605, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876327

RESUMO

Owing to growing concerns about the adverse effects of phthalate plasticizers, non-phthalate plasticizers are being increasingly used as their replacement. However, information on the residual environmental concentrations and ecological risks posed by these plasticizers is limited. In this study, we analyzed the environmental contamination of 11 phthalates and 5 non-phthalate plasticizers in Class A and B rivers in Japan. In the considered river water samples, phthalates and non-phthalates were detected in the following order of detection frequency: phthalates (DEHP > DMP > DMEP > BBP > DNPP > DNP > DEEP > DBEP = DNOP) and non-phthalates (ATBC > DEHS > DEHA > TOTM = DIBA). Phthalate plasticizers were the most abundant and included DEHP (157-859 ng/L), DMP (

Assuntos
Monitoramento Ambiental , Estuários , Ácidos Ftálicos , Plastificantes , Rios , Poluentes Químicos da Água , Plastificantes/análise , Japão , Rios/química , Medição de Risco , Poluentes Químicos da Água/análise , Ácidos Ftálicos/análise
2.
Sci Total Environ ; 918: 170501, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38307289

RESUMO

Bio-based fertilizers (BBFs) produced from organic waste have the potential to reduce societal dependence on limited and energy-intensive mineral fertilizers. BBFs, thereby, contribute to a circular economy for fertilizers. However, BBFs can contain plastic fragments and hazardous additives such as phthalate plasticizers, which could constitute a risk for agricultural soils and the environment. This study assessed the exposure associated with plastic and phthalates in BBFs from three types of organic wastes: agricultural and food industry waste (AgriFoodInduWaste), sewage sludge (SewSludge), and biowaste (i.e., garden, park, food and kitchen waste). The wastes were associated with various treatments like drying, anaerobic digestion, and vermicomposting. The number of microplastics (0.045-5 mm) increased from AgriFoodInduWaste-BBFs (15-258 particles g-1), to SewSludge-BBFs (59-1456 particles g-1) and then to Biowaste-BBFs (828-2912 particles g-1). Biowaste-BBFs mostly contained packaging plastics (e.g., polyethylene terephthalate), with the mass of plastic (>10 g kg-1) exceeding the EU threshold (3 g kg-1, plastics >2 mm). Other BBFs mostly contained small (< 1 mm) non-packaging plastics in amounts below the EU limit. The calculated numbers of microplastics entering agricultural soils via BBF application was high (107-1010 microplastics ha-1y-1), but the mass of plastic released from AgriFoodInduWaste-BBFs and SewSludge-BBFs was limited (< 1 and <7 kg ha-1y-1) compared to Biowaste-BBFs (95-156 kg ha-1y-1). The concentrations of di(2-ethylhexyl)phthalate (DEHP; < 2.5 mg kg-1) and phthalate transformation products (< 8 mg kg-1) were low (< benchmark of 50 mg kg-1 for DEHP), attributable to both the current phase-out of DEHP as well as phthalate degradation during waste treatment. The Biowaste-BBF exposed to vermicomposting indicated that worms accumulated phthalate transformation products (4 mg kg-1). These results are overall positive for the implementation of the studied AgriFoodInduWaste-BBFs and SewSludge-BBFs. However, the safe use of the studied Biowaste-BBFs requires reducing plastic use and improving sorting methods to minimize plastic contamination, in order to protect agricultural soils and reduce the environmental impact of Biowaste-BBFs.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Plastificantes/análise , Plásticos , Fertilizantes , Microplásticos , Solo , Esgotos , Dibutilftalato
3.
J Hazard Mater ; 466: 133625, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295727

RESUMO

Phthalate esters (PAEs), the most commonly produced and used plasticizers, are widely used in plastic products and agroecosystems, posing risks to agricultural products and human health. However, current research on PAE pollution characteristics in agricultural soils in China is not comprehensive; affecting factors and relationships with microplastics and plasticizer organophosphate esters have not been sufficiently considered. In this study, farmland soil samples were collected with field questionnaires on a national scale across mainland China. The results showed that the detection rate of PAEs was 100% and the Σ16PAEs concentrations were 23.5 - 903 µg/kg. The level of PAEs was highest in the greenhouse, and significantly higher than that in mulched farmland (p < 0.05). The PAE concentration in northwestern China was the lowest among different physical geographic zones. PAEs in farmlands posed a low cancer risk to Chinese people. PAE pollution in farmlands was significantly (p < 0.05) affected by agronomic measures (such as disposal method), environmental factors, and socioeconomic factors. Overall, PAEs were significantly and positively correlated (p < 0.05) with organophosphate esters but not with microplastics. This study aims to provide scientific data for relevant prevention and control policies, as well as actionable recommendations for pollution reduction.


Assuntos
Dietilexilftalato , Microplásticos , Ácidos Ftálicos , Plastificantes , Poluentes do Solo , China , Dibutilftalato , Ésteres , Organofosfatos , Plastificantes/análise , Plásticos , Solo , Poluentes do Solo/análise , Fazendas
4.
Chemosphere ; 336: 139273, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343639

RESUMO

Due to their uncontrolled use, plastics has become an environmental concern, not only for their varying dimension but also for the potential release of substances such as phthalates (PAEs) and non-phthalates (NPPs) into the water. Phthalates are the most common plasticizers of concern, but non-phthalate plasticizers such as di (2-ethylhexyl) terephthalate (DEHT) have also been lately found in the marine environment. Mytilus galloprovincialis is a well-known bioindicator of aquatic environments due to its ability to accumulate a wide variety of xenobiotics, including plasticizers. Hence, aim of this study was to evaluate the potential bioaccumulation and effects of the NPP DEHT on M. galloprovincialis. To this purpose, following exposure to DEHT at 1 mg/l (DEHT1) and 100 mg/l (DEHT100), its accumulation in tissues and its effects on total lipids and fatty acid (FA) composition, protein content, cell viability, ability to recover volume and changes in biomarkers of oxidative stress were assessed. Mussels were able to bioaccumulate DEHT in their tissues, with a statistically significant increase compared to the control organisms. Differences in FA composition were observed after exposure, since C16:0, C18:0, C20:5ω-3 and C22:6ω-3 were significantly decreased from control to exposed groups. As a result, total SFA, MUFA and PUFA were affected in DEHT-exposed groups. Also, total protein varied following DEHT exposure, and significantly decreased in the DEHT100-group. Considering the physiological responses, both DEHT-exposed groups lost their ability to return to the original volume of digestive gland (DG) cells. On the other hand, oxidative biomarkers in the gills and DG were not significantly affected by the DEHT exposure. Overall, this study showed for the first time that DEHT exposure differentially affect mussels, in their lipid and protein metabolism, as well as cellular parameters.


Assuntos
Mytilus , Plastificantes , Animais , Plastificantes/análise , Mytilus/metabolismo , Ácidos Graxos , Biomarcadores Ambientais
5.
Environ Sci Pollut Res Int ; 30(13): 36311-36324, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36547830

RESUMO

It has been suggested that the seafloor may be a sink for the plastic debris that enters the ocean. Therefore, the collection of data in the seafloor sediments regarding the co-presence of microplastics (MPs) and contaminants associated to plastic is considered a relevant topic. However, the number of studies addressing their possible correlation in this environment is still limited, and very little is known about the mechanisms that determine the release of plastic additives from plastic items. Starting from this basis, we investigated the presence of MPs and eleven phthalic acid esters (PAEs) in the continental shelf offshore Barcelona. Following a shelf-slope continuum approach, we sampled sediments from five stations, and we performed analysis by means of infrared micro spectroscopy (µFTIR) and liquid chromatography tandem mass spectrometry (LC-MS/MS). MPs were found to range from 62.0 to 931.1 items/kg d.w. with maximum concentration in the submarine canyon Besòs and at the highest depth. Moreover, different trends in the size distribution of fibers and non-fibers were observed, indicating the occurrence of a size dependent selection mechanism during transport and accumulation. PAEs resulted comprised between 1.35 to 2.41 mg/kg with Di(2-ethylhexyl)phthalate (DEHP) the most abundant congeners (1.04 mg/kg). Statistical analysis revealed no correlation between the Σ11PAEs and the total MPs concentration, but correlation between DEHP and fibers (σ = 0.667, p = 0,037), that resulted both correlated to the distance to the coast (ρ = 0.941 with p = 0,008 and ρ = 0.673 with p = 0.035, respectively).


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Poluentes Químicos da Água , Plastificantes/análise , Plásticos/análise , Dietilexilftalato/análise , Ácidos Ftálicos/análise , Microplásticos/análise , Cromatografia Líquida , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem , Ésteres/análise , Dibutilftalato/análise
6.
Chemosphere ; 308(Pt 3): 136452, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116630

RESUMO

Community/industrial wastewater is the prime source of anthropogenic chemicals, its treatment is often a daunting task and unaffordable for many countries. Emerging Contaminants (ECs) have been drained into wastewater after continuous use/misuse and Conventional treatments in STPs do not remove them completely. ECs including antimicrobial agents, synthetic musks, Benzotriazole UV stabilizers (BUVSs), plasticizers, and preservatives are frequently reported in environment, and cause health effects to non-target organisms. Monitoring of ECs is important to understand their status in aquatic environment. Hence, it was aimed to monitor ECs (n = 21) from 11 STPs in Tamil Nadu, India. The detection frequency of most of these analytes was >90%. Antimicrobials ranged from 247 to 22,714 ng/L and 11-14,369 ng/L in influents and effluents, respectively. The synthetic musks were in the order of Tonalide > Galaxolide > Musk Ketone. BUVSs ranged from 4 to 1632 ng/L (influents) and < LOD to 29,853 ng/L (effluents). Concentration of phthalates in influents and effluents were < LOD - 11,311 ng/L and < LOD - 17,618 ng/L, respectively. Parabens were found in the order of Prophyl > Methyl > Ethyl > Butyl in influents and Methyl > Prophyl > Butyl > Ethyl in effluents. Mass loads of ECs through STPs were found as antimicrobials > plasticizers > fragrances > BUVSs > Preservatives. This study reveals increasing usage of ECs and inadequate treatment processes at STPs in India. Also helps to adopt suitable treatment processes to remove ECs from wastewater and to reuse the wastewater.


Assuntos
Anti-Infecciosos , Perfumes , Poluentes Químicos da Água , Monitoramento Ambiental , Índia , Odorantes , Parabenos , Perfumes/análise , Plastificantes/análise , Conservantes Farmacêuticos , Medição de Risco , Esgotos/química , Águas Residuárias , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 845: 157309, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839888

RESUMO

Wastewater-based epidemiology (WBE) can be a useful complementary approach to assess human exposure to potentially harmful chemicals, including those from personal care and household products. In this work, a fully automated multiresidue method, based on on-line solid-phase extraction liquid chromatography - tandem mass spectrometry, was developed for the determination of 27 biomarkers of human exposure to selected chemicals from personal care and household products, including parabens, UV filters, phthalates and alternative plasticizers, phosphorous flame retardants/plasticizers (PFRs), and bisphenols. These biomarkers include both the parent compounds and their human metabolites. In addition, two oxidative stress biomarkers, 8-epi-prostaglandin F2α and 4-hydroxy nonenal mercapturic acid, were also considered in the study. The method was carefully optimized to tackle the challenges of analyzing compounds with different physico-chemical properties in a highly complex raw wastewater matrix, while model experiments were performed to investigate filtration losses and analyte stability. The applicability of the developed method was tested by analyzing raw wastewater from four European cities: Antwerp, Brussels (Belgium), Girona (Spain), and Zagreb (Croatia). Twenty-one biomarkers (10 parent compounds and 11 metabolites) were detected in all analyzed wastewater samples. The parent compounds with the highest mass loads were PFRs, parabens, and bisphenol S, while phthalate monoesters were the most prominent metabolites. The mass loads of most compounds were quite similar across cities, but geographic differences were observed for some biomarkers, such as metabolites of phthalates and alternative plasticizers. Exposure was then assessed for seven substances for which quantitative urinary excretion data are known. Our results indicate that safe reference values were exceeded for several contaminants, including butylated phthalates, bisphenol A, and tris(2-butoxyethyl) phosphate, particularly for toddlers. With this relatively simple method, which requires less sample manipulation, it is possible to promptly identify and monitor exposure to harmful chemicals at the population level using the WBE approach.


Assuntos
Plastificantes , Águas Residuárias , Biomarcadores/urina , Cromatografia Líquida , Produtos Domésticos/análise , Humanos , Parabenos/análise , Plastificantes/análise , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Águas Residuárias/química
8.
Indoor Air ; 32(7): e13071, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35904395

RESUMO

Settled house dust (SHD) is a reservoir for various contaminants, including endocrine-disrupting chemicals (EDCs), trace metals, and house dust mite allergens. This study aimed to characterize various chemical and biological contaminants in SHD and identify determinants governing the indoor contaminants. In total, 106 SHD samples were collected from 106 houses in Seoul and Gyeonggi Province, Korea, in 2021. Bedding dust samples were collected from 30 of these 106 houses. All participants completed a questionnaire comprised of housing and lifestyle-related factors. The samples were analyzed for 18 organophosphate flame retardants (OPFRs), 16 phthalates, five alternative plasticizers (APs), seven trace metals, and two house dust mite allergens (Dermatophagoides farinae type 1 [Der f1] and Dermatophagoides pteronyssinus type 1 [Der p1]). A multiple regression analysis was conducted to identify the determinants governing the concentrations and profiles of various contaminants. OPFRs, phthalates, APs, and trace metals were detected in all SHD samples, indicating ubiquitous contamination in indoor environments. Among the three EDC groups, APs were detected at the highest concentrations (geometric mean [GM] (geometric standard deviation, [GSD]): 1452 (1.6) µg/g in total), followed by phthalates (GM (GSD): 676 (1.4) µg/g in total) and OPFRs (GM (GSD): 10 (1.4) µg/g in total). Der f1 was detected in all bedding dust samples with significantly higher levels than Der p1 (GM (GSD): 0.1 (1.8) µg/g vs. 1.4 × 10-3 (2.3) µg/g). The concentrations of OPFRs, plasticizers, and trace metals in SHD were significantly associated with the type and number of electronic appliances and combustion activities. Der f1 was significantly associated with the number of occupants and water penetration. Ventilation, vacuum cleaning, and wet cleaning or dry mopping significantly reduced the levels of most contaminants in SHD. As residents are persistently exposed to a wide array of pollutants, comprehensive and adequate measures are required to prevent potential exposures.


Assuntos
Poluição do Ar em Ambientes Fechados , Retardadores de Chama , Poluição do Ar em Ambientes Fechados/análise , Alérgenos/análise , Animais , Antígenos de Dermatophagoides/análise , Poeira/análise , Retardadores de Chama/análise , Humanos , Organofosfatos/análise , Plastificantes/análise , Pyroglyphidae
9.
Environ Res ; 210: 112983, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35192803

RESUMO

A novel analytical method for the monitoring of four newly identified plasticizers, namely di-propylene glycol dibenzoate (DiPGDB), tri-n-butyl trimellitate (TBTM), isooctyl 2-phenoxyethyl terephthalate (IOPhET) and bis 3,5,5-trimethylhexyl phosphate (TMHPh), in handwipes based on pulverization was developed and in-house validated. In total, 164 handwipe samples (paired with house dust and human urine) were collected during winter (n = 82) and summer (n = 82) 2019 from adults and toddlers living in Flanders, Belgium. Method LOQs ranged from 1 to 200 ng/g. The ranges of Σplasticizers were 70-5400 ng/g for winter and 70-3720 ng/g for summer. The detection frequencies were 39% for DiPGDB, 27% for TBTM and <5% for IOPhET and TMHPh in winter samples and 33% for DiPGDB, 21% for TBTM and <10% for IOPhET and TMHPh in summer ones. The dominant compound in handwipes was DiPGDB, with mean contributions of 74% and 83% for winter and summer, followed by TBTM (24% and 9.2%), TMHPh (1.8% and 8.1%) and IOPhET (<1% and <1%). Σplasticizers concentrations were positively correlated in summer with the use of sanitizer (r = 0.375, p < 0.05) and negatively correlated in winter with the use of personal care products (r = -0.349, p < 0.05). DiPGDB was found positively correlated with the age of the participants (r = 0.363, p < 0.05) and the time spent indoors (r = 0.359, p < 0.05), indicating indoor environment as a potential source. Levels of TBTM in handwipes were positively correlated with dust samples collected from the same households (r = 0.597, p < 0.05), and those detected in toddler handwipes were significantly higher compared to adults (p < 0.05). Human daily exposure via dermal absorption was evaluated using the dermal derived no effects level values (DNEL), available in the database of the European Chemicals Agency (ECHA) and estimated using the theoretical bio-accessible fractions per compound. Toddler exposure to TBTM was significantly higher compared to adults (T-test, p < 0.05). No risk for adverse human health effects was derived from the comparison with DNELs for all compounds.


Assuntos
Poluição do Ar em Ambientes Fechados , Plastificantes , Adulto , Poluição do Ar em Ambientes Fechados/análise , Bélgica , Poeira/análise , Exposição Ambiental , Humanos , Organofosfatos , Plastificantes/análise
10.
J Expo Sci Environ Epidemiol ; 32(3): 366-373, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34702987

RESUMO

BACKGROUND: Fast food consumption is associated with biomarkers of ortho-phthalates exposures. However, the chemical content of fast food is unknown; certain ortho-phthalates (i.e., di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP)) have been phased out and replaced with other plasticizers (e.g., dioctyl terephthalate (DEHT)). OBJECTIVE: We conducted a preliminary study to examine ortho-phthalate and replacement plasticizer concentrations in foods and food handling gloves from U.S. fast food restaurants. METHODS: We obtained hamburgers, fries, chicken nuggets, chicken burritos, cheese pizza (n = 64 food samples) and gloves (n = 3) from restaurants and analyzed them for 11 chemicals using gas chromatography mass spectrometry. RESULTS: We found DEHT at the highest concentrations in both foods (n = 19; median = 2510 µg/kg; max = 12,400 µg/kg) and gloves (n = 3; range: 28-37% by weight). We detected DnBP and DEHP in 81% and 70% of food samples, respectively. Median DEHT concentrations were significantly higher in burritos than hamburgers (6000 µg/kg vs. 2200 µg/kg; p < 0.0001); DEHT was not detected in fries. Cheese pizza had the lowest levels of most chemicals. SIGNIFICANCE: To our knowledge, these are the first measurements of DEHT in food. Our preliminary findings suggest that ortho-phthalates remain ubiquitous and replacement plasticizers may be abundant in fast food meals. IMPACT STATEMENT: A selection of popular fast food items sampled in this study contain detectable levels of replacement plasticizers and concerning ortho-phthalates. In addition, food handling gloves contain replacement plasticizers, which may be a source of food contamination. These results, if confirmed, may inform individual and regulatory exposure reduction strategies.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Dibutilftalato/análise , Fast Foods/análise , Contaminação de Alimentos/análise , Humanos , Ácidos Ftálicos/análise , Plastificantes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA