Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proteins ; 92(9): 1070-1084, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38497314

RESUMO

Human islet amyloid polypeptide (amylin or hIAPP) is a 37 residue hormone co-secreted with insulin from ß cells of the pancreas. In patients suffering from type-2 diabetes, amylin self-assembles into amyloid fibrils, ultimately leading to the death of the pancreatic cells. However, a research gap exists in preventing and treating such amyloidosis. Plumbagin, a natural compound, has previously been demonstrated to have inhibitory potential against insulin amyloidosis. Our investigation unveils collapsible regions within hIAPP that, upon collapse, facilitates hydrophobic and pi-pi interactions, ultimately leading to aggregation. Intriguingly plumbagin exhibits the ability to bind these specific collapsible regions, thereby impeding the aforementioned interactions that would otherwise drive hIAPP aggregation. We have used atomistic molecular dynamics approach to determine secondary structural changes. MSM shows metastable states forming native like hIAPP structure in presence of PGN. Our in silico results concur with in vitro results. The ThT assay revealed a striking 50% decrease in fluorescence intensity at a 1:1 ratio of hIAPP to Plumbagin. This finding suggests a significant inhibition of amyloid fibril formation by plumbagin, as ThT fluorescence directly correlates with the presence of these fibrils. Further TEM images revealed disappearance of hIAPP fibrils in plumbagin pre-treated hIAPP samples. Also, we have shown that plumbagin disrupts the intermolecular hydrogen bonding in hIAPP fibrils leading to an increase in the average beta strand spacing, thereby causing disaggregation of pre-formed fibrils demonstrating overall disruption of the aggregation machinery of hIAPP. Our work is the first to report a detailed atomistic simulation of 22 µs for hIAPP. Overall, our studies put plumbagin as a potential candidate for both preventive and therapeutic candidate for hIAPP amyloidosis.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas , Simulação de Dinâmica Molecular , Naftoquinonas , Naftoquinonas/química , Naftoquinonas/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Humanos , Cadeias de Markov , Ligação Proteica , Interações Hidrofóbicas e Hidrofílicas , Agregados Proteicos/efeitos dos fármacos , Ligação de Hidrogênio
2.
Nutr Neurosci ; 27(1): 87-95, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36583502

RESUMO

Leptin is a tonic appetite-regulating hormone, which is integral for the long-term regulation of energy balance. The current evidence suggests that the typical orexigenic or anorexigenic response of many of these appetite-regulating hormones, most notably ghrelin and cholecystokinin (CCK), require leptin to function whereas glucagon-like peptide-1 (GLP-1) is required for leptin to function, and these responses are altered when leptin injection or gene therapy is administered in combination with these same hormones or respective agonists. The appetite-regulatory pathway is complex, thus peptide tyrosine tyrosine (PYY), brain-derived neurotrophic factor (BDNF), orexin-A (OXA), and amylin also maintain ties to leptin, however these are less well understood. While reviews to date have focused on the existing relationships between leptin and the various neuropeptide modulators of appetite within the central nervous system (CNS) or it's role in thermogenesis, no review paper has synthesised the information regarding the interactions between appetite-regulating hormones and how leptin as a chronic regulator of energy balance can influence the acute appetite-regulatory response. Current evidence suggests that potential relationships exist between leptin and the circulating peripheral appetite hormones ghrelin, GLP-1, CCK, OXA and amylin to exhibit either synergistic or opposing effects on appetite inhibition. Though more research is warranted, leptin appears to be integral in both energy intake and energy expenditure. More specifically, functional leptin receptors appear to play an essential role in these processes.


Assuntos
Grelina , Leptina , Grelina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Apetite , Ingestão de Energia , Peptídeo 1 Semelhante ao Glucagon , Peptídeo YY , Metabolismo Energético , Tirosina/metabolismo , Tirosina/farmacologia
3.
Nat Commun ; 10(1): 2679, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213603

RESUMO

The islet in type 2 diabetes (T2D) is characterized by amyloid deposits derived from islet amyloid polypeptide (IAPP), a protein co-expressed with insulin by ß-cells. In common with amyloidogenic proteins implicated in neurodegeneration, human IAPP (hIAPP) forms membrane permeant toxic oligomers implicated in misfolded protein stress. Here, we establish that hIAPP misfolded protein stress activates HIF1α/PFKFB3 signaling, this increases glycolysis disengaged from oxidative phosphorylation with mitochondrial fragmentation and perinuclear clustering, considered a protective posture against increased cytosolic Ca2+ characteristic of toxic oligomer stress. In contrast to tissues with the capacity to regenerate, ß-cells in adult humans are minimally replicative, and therefore fail to execute the second pro-regenerative phase of the HIF1α/PFKFB3 injury pathway. Instead, ß-cells in T2D remain trapped in the pro-survival first phase of the HIF1α injury repair response with metabolism and the mitochondrial network adapted to slow the rate of cell attrition at the expense of ß-cell function.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Estresse do Retículo Endoplasmático/fisiologia , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Adulto , Animais , Animais Geneticamente Modificados , Apoptose , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Glicólise/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Masculino , Pessoa de Meia-Idade , Mitofagia/fisiologia , Fosforilação Oxidativa , Fosfofrutoquinase-2/metabolismo , Agregados Proteicos/fisiologia , Ratos
4.
Anal Chem ; 87(19): 9829-9837, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26352401

RESUMO

Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreas that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. Here, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin-copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the ß-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the -HSSNN- residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of ß-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of ß-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin-copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential inhibitors of amylin oligomerization and fibril formation. More generally, this rapid technique opens the door for high-throughput screening of potential inhibitors of amyloid protein aggregation.


Assuntos
Cobre/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Agregados Proteicos , Multimerização Proteica , Sequência de Aminoácidos , Cátions Bivalentes/metabolismo , Humanos , Dados de Sequência Molecular , Oxirredução , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Espectrometria de Massas por Ionização por Electrospray
5.
Front Biosci (Landmark Ed) ; 19(6): 936-44, 2014 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-24896327

RESUMO

Metabolic syndrome significantly increases the incidence of atherosclerosis-related diseases including coronary artery disease, stroke, and type 2 diabetes. Recent progress has demonstrated that amylin, or islet amyloid polypeptide, is circulating multifunctional hormone and neuropeptide, which is co-secreted with insulin into the bloodstream by pancreatic beta cells and plays a very important role in regulating feeding, energy homeostasis and inflammation. Recent FDA approval of amylin analog pramlintide as a new drug for treating type 1 and 2 diabetes positions amylin in the spotlight. In this analytical review, I summarize the recent progress on amylin studies in the following sections: 1) introduction to the molecular features of amylin; 2) amylin's amyloidogenic and proinflammatory effects; 3) a satiety hormone and new drug in increasing energy expenditure; and 4) a vasodilator inducing hypotension and tachycardia; and 5) a neuropeptide in depolarizing cholinergic neurons via closure of potassium channels. Continued improvement of our understanding on this multifunctional hormone would lead to future development of pramlintide as novel therapies for other inflammatory, hematological, metabolic, neurological and vascular diseases.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Inflamação/tratamento farmacológico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/uso terapêutico , Vasodilatação/efeitos dos fármacos , Encéfalo/metabolismo , Neurônios Colinérgicos/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Potenciais da Membrana/efeitos dos fármacos
6.
Chem Commun (Camb) ; 49(80): 9155-7, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-23986270

RESUMO

Monomeric hIAPP significantly destabilizes both model and live cell membranes by increasing membrane fluidity. This interaction with membranes happens via carpet formation followed by lipid extraction in a concentration dependent manner and thus we propose that hIAPP aggregation prior to membrane interaction may not be necessary for its cytotoxicity.


Assuntos
Membrana Celular/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Bicamadas Lipídicas/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/química , Dicroísmo Circular , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Bicamadas Lipídicas/química , Fluidez de Membrana , Microscopia de Fluorescência , Método de Monte Carlo , Estrutura Secundária de Proteína , Rodaminas/química
7.
Biophys Chem ; 167: 1-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22609945

RESUMO

We study the conformational dynamics of the human Islet Amyloid Polypeptide (hIAPP) molecule - a 37 residue-long peptide associated to type 2 diabetes - using molecular dynamics (MD) simulations. We identify partially structured conformational states of the hIAPP monomer, categorized by both end-to-end distance and secondary structure, as suggested by previous experimental and computational studies. The MD trajectories of hIAPP are analyzed using data-driven methods, in particular principal component analysis, in order to identify preferred conformational states of the amylin monomer and to discuss their relative stability as compared to corresponding states in the amylin dimer. These potential hIAPP conformational states could be further tested and described experimentally, or in conjunction with modern computational analysis tools such as Markov state-based methods for extracting kinetics and thermodynamics from atomistic MD trajectories.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Dimerização , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Cadeias de Markov , Simulação de Dinâmica Molecular , Análise de Componente Principal , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA