Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Bioengineered ; 12(1): 7120-7131, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34558385

RESUMO

Severe pneumonia is a high-mortality disorder in children. The expression and underlying effects of lncRNA maternally expressed 3 (MEG3) were detected. The relationships between MEG3 and other parameters were reported by Pearson correlation. The prognostic importance of MEG3 was assessed by Kaplan-Meier (K-M) curve and COX analysis and its diagnostic potential was uncovered by the receiver operating characteristic (ROC) curve. Luciferase activity assay was performed to demonstrate the target gene of MEG3. Elevated expression of MEG3 and reduced microRNA-29 c (miR-29 c) were evaluated in severe pneumonia children, and a negative relationship between MEG3 and miR-29 c was propounded. MEG3 might function as an independent prognostic indicator. The diagnostic efficiency of MEG3 was also indicated for severe pneumonia children. In MRC-5 cell models and MH-S cell models, lipopolysaccharide (LPS) contributed to the increased expression of MEG3. Interference of MEG3 restricted the upregulation of MEG3 triggered by LPS. Silenced MEG3 protected MRC-5 and MH-S cells against damages managed by LPS on cell apoptosis, viability, and inflammation. MiR-29 c was a ceRNA of MEG3 and the absence of MEG3 abrogated the decreased expression of miR-29 c caused by LPS. Overall, the increased expression of MEG3 and the reduced levels of miR-29 c were identified in severe pneumonia. Prognostic and diagnostic significances of MEG3 provided a novel perspective for severe pneumonia. Disruption of MEG3 alleviated cell injury and inflammation as characterized by high LPS by binding miR-29 c.


Assuntos
Pneumonia , RNA Longo não Codificante/genética , Biomarcadores/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pneumonia/diagnóstico , Pneumonia/genética , Pneumonia/metabolismo , Pneumonia/mortalidade , Prognóstico , RNA Longo não Codificante/metabolismo , Regulação para Cima/genética
2.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32420583

RESUMO

To explore the regulation mechanism of miR-26a-5p and connective tissue growth factor (CTGF) in lipopolysaccharide (LPS)-induced alveolar macrophages, which is a severe pneumonia cell model. MH-S cells were grouped into Normal group, Model group, negative control (NC) group, miR-26a-5p mimic group, oe-CTGF group, miR-26a-5p mimic + oe-CTGF group. The expression level of miR-26a-5p, CTGF and Toll-like receptor (TLR) signaling related molecules (TLR2, TLR4 and nuclear factor-κB p65) were detected by qRT-PCR and WB, respectively. The cell viability and apoptosis rate were detected by methyl thiazolyl tetrazolium (MTT) and flow cytometry, respectively. Compared with the Normal group, the expression level of miR-26a-5p was significantly decreased, while CTGF protein level was significantly increased in the Model group. Compared with the Model group, MH-S cells with miR-26a-5p overexpression showed enhanced cell viability, decreased apoptosis rate, declined expression level of TLR signaling related molecules and reduced level of tumor necrosis factor-α (TNF-α), interleukin (IL) 6 (IL-6) and IL-1ß, while those with CTGF overexpression had an opposite phenotype. In conclusion, miR-26a-5p can inhibit the expression of CTGF and mediate TLR signaling pathway to inhibit the cell apoptosis and reduce the expression of proinflammatory cytokines in alveolar macrophages which is a cell model of severe pneumonia.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/efeitos dos fármacos , MicroRNAs/metabolismo , Pneumonia/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Citocinas/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , MicroRNAs/genética , Pneumonia/genética , Pneumonia/patologia , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
3.
Biomed Res Int ; 2017: 8037963, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28182108

RESUMO

The aim of the study was assessment of the usefulness of multiplex real-time PCR tests in the diagnostic and therapeutic process in children hospitalized due to pneumonia and burdened with comorbidities. Methods. The study group included 97 children hospitalized due to pneumonia at the Karol Jonscher Teaching Hospital in Poznan, in whom multiplex real-time PCR tests (FTD respiratory pathogens 33; fast-track diagnostics) were used. Results. Positive test results of the test were achieved in 74 patients (76.3%). The average age in the group was 56 months. Viruses were detected in 61 samples (82% of all positive results); bacterial factors were found in 29 samples (39% of all positive results). The presence of comorbidities was established in 90 children (92.78%). On the basis of the obtained results, 5 groups of patients were established: viral etiology of infection, 34 patients; bacterial etiology, 7 patients; mixed etiology, 23 patients; pneumocystis, 9 patients; and no etiology diagnosed, 24 patients. Conclusions. Our analysis demonstrated that the participation of viruses in causing severe lung infections is significant in children with comorbidities. Multiplex real-time PCR tests proved to be more useful in establishing the etiology of pneumonia in hospitalized children than the traditional microbiological examinations.


Assuntos
Bactérias/isolamento & purificação , Pneumonia/sangue , Pneumonia/genética , Vírus/isolamento & purificação , Bactérias/genética , Bactérias/patogenicidade , Criança , Pré-Escolar , DNA Bacteriano/classificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Viral/classificação , DNA Viral/genética , DNA Viral/isolamento & purificação , Feminino , Humanos , Lactente , Masculino , Reação em Cadeia da Polimerase Multiplex , Pneumonia/microbiologia , Pneumonia/virologia , Reação em Cadeia da Polimerase em Tempo Real , Vírus/genética , Vírus/patogenicidade
4.
Regul Toxicol Pharmacol ; 81 Suppl 2: S123-S138, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27818347

RESUMO

Modified risk tobacco products (MRTPs) are being developed with the aim of reducing smoking-related health risks. The Tobacco Heating System 2.2 (THS2.2) is a candidate MRTP that uses the heat-not-burn principle. Here, systems toxicology approaches were engaged to assess the respiratory effects of mentholated THS2.2 (THS2.2M) in a 90-day rat inhalation study (OECD test guideline 413). The standard endpoints were complemented by transcriptomics and quantitative proteomics analyses of respiratory nasal epithelium and lung tissue and by lipidomics analysis of lung tissue. The adaptive response of the respiratory nasal epithelium to conventional cigarette smoke (CS) included squamous cell metaplasia and an inflammatory response, with high correspondence between the molecular and histopathological results. In contrast to CS exposure, the adaptive tissue and molecular changes to THS2.2M aerosol exposure were much weaker and were limited mostly to the highest THS2.2M concentration in female rats. In the lung, CS exposure induced an inflammatory response, triggered cellular stress responses, and affected sphingolipid metabolism. These responses were not observed or were much lower after THS2.2M aerosol exposure. Overall, this system toxicology analysis complements and reconfirms the results from classical toxicological endpoints and further suggests potentially reduced health risks of THS2.2M.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Redução do Dano , Temperatura Alta , Mentol/toxicidade , Fumaça/efeitos adversos , Fumar/efeitos adversos , Indústria do Tabaco , Produtos do Tabaco/toxicidade , Testes de Toxicidade/métodos , Aerossóis , Animais , Qualidade de Produtos para o Consumidor , Relação Dose-Resposta a Droga , Desenho de Equipamento , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Humanos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Mentol/análise , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/patologia , Pneumonia/prevenção & controle , Proteômica , Ratos Sprague-Dawley , Medição de Risco , Fumaça/análise , Fumar/genética , Biologia de Sistemas , Fatores de Tempo , Produtos do Tabaco/análise , Toxicogenética , Transcriptoma/efeitos dos fármacos
5.
Toxicol Appl Pharmacol ; 272(2): 476-89, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23845593

RESUMO

The fibrous shape and biopersistence of multi-walled carbon nanotubes (MWCNT) have raised concern over their potential toxicity after pulmonary exposure. As in vivo exposure to MWCNT produced a transient inflammatory and progressive fibrotic response, this study sought to identify significant biological processes associated with lung inflammation and fibrosis pathology data, based upon whole genome mRNA expression, bronchoaveolar lavage scores, and morphometric analysis from C57BL/6J mice exposed by pharyngeal aspiration to 0, 10, 20, 40, or 80 µg MWCNT at 1, 7, 28, or 56 days post-exposure. Using a novel computational model employing non-negative matrix factorization and Monte Carlo Markov Chain simulation, significant biological processes with expression similar to MWCNT-induced lung inflammation and fibrosis pathology data in mice were identified. A subset of genes in these processes was determined to be functionally related to either fibrosis or inflammation by Ingenuity Pathway Analysis and was used to determine potential significant signaling cascades. Two genes determined to be functionally related to inflammation and fibrosis, vascular endothelial growth factor A (vegfa) and C-C motif chemokine 2 (ccl2), were confirmed by in vitro studies of mRNA and protein expression in small airway epithelial cells exposed to MWCNT as concordant with in vivo expression. This study identified that the novel computational model was sufficient to determine biological processes strongly associated with the pathology of lung inflammation and fibrosis and could identify potential toxicity signaling pathways and mechanisms of MWCNT exposure which could be used for future animal studies to support human risk assessment and intervention efforts.


Assuntos
Biologia Computacional/métodos , Poluentes Ambientais/toxicidade , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Fibrose Pulmonar/induzido quimicamente , Transcriptoma , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Biologia Computacional/estatística & dados numéricos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Exposição por Inalação , Masculino , Cadeias de Markov , Camundongos , Camundongos Endogâmicos C57BL , Método de Monte Carlo , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA