Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0302211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635726

RESUMO

Evolutionary maintenance of dioecy is a complex phenomenon and varies by species and underlying pathways. Also, different sexes may exhibit variable resource allocation (RA) patterns among the vegetative and reproductive functions. Such differences are reflected in the extent of sexual dimorphism. Though rarely pursued, investigation on plant species harbouring intermediate sexual phenotypes may reveal useful information on the strategy pertaining to sex-ratios and evolutionary pathways. We studied H. rhamnoides ssp. turkestanica, a subdioecious species with polygamomonoecious (PGM) plants, in western Himalaya. The species naturally inhabits a wide range of habitats ranging from river deltas to hill slopes. These attributes of the species are conducive to test the influence of abiotic factors on sexual dimorphism, and RA strategy among different sexes. The study demonstrates sexual dimorphism in vegetative and reproductive traits. The sexual dimorphism index, aligned the traits like height, number of branches, flower production, and dry-weight of flowers with males while others including fresh-weight of leaves, number of thorns, fruit production were significantly associated with females. The difference in RA pattern is more pronounced in reproductive traits of the male and female plants, while in the PGM plants the traits overlap. In general, habitat conditions did not influence either the extent of sexual dimorphism or RA pattern. However, it seems to influence secondary sex-ratio as females show their significant association with soil moisture. Our findings on sexual dimorphism and RA pattern supports attributes of wind-pollination in the species. The observed extent of sexual dimorphism in the species reiterates limited genomic differences among the sexes and the ongoing evolution of dioecy via monoecy in the species. The dynamics of RA in the species appears to be independent of resource availability in the habitats as the species grows in a resource-limited and extreme environment.


Assuntos
Hippophae , Caracteres Sexuais , Reprodução , Polinização , Plantas , Alocação de Recursos
2.
New Phytol ; 242(5): 2322-2337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634161

RESUMO

Shifts among functional pollinator groups are commonly regarded as sources of floral morphological diversity (disparity) through the formation of distinct pollination syndromes. While pollination syndromes may be used for predicting pollinators, their predictive accuracy remains debated, and they are rarely used to test whether floral disparity is indeed associated with pollinator shifts. We apply classification models trained and validated on 44 functional floral traits across 252 species with empirical pollinator observations and then use the validated models to predict pollinators for 159 species lacking observations. In addition, we employ multivariate statistics and phylogenetic comparative analyses to test whether pollinator shifts are the main source of floral disparity in Melastomataceae. We find strong support for four well-differentiated pollination syndromes ('buzz-bee', 'nectar-foraging vertebrate', 'food-body-foraging vertebrate', 'generalist'). While pollinator shifts add significantly to floral disparity, we find that the most species-rich 'buzz-bee' pollination syndrome is most disparate, indicating that high floral disparity may evolve without pollinator shifts. Also, relatively species-poor clades and geographic areas contributed substantially to total disparity. Finally, our results show that machine-learning approaches are a powerful tool for evaluating the predictive accuracy of the pollination syndrome concept as well as for predicting pollinators where observations are missing.


Assuntos
Flores , Melastomataceae , Polinização , Polinização/fisiologia , Flores/fisiologia , Flores/anatomia & histologia , Melastomataceae/fisiologia , Abelhas/fisiologia , Animais , Filogenia , Especificidade da Espécie , Modelos Biológicos
3.
Cold Spring Harb Protoc ; 2024(4): pdb.prot108302, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972952

RESUMO

Adult mosquitoes, sometimes in vast numbers, visit flowers in their search for floral nectar. However, the ability of mosquitoes to pollinate the flowers they visit is often neglected and sometimes even presumptively dismissed. Despite this, mosquito pollination has been reported in many instances, although many questions linger about its extent, importance, and the breadth of floral species or mosquito species which may be involved. In this protocol, I describe methodology to assess whether mosquitoes pollinate a flowering plant they visit, which can create a foundation for future investigations into this topic.


Assuntos
Culicidae , Polinização , Animais , Néctar de Plantas , Flores
4.
Sci Total Environ ; 912: 169147, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065486

RESUMO

Pollination is a key ecosystem service of critical importance for food production. However, globally, several regions are already experiencing pollinator shortage as pollinators are declining. Here, we investigate the origin, pollinator dependence and economic value of 199 food crops cultivated in Brazil to understand to which extent (1) Brazilian agriculture is vulnerable to pollinator shortage, and (2) Brazilian society has already achieved a comprehensive perspective about crop dependence. We used Brazil as a case study as it is a megadiverse tropical country and the 3rd largest world crop producer and exporter, with most of the crops depending on pollinators. Our findings revealed that over half (53.7%) of the food crops in Brazil are native, with the North region of Brazil housing the higher diversity of native crops, in contrast with the South and Southeast regions. Additionally, considering the reproductive systems, among native food crops, 65.6% exhibit self-incompatibility or dioecy (i.e., requiring obligatory cross-pollination), whereas 30.6% of exotic food crops display this trait. Overall, Brazilian municipalities produce more exotic crops than native ones, with almost 4/5 of the total agricultural area of the country dedicated to the cultivation of exotic crops, which are generally self-compatible commodities that rely low to modestly on pollinators. Regarding the biomes, we observe that this pattern is followed by most of them, but for the Caatinga dry forest, where native crops dependent on pollinators predominate. However, when soybean is removed from the analysis, the areas devoted to exotic crops always decreased, even being equal to native crops in the Atlantic forest. Our results also indicate that considering the pollinator shortage, some Brazilian biomes may be at risk of losing >20% of their yields, mainly in the Caatinga dry forest and the Atlantic forest. Therefore, in this paper, we are discussing that the expansion of monocultures in Brazil's agricultural lands may have several impacts on the provision of pollination services, food production and, then, on food security not only for the Brazilian population, as Brazil is the 3rd largest world agricultural producer and exporter.


Assuntos
Ecossistema , Polinização , Abelhas , Brasil , Plantas Comestíveis , Produtos Agrícolas , Agricultura/métodos
5.
New Phytol ; 242(5): 2301-2311, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148572

RESUMO

Ontogenetic shape change has long been recognized to be important in generating patterns of morphological diversity and may be especially important in plant reproductive structures. We explore how seed cone disparity in Cupressaceae changes over ontogeny by comparing pollination-stage and mature cones. We sampled cones at pollen and seed release and measured cone scales using basic morphometric shape variables. We used multivariate statistical methods, particularly hypervolume overlap calculations, to measure morphospace occupation and disparity. Cone scales at both pollination and maturity exhibit substantial variability, although the disparity is greater at maturity. Mature cone scales are also more clustered in trait space, showing less overlap with other taxa than at pollination. These patterns reflect two growth strategies that generate closed cones over maturation, either through thin laminar scales or relatively thick, peltate scales, resulting in two distinct regions of morphospace occupation. Disparity patterns in Cupressaceae seed cones change over ontogeny, reflecting shifting functional demands that require specific patterns of cone scale growth. The evolution of Cupressaceae reproductive disparity therefore represents selection for trajectories of ontogenetic shape change, a phenomenon that should be widespread across seed plants.


Assuntos
Cupressaceae , Sementes , Sementes/crescimento & desenvolvimento , Sementes/anatomia & histologia , Cupressaceae/crescimento & desenvolvimento , Cupressaceae/fisiologia , Cupressaceae/anatomia & histologia , Polinização , Pólen/crescimento & desenvolvimento , Pólen/fisiologia
6.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055942

RESUMO

British Columbia beekeepers, like many beekeepers around the world, are currently facing declines in honey bee health and high overwinter colony losses. To better understand the economics and the cycle of yearly colony loss and replacement of this critical agricultural industry, we collected and analyzed survey data on beekeeping costs and returns. Forty British Columbia beekeepers provided details about revenue sources, variable costs, capital costs, and investments. Ten surveyed beekeepers managed between 1 and 9 colonies, 10 managed between 10 and 39 colonies, 9 managed between 40 and 100 colonies, 5 managed between 101 and 299 colonies, 3 managed between 300 and 699 colonies, and 3 managed 700 colonies or more. The data was used to calculate beekeeping profit and to parameterize a model that explores the economic impact of colony loss rates and replacement strategies. Survey results show that when the data is aggregated, revenues exceed costs for beekeeping operations in British Columbia with a per colony profit of $56.92 or $0.87 per pound of honey produced. Surveyed operations with fewer than 100 colonies have negative profits, while operations with 100-299 colonies have positive profits. Surveyed operations in the Cariboo, North Coast, and Okanagan regions have the highest profits while surveyed operations in the Peace region have the lowest profits. Profit modeling shows that replacing losses with packages generates lower profit than replacing losses with split colonies. Our modeling shows that operations that diversify their revenue to include bee sales and commercial pollination accrue higher profits and can withstand higher winter loss rates.


Assuntos
Criação de Abelhas , Mel , Abelhas , Animais , Colúmbia Britânica , Agricultura , Polinização
7.
Sci Rep ; 13(1): 20108, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973992

RESUMO

Insect pollinators provide a natural ecosystem service to more than 80% of known flowering plants, many of which are part of our diet. However, their importance in Africa and an agriculture-dependent country like Rwanda has yet to receive attention. This encumbers policy formulation and investments in insect pollinators as a strategic agronomic input. Meanwhile, Rwanda cultivates crops that can benefit significantly from insect pollinators for superior agronomic outputs. To uncover this, we characterized the dependence of the crop production subsector on insect pollinators. Using the bioeconomic approach, we assessed the total economic value and the value due to insect pollinators of crops cultivated in Rwanda. We also evaluated the crop's production value per ton and whether production would meet consumption demands in the complete absence of insect pollinators. Using 71 representative crops currently grown in Rwanda, we found a direct dependency of 62% on insect pollinators. Of 32 representative crops used for economic valuation in two years (2014 and 2020), their total monetary value is estimated at $2.551 billion to $2.788 billion. Direct insect pollinator-dependent crops accounted for 20% (2014) to 18% (2020) of this value, with the share attributed to insect pollinators above $100 million. The sector's vulnerability to insect pollinators decreased from 7.3% in 2014 to 4.3% in 2020. The mean production value per ton of the direct insect pollinator-dependent crops was found to be higher in 2014 before declining in 2020. Using 21 representative crops from 2014 to 2020, we found that many direct insect pollinator-dependent crops will struggle to meet consumption demands in the complete absence of all suitable insect pollinators. Finally, we propose interventions and future research that could be undertaken. These insights are a critical first step to propel the government to act on insect pollination to support its food security agenda.


Assuntos
Ecossistema , Insetos , Animais , Abelhas , Ruanda , Produção Agrícola , Agricultura , Polinização , Produtos Agrícolas
8.
Proc Biol Sci ; 290(2008): 20231148, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788703

RESUMO

Mating success of flowering plants depends strongly on the efficiencies of pollen removal from flowers and its subsequent dispersal to conspecific stigmas. We characterized the economy of pollen dispersal in flowering plants by analysing pollen fates and their correlates for 228 species. The mean percentage of pollen removed from flowers (removal efficiency) varied almost twofold according to the type of pollen-dispersal unit, from less than 45% for orchids and milkweeds with solid pollinia, to greater than 80% for species with granular monads or sectile (segmented) pollinia. The mean percentage of removed pollen reaching stigmas (pollen transfer efficiency, PTE) varied from 2.4% for species with separate monads to 27.0% for orchids with solid pollinia. These values tended to be higher in plants with single pollinator species and in those with non-grooming pollinators. Nectar production increased removal efficiency, but did not influence PTE. Among types of pollen-dispersal units, the net percentage of produced pollen that was dispersed to stigmas varied negatively with removal efficiency and positively with PTE, indicating the relative importance of the latter for overall pollen economy. These findings confirm the key importance of floral traits, particularly pollen packaging, for pollen dispersal outcomes and highlight the under-appreciated pollination efficiency of non-grooming pollinators.


Assuntos
Magnoliopsida , Pólen , Reprodução , Polinização , Plantas , Flores
9.
Biol Rev Camb Philos Soc ; 98(6): 2078-2090, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37461187

RESUMO

Floral nectar production is central to plant pollination, and hence to human wellbeing. As floral nectar is essentially a solution in water of various sugars, it is likely a valuable plant resource, especially in terms of energy, with plants experiencing costs/trade-offs associated with its production or absorption and adopting mechanisms to regulate nectar in flowers. Possible costs of nectar production may also influence the evolution of nectar volume, concentration and composition, of pollination syndromes involving floral nectar, and the production of some crops. There has been frequent agreement that costs of floral nectar production are significant, but relevant evidence is scant and difficult to interpret. Convincing direct evidence comes from experimental studies that relate either enhanced nectar sugar production (through repeated nectar removal) to reduced ability to produce seeds, or increased sugar availability (through absorption of additional artificial nectar) to increased seed production. Proportions of available photosynthate allocated by plants to nectar production may also indicate nectar cost. However, such studies are rare, some do not include treatments of all (or almost all) flowers per plant, and all lack quantitative cost-benefit comparisons for nectar production. Additional circumstantial evidence of nectar cost is difficult to interpret and largely equivocal. Future research should repeat direct experimental approaches that relate reduced or enhanced nectar sugar availability for a plant with consequent ability to produce seeds. To avoid confounding effects of inter-flower resource transfer, each plant should experience a single treatment, with treatment of all or almost all flowers per plant. Resource allocation by plants, pathways used for resource transfer, and the locations of resource sources and sinks should also be investigated. Future research should also consider extension of nectar cost into other areas of biology. For example, evolutionary models of nectar production are rare but should be possible if plant fitness gains and costs associated with nectar production are expressed in the same currency, such as energy. It should then be possible to understand observed nectar production for different plant species and pollination syndromes involving floral nectar. In addition, potential economic benefits should be possible to assess if relationships between nectar production and crop value are evaluated.


Assuntos
Néctar de Plantas , Polinização , Humanos , Néctar de Plantas/metabolismo , Polinização/fisiologia , Flores/fisiologia , Produtos Agrícolas , Açúcares/metabolismo
10.
New Phytol ; 237(4): 1418-1431, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36412063

RESUMO

Under the mentor effect, compatible heterospecific pollen transfer induces self-pollen germination in otherwise self-incompatible plants. The mentor effect could be considered a novel mode of reproductive interference if it negatively impacts fitness. Yet to date, this phenomenon has predominately been investigated under experimental conditions rather than in situ. We address this gap in natural populations of the self-incompatible native dandelion, Taraxacum ceratophorum, where selfing only occurs in association with hybridization from exotic Taraxacum officinale. We tested whether self-fertilization rate increases in the hybrid zone, as predicted due to the mentor effect. Using results from these investigations, we created an exponential growth model to estimate the potential demographic impacts of the mentor effect on T. ceratophorum population growth. Our results demonstrate that the strength of the mentor effect in Taraxacum depends on the prevalence of pollinator-mediated outcross pollen deposition rather than self-pollination. Demographic models suggest that reduced outcrossing in T. ceratophorum under exotic invasion could negatively impact population growth through inbreeding depression. We demonstrate the mentor effect is rare in natural populations of T. ceratophorum due to masking by early life cycle inbreeding depression, prevalent outcrossing, and ovule usurpation by heterospecific pollen.


Assuntos
Flores , Mentores , Humanos , Reprodução , Polinização , Demografia
11.
J Environ Manage ; 326(Pt A): 116679, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403320

RESUMO

Despite significant drop in pollinator abundance, no studies exist on the benefits and costs of pollinator conservation in the public domain. An in-person survey was conducted at three large, public US universities to estimate benefits to become Bee Campus USA certified. We test whether different types of reminders on existing student sustainability fees affect Willingness to Pay. Costs of achieving this certification per university were obtained. Net Present Value demonstrates that the net benefits to each school are largely positive, except under the most restrictive assumption. Information reminders of existing fees lead to little change in support of pollinator conservation.


Assuntos
Criação de Animais Domésticos , Certificação , Análise Custo-Benefício , Animais , Abelhas , Certificação/economia , Setor Público , Universidades/economia , Criação de Animais Domésticos/economia , Criação de Animais Domésticos/legislação & jurisprudência , Polinização
12.
Environ Health Perspect ; 130(12): 127003, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36515549

RESUMO

BACKGROUND: Animal pollination supports agricultural production for many healthy foods, such as fruits, vegetables, nuts, and legumes, that provide key nutrients and protect against noncommunicable disease. Today, most crops receive suboptimal pollination because of limited abundance and diversity of pollinating insects. Animal pollinators are currently suffering owing to a host of direct and indirect anthropogenic pressures: land-use change, intensive farming techniques, harmful pesticides, nutritional stress, and climate change, among others. OBJECTIVES: We aimed to model the impacts on current global human health from insufficient pollination via diet. METHODS: We used a climate zonation approach to estimate current yield gaps for animal-pollinated foods and estimated the proportion of the gap attributable to insufficient pollinators based on existing research. We then simulated closing the "pollinator yield gaps" by eliminating the portion of total yield gaps attributable to insufficient pollination. Next, we used an agriculture-economic model to estimate the impacts of closing the pollinator yield gap on food production, interregional trade, and consumption. Finally, we used a comparative risk assessment to estimate the related changes in dietary risks and mortality by country and globally. In addition, we estimated the lost economic value of crop production for three diverse case-study countries: Honduras, Nepal, and Nigeria. RESULTS: Globally, we calculated that 3%-5% of fruit, vegetable, and nut production is lost due to inadequate pollination, leading to an estimated 427,000 (95% uncertainty interval: 86,000, 691,000) excess deaths annually from lost healthy food consumption and associated diseases. Modeled impacts were unevenly distributed: Lost food production was concentrated in lower-income countries, whereas impacts on food consumption and mortality attributable to insufficient pollination were greater in middle- and high-income countries with higher rates of noncommunicable disease. Furthermore, in our three case-study countries, we calculated the economic value of crop production to be 12%-31% lower than if pollinators were abundant (due to crop production losses of 3%-19%), mainly due to lost fruit and vegetable production. DISCUSSION: According to our analysis, insufficient populations of pollinators were responsible for large present-day burdens of disease through lost healthy food consumption. In addition, we calculated that low-income countries lost significant income and crop yields from pollinator deficits. These results underscore the urgent need to promote pollinator-friendly practices for both human health and agricultural livelihoods. https://doi.org/10.1289/EHP10947.


Assuntos
Produtos Agrícolas , Polinização , Animais , Humanos , Agricultura , Mudança Climática , Doenças não Transmissíveis , Dieta
13.
Environ Entomol ; 51(6): 1055-1068, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36373400

RESUMO

Body size is arguably one of the most important traits influencing the physiology and ecology of animals. Shifts in animal body size have been observed in response to climate change, including in bumble bees (Bombus spp. [Hymenoptera: Apidae]). Bumble bee size shifts have occurred concurrently with the precipitous population declines of several species, which appear to be related, in part, to their size. Body size variation is central to the ecology of bumble bees, from their social organization to the pollination services they provide to plants. If bumble bee size is shifted or constrained, there may be consequences for the pollination services they provide and for our ability to predict their responses to global change. Yet, there are still many aspects of the breadth and role of bumble bee body size variation that require more study. To this end, we review the current evidence of the ecological drivers of size variation in bumble bees and the consequences of that variation on bumble bee fitness, foraging, and species interactions. In total we review: (1) the proximate determinants and physiological consequences of size variation in bumble bees; (2) the environmental drivers and ecological consequences of size variation; and (3) synthesize our understanding of size variation in predicting how bumble bees will respond to future changes in climate and land use. As global change intensifies, a better understanding of the factors influencing the size distributions of bumble bees, and the consequences of those distributions, will allow us to better predict future responses of these pollinators.


Assuntos
Himenópteros , Polinização , Abelhas , Animais , Tamanho Corporal
14.
Sci Rep ; 12(1): 14331, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995928

RESUMO

We use a national citizen science monitoring scheme to quantify how agricultural intensification affects honeybee diet breadth (number of plant species). To do this we used DNA metabarcoding to identify the plants present in 527 honey samples collected in 2019 across Great Britain. The species richness of forage plants was negatively correlated with arable cropping area, although this was only found early in the year when the abundance of flowering plants was more limited. Within intensively farmed areas, honeybee diets were dominated by Brassica crops (including oilseed rape). We demonstrate how the structure and complexity of honeybee foraging relationships with plants is negatively affected by the area of arable crops surrounding hives. Using information collected from the beekeepers on the incidence of an economically damaging bee disease (Deformed Wing Virus) we found that the occurrence of this disease increased where bees foraged in agricultural land where there was a high use of foliar insecticides. Understanding impacts of land use on resource availability is fundamental to assessing long-term viability of pollinator populations. These findings highlight the importance of supporting temporally timed resources as mitigation strategies to support wider pollinator population viability.


Assuntos
Ciência do Cidadão , Praguicidas , Animais , Abelhas , Produtos Agrícolas , Praguicidas/toxicidade , Polinização , Vírus de RNA , Estações do Ano
15.
Artigo em Inglês | MEDLINE | ID: mdl-35886155

RESUMO

Honeybee pollination plays a significant role in sustaining the balance and biodiversity of sustainable rural development, agricultural production, and environments. However, little research has been carried out on the agricultural and economic benefits of pollination, especially for small farmers. This study investigated the adoption of honeybee pollination and its impact on farmers' economic value using primary data from 186 kiwifruit farmers in three major producing districts, such as Pujiang, Cangxi, and Dujiangyan, in the Sichuan province of China. This study was conducted in two different steps: first, we used a bivariate probit model to estimate factors influencing honeybee pollination and artificial pollination adoption; second, we further used the Dynamic Research Assessment Management (DREAM) approach to analyze the influence of the adopted honeybee pollination economic impact. The results showed that: (1) growers with higher social capital, proxied by political affiliation, are more aware of quality-oriented products, and older growers tend to choose less labor-intensive pollination technology; (2) with the increase in labor costs, more kiwifruit growers would choose honeybee pollination, and more educated growers, measured by the number of training certificates, are more likely to adopt honeybee pollination; (3) the lack of awareness and access to commercial pollinating swarms hinders the adoption of honeybee pollination; (4) in addition to the economic benefit to producers, honey pollination also brings an even larger consumer surplus. This study suggests some policy recommendations for promoting bee pollination in China: raising farmers' awareness and understanding of bee pollination through training, promoting supply and demand in the pollination market, and optimizing the external environment through product standardization and certification.


Assuntos
Fazendeiros , Polinização , Agricultura , Animais , Abelhas , China , Humanos , Desenvolvimento Sustentável , Tecnologia
16.
PLoS One ; 17(7): e0271241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877609

RESUMO

Using synthetic pesticides to manage pests can threaten pollination services, affecting the productivity of pollination-dependent crops such as avocado. The need to mitigate this negative externality has led to the emergence of the concept of integrated pest and pollinator management (IPPM) to achieve both pest and pollinator management, leading to complementary or synergistic benefits for yield and quality of the harvest. This paper aims to evaluate the potential economic and welfare impact of IPPM in avocado production systems in Kenya and Tanzania. We utilize both primary and secondary data and employed the economic surplus model. On average the potential economic gain from the adoption of IPPM is US$ 66 million annually in Kenya, with a benefit-cost ratio (BCR) of 13:1, while in Tanzania US$ 1.4 million per year, with a BCR of 34:1. The potential benefits from IPPM intervention gains are expected to reduce the number of poor people in Kenya and Tanzania by 10,464 and 1,255 people per year respectively. The findings conclude that policies that enhance the adoption of IPPM can fast-track economic development and therefore improve the livelihoods of various actors across the avocado value chain.


Assuntos
Persea , Agricultura , Humanos , Controle de Pragas , Polinização , Tanzânia
17.
Ecol Appl ; 32(6): e2634, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35403772

RESUMO

Loss of habitats and native species, introduction of invasive species, and changing climate regimes lead to the homogenization of landscapes and communities, affecting the availability of habitats and resources for economically important guilds, such as pollinators. Understanding how pollinators and their interactions vary along resource diversity gradients at different scales may help to determine their adaptability to the current diversity loss related to global change. We used data on 20 plant-pollinator communities along gradients of flower richness (local diversity) and landscape heterogeneity (landscape diversity) to understand how the diversity of resources at local and landscape scales affected (1) wild pollinator abundance and richness (accounting also for honey bee abundance), (2) the structure of plant-pollinator networks, (3) the proportion of actively selected interactions (those not occurring by neutral processes), and (4) pollinator diet breadth and species' specialization in networks. Wild pollinator abundance was higher overall in flower-rich and heterogeneous habitats, while wild pollinator richness increased with flower richness (more strongly for beetles and wild bees) and decreased with honeybee abundance. Network specialization (H2 '), modularity, and functional complementarity were all positively related to floral richness and landscape heterogeneity, indicating niche segregation as the diversity of resources increases at both scales. Flower richness also increased the proportion of actively selected interactions (especially for wild bees and flies), whereas landscape heterogeneity had a weak negative effect on this variable. Overall, network-level metrics responded to larger landscape scales than pollinator-level metrics did. Higher floral richness resulted in a wider taxonomic and functional diet for all the study guilds, while functional diet increased mainly for beetles. Despite this, specialization in networks (d') increased with flower richness for all the study guilds, because pollinator species fed on a narrower subset of plants as communities became richer in species. Our study indicates that pollinators are able to adapt their diet to resource changes at local and landscape scales. However, resource homogenization might lead to poor and generalist pollinator communities, where functionally specialized interactions are lost. This study highlights the importance of including different scales to understand the effects of global change on pollination service through changes in resource diversity.


Assuntos
Besouros , Polinização , Animais , Abelhas , Dieta , Ecossistema , Flores , Plantas
18.
Am J Bot ; 109(4): 616-627, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075632

RESUMO

PREMISE: Morphological and developmental changes as flowers age can impact patterns of mating. At the same time, direct or indirect costs of floral longevity can alter their fitness outcomes. This influence has been less appreciated, particularly with respect to the timing of selfing. We investigated changes in stigma events, autonomous selfing, outcross seed set capacity, and autofertility-a measure representing the potential for reproductive assurance-across floral lifespan in the mixed-mating biennial Sabatia angularis. METHODS: We examined stigma morphology and receptivity, autonomous self-pollen deposition, and seed number and size under autonomous self-pollination and hand outcross-pollination for flowers of different ages, from 1 d of female phase until 14 d. We compared autonomous seed production to maximal outcross seed production at each flower age to calculate an index of autofertility. RESULTS: The stigmatic lobes begin to untwist 1 d post anthesis. They progressively open, sextend, coil, and increase in receptivity, peaking or saturating at 8-11 d, depending on the measure. Autonomous seed production can occur early, but on average remains low until 6 d, when it doubles. In contrast, outcross seed number and size start out high, then decline precipitously. Consequently, autofertility increases steeply across floral lifespan. CONCLUSIONS: Changes in stigma morphology and receptivity, timing of autonomous self-pollen deposition, and floral senescence can interact to influence the relative benefit of autonomous selfing across floral lifespan. Our work highlights the interplay between evolution of floral longevity and the mating system, with implications for the maintenance of mixed mating in S. angularis.


Assuntos
Gentianaceae , Longevidade , Flores/anatomia & histologia , Polinização , Reprodução
19.
Conserv Biol ; 36(4): e13886, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35075685

RESUMO

Pollinator declines have prompted efforts to assess how land-use change affects insect pollinators and pollination services in agricultural landscapes. Yet many tools to measure insect pollination services require substantial landscape-scale data and technical expertise. In expert workshops, 3 straightforward methods (desk-based method, field survey, and empirical manipulation with exclusion experiments) for rapid insect pollination assessment at site scale were developed to provide an adaptable framework that is accessible to nonspecialist with limited resources. These methods were designed for TESSA (Toolkit for Ecosystem Service Site-Based Assessment) and allow comparative assessment of pollination services at a site of conservation interest and in its most plausible alternative state (e.g., converted to agricultural land). We applied the methods at a nature reserve in the United Kingdom to estimate the value of insect pollination services provided by the reserve. The economic value of pollination services provided by the reserve ranged from US$6163 to US$11,546/year. The conversion of the reserve to arable land would provide no insect pollination services and a net annual benefit from insect-pollinated crop production of approximately $1542/year (US$24∙ha-1 ∙year-1 ). The methods had wide applicability and were readily adapted to different insect-pollinated crops: rape (Brassica napus) and beans (Vicia faba) crops. All methods were rapidly employed under a low budget. The relatively less robust methods that required fewer resources yielded higher estimates of annual insect pollination benefit.


Diversidad y Conservación de Gasterópodos Subterráneos de Agua Dulce en los Estados Unidos y en México Resumen Las declinaciones de los polinizadores han impulsado los esfuerzos por evaluar cómo el cambio del uso de suelo afecta a los insectos polinizadores y los servicios de polinización en los paisajes agrícolas. Aun así, muchas de las herramientas para medir los servicios de los insectos polinizadores requieren datos sustanciales a escala de paisaje y el conocimiento de expertos. Desarrollamos tres métodos sencillos (método de gabinete, censo de campo y manipulación empírica con experimentos de exclusión) durante algunos talleres de expertos para la evaluación rápida de la polinización por insectos a escala de sitio con el objetivo de proporcionar un marco de trabajo adaptable y accesible para quienes no son especialistas y cuentan con recursos limitados. Estos métodos fueron diseñados para TESSA (Toolkit for Ecosystem Service Site-Based Assessment, en inglés) y permiten la evaluación comparativa de los servicios de polinización en los sitios de interés para la conservación y su estado alternativo más plausible (p. ej.: convertido a suelo agrícola). Aplicamos los métodos en una reserva natural del Reino Unido para estimar el valor de los servicios de polinización por insectos que proporciona la reserva. El valor económico de los servicios de polinización que proporciona la reserva varió desde US$6,163 a US$11,546 al año-1 . La conversión de la reserva a suelo arable no proporcionaría servicios de polinización por insectos, pero sí un beneficio anual neto a partir de la producción de cultivos polinizados por insectos de aproximadamente $1,542 al año-1 (US$24 ha-1 año-1 ). Los métodos tuvieron una aplicabilidad generalizada y estaban ya adaptados a los diferentes cultivos polinizados por insectos: cultivos de colza (Brassica napus) y habas (Vicia faba). Todos los métodos pudieron usarse con bajo presupuesto. Los métodos relativamente menos robustos que requirieron menos recursos produjeron estimados más elevados del beneficio anual de la polinización por insectos.


Assuntos
Produtos Agrícolas , Polinização , Animais , Abelhas , Brassica napus , Conservação dos Recursos Naturais , Ecossistema , Insetos , Vicia faba
20.
Integr Environ Assess Manag ; 18(2): 308-313, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34241949

RESUMO

Bees foraging in agricultural habitats can be exposed to plant protection products. To limit the risk of adverse events, a robust risk assessment is needed, which requires reliable estimates for the expected exposure. The exposure pathways to developing solitary bees in particular are not well described and, in the currently proposed form, rely on limited information. To build a scaling model predicting the amount of protein developing solitary bees need based on adult body weight, we used published data on the volume of pollen solitary bees provide for their offspring. This model was tested against and ultimately updated with additional literature data on bee weight and protein content of emerged bees. We rescaled this model, based on the known pollen protein content of bee-visited flowers, to predict the expected amount of pollen a generalist solitary bee would likely provide based on its adult body weight, and tested these predictions in the field. We found overall agreement between the models' predictions and the measured values in the field, but additional data are needed to confirm these initial results. Our study suggests that scaling models in the bee risk assessment could complement existing risk assessment approaches and facilitate the further development of accurate risk characterization for solitary bees; ultimately the models will help to protect them during their foraging activity in agricultural settings. Integr Environ Assess Manag 2022;18:308-313. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Magnoliopsida , Pólen , Animais , Abelhas , Ecotoxicologia , Larva , Pólen/química , Polinização , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA