Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Micron ; 174: 103533, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37660476

RESUMO

Micro-computed tomography (micro-CT) provides valuable data for studying soft tissue, though it is often affected by sample movement during scans and low contrast in X-ray absorption. This can result in lower image quality and geometric inaccuracies, collectively known as 'artefacts'. To mitigate these issues, samples can be embedded in hydrogels and enriched with heavy metals for contrast enhancement. However, the long-term durability of these enhancements remains largely unexplored. In this study, we examine the effects of two contrast enhancement agents - iodine and phosphotungstic acid (PTA) - and two hydrogels - agarose and Poloxamer 407 - over a 14-day period. We used Drosophila melanogaster as a test model for our investigation. Our findings reveal that PTA and agarose are highly durable, while iodine and poloxamer hydrogel exhibits higher leakage rates. These observations lay the foundation for estimating contrast stabilities in contrast-enhanced micro-CT with hydrogel embedding and serve to inform future research in this field.


Assuntos
Hidrogéis , Iodo , Animais , Microtomografia por Raio-X , Drosophila melanogaster , Sefarose , Ácido Fosfotúngstico , Poloxâmero
2.
Biofabrication ; 15(4)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37552975

RESUMO

Organoid technology offers sophisticatedin vitrohuman models for basic research and drug development. However, low batch-to-batch reproducibility and high cost due to laborious procedures and materials prevent organoid culture standardization for automation and high-throughput applications. Here, using a novel platform based on the findings that Pluronic F-127 (PF-127) could trigger highly uniform spheroid assembly through a mechanism different from plate coating, we develop a one-pot organoid differentiation strategy. Using our strategy, we successfully generate cortical, nephron, hepatic, and lung organoids with improved reproducibility compared to previous methods while reducing the original costs by 80%-95%. In addition, we adapt our platform to microfluidic chips allowing automated culture. We showcase that our platform can be applied to tissue-specific screening, such as drug toxicity and transfection reagents testing. Finally, we generateNEAT1knockout tissue-specific organoids and showNEAT1modulates multiple signaling pathways fine-tuning the differentiation of nephron and hepatic organoids and suppresses immune responses in cortical organoids. In summary, our strategy provides a powerful platform for advancing organoid research and studying human development and diseases.


Assuntos
Organoides , Poloxâmero , Humanos , Poloxâmero/farmacologia , Reprodutibilidade dos Testes , Análise Custo-Benefício , Fígado
3.
J Mech Behav Biomed Mater ; 139: 105668, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36638636

RESUMO

Films of biodegradable blends of polycaprolactone (PCL) and Pluronics F68 and F127 were manufactured by an industrial thermo-mechanical process to be applied as potential delivery systems. The effects of Pluronics on the structure (mesophase organization), and thermal and mechanical properties of polycaprolactone were investigated using differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), polarized optical microscopy (POM) and tensile mechanical tests. The addition of Pluronics affected the crystallization process by changing the relative amounts of crystalline, amorphous, and meso- (condis + plastic) phases. The melting transition and XRD profiles were deconvoluted to assess the individual contribution of the different crystal morphologies. Furthermore, it was found that the mechanical properties of the blends depended on the ratio and type of Pluronic. Thus, Pluronic F127 showed a larger mesophase content than its F68 counterpart with PCL and blends with enhanced ductility.


Assuntos
Poloxâmero , Poliésteres , Poloxâmero/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Poliésteres/química
4.
Drug Deliv ; 29(1): 2162-2176, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35815689

RESUMO

Fungal keratitis (FK) is a devastating ocular disease that can cause corneal opacity and blindness if not treated effectively. Tolnaftate (TOL) is a selective fungicidal drug against Aspergillus spp. which are among the most common causes of mycotic keratitis. TOL is lipophilic drug with low water solubility and permeation which act as obstacles for its clinical ocular efficacy. Hence, this study aimed to statistically optimize a novel polymeric pseudorotaxanes (PSRs) containing TOL for enhancing its ocular permeability and antifungal effect. For achieving this goal, a full 31.22 factorial design was fashioned for preparing and optimizing TOL-PSRs using film hydration technique. Three formulation variables were studied: drug amount (X1), weight ratio of Pluronics to HPßCD (X2) and Pluronic system (X3). Entrapment efficiency percent (EE%) (Y1), particle size (PS) (Y2) and zeta potential (ZP) (Y3) were set as dependent variables. The selected optimal TOL-PSRs (PSR1) showed EE% of 71.55 ± 2.90%, PS of 237.05 ± 12.80 nm and ZP of -32.65 ± 0.92 mV. In addition, PSR1 was compared to conventional polymeric mixed micelles (PMMs) and both carriers significantly increased the drug flux and resulted in higher amount permeated per unit area in 8 h compared to drug suspension. The histopathological studies assured the safety of PSR1 for ocular use. The in vivo susceptibility testing using Aspergillus niger confirmed that PSR1 displayed sustained antifungal activity up to 24 h. The obtained results revealed the admirable potential of PSR1 to be used as novel nanocarriers for promoting TOL ocular delivery.


Assuntos
Infecções Oculares Fúngicas , Ceratite , Rotaxanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Infecções Oculares Fúngicas/tratamento farmacológico , Humanos , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Tamanho da Partícula , Permeabilidade , Poloxâmero , Polímeros , Rotaxanos/uso terapêutico , Tolnaftato/uso terapêutico
5.
Drug Deliv Transl Res ; 12(12): 3063-3082, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35525868

RESUMO

The research study reflects the development of novel voriconazole (VCZ) loaded nanoparticles (NPs) for prolonged delivery for the management of ocular diseases. The in situ ophthalmic gel was prepared by incorporating NPs into carboxymethyl chitosan (CMCh) and poloxamer. The central composite design was used to optimize the process for the preparation of nanoparticles by the o/w solvent evaporation method. The developed nanoparticles were evaluated for the encapsulation efficiency (89.6 ± 1.2%), particle size (219.3 ± 1.8 nm), polydispersity index (PDI, 0.1), zeta potential (- 21.1 ± 1.12 mV), saturation solubility, DSC study, and drug release. The etherification process grafts carboxyl surface functional groups, on chitosan, and was confirmed by FTIR and NMR studies. The developed CMCh-poloxamer based gelling system was found to be clear and transparent with gelation temperature varying from 33 to 40 °C. The nanoparticle-loaded gel containing CMCh demonstrated enhanced antifungal activity against Candida albicans. The optimized batch containing CMCh showed improved mucoadhesion by 2.86-fold compared to VCZ nanosuspension. The drug release was prolonged up to 8 h with an ex vivo study suggesting the enhanced permeation across goat cornea estimated via fluorescent microscope. The hen's egg chorioallantoic membrane study revealed that the formulation was non-irritant and tolerated by the chorioallantoic membrane. The present study concludes that the VCZ loaded nanoparticulate in situ ophthalmic gel using CMCh may act as a potential alternative for traditional eye drops.


Assuntos
Quitosana , Nanopartículas , Animais , Feminino , Poloxâmero/química , Quitosana/química , Voriconazol , Galinhas , Nanopartículas/química , Géis/química , Tamanho da Partícula , Coloides , Portadores de Fármacos/química
6.
Mol Pharm ; 19(1): 274-286, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34877863

RESUMO

Most common intraocular pressure (IOP) reduction regimens for the management of glaucoma include the topical use of eye drops, a dosage form that is associated with short residence time at the site of action, increased dosing frequency, and reduced patient compliance. In situ gelling nanofiber films comprising poly(vinyl alcohol) and Poloxamer 407 were fabricated via electrospinning for the ocular delivery of timolol maleate (TM), aiming to sustain the IOP-lowering effect of the ß-blocker, compared to conventional eye drops. The electrospinning process was optimized, and the physicochemical properties of the developed formulations were thoroughly investigated. The fiber diameters of the drug-loaded films ranged between 123 and 145 nm and the drug content between 5.85 and 7.83% w/w. Total in vitro drug release from the ocular films was attained within 15 min following first-order kinetics, showing higher apparent permeability (Papp) values across porcine corneas compared to the drug's solution. The fabricated films did not induce any ocular irritation as evidenced by both the hen's egg test on chorioallantoic membrane and the in vivo Draize test. In vivo administration of the ocular films in rabbits induced a faster onset of action and a sustained IOP-lowering effect up to 24 h compared to TM solution, suggesting that the proposed ocular films are promising systems for the sustained topical delivery of TM.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Géis , Pressão Intraocular/efeitos dos fármacos , Timolol/farmacologia , Administração Oftálmica , Antagonistas Adrenérgicos beta/administração & dosagem , Animais , Cromatografia Líquida de Alta Pressão , Córnea/efeitos dos fármacos , Córnea/metabolismo , Géis/administração & dosagem , Poloxâmero , Álcool de Polivinil , Suínos , Timolol/administração & dosagem
7.
J Biomater Sci Polym Ed ; 32(13): 1678-1702, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34013840

RESUMO

To overcome problems associated with topical delivery of tacrolimus (TCS), a thermoresponsive in situ gel system containing pluronic F127 (PL), and chitosan (CS) was developed, to enhance the precorneal retention, and to sustain the release of the drug. The PL-CS in situ gel was optimized using a 2-factor-3-level central composite experimental design by selecting the concentration of PL and CS as independent variables while gelation time, gelation temperature, and spreadability as dependent variables. The optimized formulation was developed using 22.5 g PL and 0.3 g CS, gels at 33.6 °C, in 22.93 s, and showed the spreadability of 6.2 cm. In vitro studies conducted for the optimized gel revealed the sustained release of TCS (81.73% in 4 h) and improved corneal permeation (74.13% in 4 h), compared with TCS solution. The mechanism of release of TCS followed the Higuchi model with Fickian diffusion transport. Further, histopathology and HET-CAM studies revealed that the developed gel was non-irritating and safe for ocular administration.


Assuntos
Quitosana , Poloxâmero , Sistemas de Liberação de Medicamentos , Géis , Tacrolimo
8.
AAPS PharmSciTech ; 22(3): 87, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33665761

RESUMO

The commitment of the existent study was to develop a mucoadhesive in situ gel systems of vitamin B12 for the management of dry eye disease. The gels were prepared using pluronic F-127 and either of chitosan, carbapol 971P, sodium alginate, or hydroxy propyl methyl cellulose. Drug-excipients compatibility was investigated by means of differential scanning calorimetry and Fourier transform infrared spectroscopy. The gels were characterized for pH, clarity, gelling capacity, viscosity, and adhesion. In vitro release of vitamin B12 from the selected gels was investigated. In vivo effectiveness of the selected gel was determined in rabbit models using Schirmer's and fluorescein tests. The compatibility studies revealed the possibility of incidence of drug/polymer interaction in some formulations. F2-containing pluronic F127 and hydroxypropyl methyl cellulose showed the most appropriate physical characterization and in vitro release profile. The prepared gels showed prolonged drug release with drug release mechanism of combined diffusion and erosion. The in vivo study revealed good effectiveness of the prepared mucoadhesive in situ gel system of vitamin B12 in the treatment of dry eye disease that was comparable to that of the marketed drops.


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Vitamina B 12/uso terapêutico , Vitaminas/uso terapêutico , Adesivos , Animais , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Excipientes , Feminino , Géis , Derivados da Hipromelose , Masculino , Mucosa , Poloxâmero , Coelhos , Viscosidade , Vitamina B 12/administração & dosagem , Vitaminas/administração & dosagem
9.
J Antimicrob Chemother ; 76(2): 443-450, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33094334

RESUMO

BACKGROUND: Stenotrophomonas maltophilia is a Gram-negative bacterium resistant to several antibiotics and its prevalence in cystic fibrosis (CF) patients is increasing. OBJECTIVES: To evaluate the effects of ceragenins, non-peptide mimics of antimicrobial peptides, against both planktonic and biofilm forms of S. maltophilia and the cytotoxicity of ceragenins to the IB3-1 CF cell line. METHODS: Ceragenin CSA-131, with and without 5% Pluronic® F127 (a non-ionic amphiphilic poloxamer), and ceragenin CSA-13 were evaluated against S. maltophilia clinical isolates (n = 40). MICs and MBCs of ceragenins and conventional antibiotics were determined. Time-kill curve experiments were performed with 1×, 2× and 4× MICs of ceragenins. The highest non-cytotoxic concentrations of ceragenins against IB3-1, a CF cell line, were determined by MTT assay. The effects of ceragenins against biofilm adhesion, formation and mature biofilms were investigated. RESULTS: CSA-131 with Pluronic® F127 displayed the lowest MICs (MIC50/MIC90: 1/2 mg/L) followed by CSA-131 (MIC50/MIC90: 2/4 mg/L), while those of CSA-13 were much higher (MIC50/MIC90: 16/32 mg/L). According to time-kill curve results, all concentrations at 4× MICs of ceragenins showed bactericidal activity (3 log reduction) after 4 h. While CSA-131 and CSA-131-poloxamer inhibited biofilm adhesion and formation by 87.74% and 83.42%, respectively, after 24 h, CSA-131 was more effective on mature biofilms. Formulating CSA-131 in poloxamer micelles did not affect the cytotoxicity of CSA-131 to IB3-1 cells. CONCLUSIONS: CSA-131 could be a potential antimicrobial agent for the treatment of S. maltophilia infections in CF, due to its low cytotoxicity on the CF cell line and good antimicrobial and antibiofilm effects.


Assuntos
Fibrose Cística , Stenotrophomonas maltophilia , Antibacterianos/farmacologia , Biofilmes , Fibrose Cística/complicações , Humanos , Testes de Sensibilidade Microbiana , Poloxâmero , Esteroides
10.
Int J Nanomedicine ; 15: 8311-8329, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33149578

RESUMO

BACKGROUND: In the current literature, there are ongoing debates on the toxicity of graphene oxide (GO) that demonstrate contradictory findings regarding its toxicity profile. As a potential drug carrier, these findings are very concerning due to the safety concerns in humans, as well as the dramatic rise of GO being excreted into the environment. Therefore, there is an imperative need to mitigate the potential toxicity of GO to allow for a safer application in the future. PURPOSE: The present study aims to address this issue by functionalizing GO with Pluronic F127 (PF) as a means to mitigate toxicity and resolve the biocompatibility of GO. Although results from previous studies generally indicated that Pluronic functionalized GO exhibits relatively low toxicity to living organisms, reports that emphasize on its toxicity, particularly during embryonic developmental stage, are still scarce. METHODS: In the present study, two different sizes of native GO samples, GO and NanoGO, as well as PF-functionalized GO, GO-PF and NanoGO-PF, were prepared and characterized using DLS, UV-Vis, Raman spectroscopy, FTIR, and FESEM analyses. Toxicological assessment of all GO samples (0-100 µg/mL) on zebrafish embryonic developmental stages (survival, hatching and heart rates, and morphological changes) was recorded daily for up to 96 hours post-fertilization (hpf). RESULTS: The toxicity effects of each GO sample were observed to be higher at increasing concentrations and upon prolonged exposure. NanoGO demonstrated lower toxicity effects compared to GO. GO-PF and NanoGO-PF were also found to have lower toxicity effects compared to native GO samples. GO-PF showed the lowest toxicity response on zebrafish embryo. CONCLUSION: These findings highlight that toxicity is dependent on the concentration, size, and exposure period of GO. Functionalization of GO with PF through surface coating could potentially mitigate the toxicity effects of GO in embryonic developmental stages, but further investigation is warranted for broader future applications.


Assuntos
Grafite/química , Grafite/toxicidade , Nanoestruturas/toxicidade , Poloxâmero/toxicidade , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/efeitos dos fármacos , Grafite/síntese química , Nanoestruturas/química , Poloxâmero/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Testes de Toxicidade
11.
Drug Dev Ind Pharm ; 46(9): 1458-1467, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32729728

RESUMO

The present study was designed to prepare dapagliflozin (DFG) loaded ternary solid dispersions (SDs) using the carrier blend polyethylene glycol 6000 (PEG 6000) and poloxamer 188 (PLX 188). The prepared DFG-SDs were evaluated for solubility study, physicochemical characterization and molecular simulation study. The prepared DFG-SDs showed significant higher solubility and dissolution vis-a-vis pure DFG and DFG physical mixture. The composition DFG:PEG:PLX (1:2.25:0.75 mM) showed the highest solubility (0.476 ± 0.016 mg/mL). The physicochemical characterization confirms the polymorphic transition of DFG from crystalline state to stable amorphous form. The prepared DFG-SDs showed a significantly higher dissolution (64.78 ± 2.34% to 78.41 ± 2.39%) than pure DFG (15.70 ± 3.54%). DFG-SD2 showed a significantly enhanced drug permeation (p<.05) (58.76 ± 4.65 µg/cm) as compared to pure DFG (14.97 ± 3.32 µg/cm). The molecular docking study result revealed a good hydrophobic interaction of DFG with the used carrier due to the lowest energy pose. The interaction occurs between the methylene bridges and the central hydrophobic chain of polyoxypropylene of the polymer. Therefore, DFG-SDs prepared by microwave irradiation method using hydrophilic carrier blend might be a promising strategy for improving the solubility and in vitro dissolution performance.


Assuntos
Compostos Benzidrílicos/química , Glucosídeos/química , Poloxâmero , Polietilenoglicóis , Portadores de Fármacos , Simulação de Acoplamento Molecular , Polietilenoglicóis/química , Solubilidade
12.
Ther Deliv ; 11(7): 431-446, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32627679

RESUMO

Aim: This work aimed to develop a mucoadhesive film composed of a triblock copolymer (poloxamer 407), polyvinyl alcohol and polyvinylpyrrolidone for buccal modified delivery of metronidazole. Materials & methods: Three film formulations containing different polymer amounts were prepared by solvent casting. They were characterized as physicochemical, mechanical and mucoadhesive properties, and in vitro metronidazole release profiles. Results: Films displayed physicochemical, mechanical and mucoadhesive characteristics dependent of polymeric composition and drug presence. They could rapidly swell and promote the fast drug release (80% in 20 min) that was governed by Fickian diffusion. The films showed total disintegration in less than 90 s and total drug release in 30 min. Conclusion: Therefore, the formulations represent a promising alternative for modifying of buccal metronidazole delivery for pharmaceutical applications.


Assuntos
Álcool de Polivinil , Povidona , Adesividade , Administração Bucal , Sistemas de Liberação de Medicamentos , Metronidazol , Mucosa Bucal , Poloxâmero
13.
Expert Opin Drug Deliv ; 17(6): 863-880, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32274951

RESUMO

BACKGROUND: Defense personnel utilize capsaicin-based ocular sprays as non-lethal agents for law implementation during instances of mob violence. This study involves the capsaicin antagonist Capsazepine and the investigation of whether Capsazepine's antagonistic approach can be favorably utilized for defense utilization to block capsaicin-initiated pain and inflammation via the ocular pathway. RESEARCH DESIGN AND METHODS: Ocular capsazepine in situ gels were prepared with polymers Pluronic F-127 and Chitosan; optimized formulation was quantified in ocular tissues chromatographically and by in vivo live ocular imaging; anti-inflammatory efficacy was determined by eye irritation testing, corneal and retinal imaging, ocular prostaglandin estimation, and by viability and proliferation testing using human ocular cell lines, etc. RESULTS: A physicochemically stable Capsazepine in situ gel was formulated which showed little ocular irritation, considerable transcorneal permeation; was precisely quantified in ocular tissues by gas chromatography and in vivo live ocular imaging; showed anti-inflammatory properties against capsaicin by eye imaging experiments, prostaglandin declination and showed acceptable cytocompatibility when studied using human ocular cell lines. CONCLUSIONS: The fabricated in situ Capsazepine gel system might be promising for ocular delivery as it appears a pharmacologically potent and safe development, suitable for utilization in the ocular clinical therapy, provided there is additional research to substantiate it.


Assuntos
Capsaicina/análogos & derivados , Capsaicina/toxicidade , Irritantes/toxicidade , Animais , Capsaicina/farmacologia , Quitosana/química , Córnea/metabolismo , Feminino , Géis/química , Humanos , Masculino , Poloxâmero/química , Coelhos , Ratos , Ratos Wistar
14.
J Vis Exp ; (157)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32176207

RESUMO

Three-dimensional (3D) printing is an increasingly popular manufacturing technique that allows highly complex objects to be fabricated with no retooling costs. This increasing popularity is partly driven by falling barriers to entry such as system set-up costs and ease of operation. The following protocol presents the design and construction of an Additive Manufacturing Melt Extrusion (ADDME) 3D printer for the fabrication of custom parts and components. ADDME has been designed with a combination of 3D-printed, laser-cut, and online-sourced components. The protocol is arranged into easy-to-follow sections, with detailed diagrams and parts lists under the headings of framing, y-axis and bed, x-axis, extrusion, electronics, and software. The performance of ADDME is evaluated through extrusion testing and 3D printing of complex objects using viscous cream, chocolate, and Pluronic F-127 (a model for bioinks). The results indicate that ADDME is a capable platform for the fabrication of materials and constructs for use in a wide range of industries. The combination of detailed diagrams and video content facilitates access to low-cost, easy-to-operate equipment for individuals interested in 3D printing of complex objects from a wide range of materials.


Assuntos
Impressão Tridimensional/instrumentação , Eletrônica , Manipulação de Alimentos , Humanos , Poloxâmero , Impressão Tridimensional/economia
15.
Sci Rep ; 9(1): 15246, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645584

RESUMO

Whole-organism phenotypic assays are central to the assessment of neuromuscular function and health in model organisms such as the nematode C. elegans. In this study, we report a new assay format for engaging C. elegans in burrowing that enables rapid assessment of nematode neuromuscular health. In contrast to agar environments that pose specific drawbacks for characterization of C. elegans burrowing ability, here we use the optically transparent and biocompatible Pluronic F-127 gel that transitions from liquid to gel at room temperature, enabling convenient and safe handling of animals. The burrowing assay methodology involves loading animals at the bottom of well plates, casting a liquid-phase of Pluronic on top that solidifies via a modest temperature upshift, enticing animals to reach the surface via chemotaxis to food, and quantifying the relative success animals have in reaching the chemoattractant. We study the influence of Pluronic concentration, gel height and chemoattractant choice to optimize assay performance. To demonstrate the simplicity of the assay workflow and versatility, we show its novel application in multiple areas including (i) evaluating muscle mutants with defects in dense bodies and/or M-lines (pfn-3, atn-1, uig-1, dyc-1, zyx-1, unc-95 and tln-1), (ii) tuning assay conditions to reveal changes in the mutant gei-8, (iii) sorting of fast burrowers in a genetically-uniform wild-type population for later quantitation of their distinct muscle gene expression, and (iv) testing proteotoxic animal models of Huntington and Parkinson's disease. Results from our studies show that stimulating animals to navigate in a dense environment that offers mechanical resistance to three-dimensional locomotion challenges the neuromuscular system in a manner distinct from standard crawling and thrashing assays. Our simple and high throughput burrowing assay can provide insight into molecular mechanisms for maintenance of neuromuscular health and facilitate screening for therapeutic targets.


Assuntos
Caenorhabditis elegans/fisiologia , Géis/química , Músculos/fisiologia , Músculos/fisiopatologia , Poloxâmero/química , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Modelos Animais de Doenças , Locomoção , Músculos/inervação , Mutação , Transição de Fase
16.
Macromol Biosci ; 19(9): e1900245, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31386277

RESUMO

The vascular system represents the key supply chain for nutrients and oxygen inside the human body. Engineered solutions to produce sophisticated alternatives for autologous or artificial vascular implants to sustainably replace diseased vascular tissue still remain a key challenge in tissue engineering. In this paper, cell-laden 3D bioplotted hydrogel vessel-like constructs made from alginate di-aldehyde (ADA) and gelatin (GEL) are presented. The aim is to increase the mechanical stability of fibroblast-laden ADA-GEL vessels, tailoring them for maturation under dynamic cell culture conditions. BaCl2 is investigated as a crosslinker for the oxidized alginate-gelatin system. Normal human dermal fibroblast (NHDF)-laden vessel constructs are optimized successfully in terms of higher stiffness by increasing ADA concentration and using BaCl2 , with no toxic effects observed on NHDF. Contrarily, BaCl2 crosslinking of ADA-GEL accelerates cell attachment, viability, and growth from 7d to 24h compared to CaCl2 . Moreover, alignment of cells in the longitudinal direction of the hydrogel vessels when extruding the cell-laden hydrogel crosslinked with Ba2+ is observed. It is possible to tune the stiffness of ADA-GEL by utilizing Ba2+ as crosslinker. In addition, a customized, low-cost 3D printed polycarbonate (PC) perfusion chamber for perfusion of vessel-like constructs is introduced.


Assuntos
Custos e Análise de Custo , Hidrogéis/farmacologia , Perfusão/economia , Impressão Tridimensional/economia , Alginatos/química , Animais , Compostos de Bário/química , Cloreto de Cálcio/química , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cloretos/química , Derme/citologia , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/ultraestrutura , Géis , Humanos , Camundongos , Poloxâmero/química , Alicerces Teciduais/química
17.
Biotechniques ; 67(3): 98-109, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31347927

RESUMO

Poloxamers are water-soluble polymers that are widely used in cell culture bioprocessing to protect cells against shearing forces. Use of poor-quality poloxamers may lead to a drastic reduction in cell growth, viabilities and productivities in cell culture-based manufacturing. In order to evaluate poloxamer quality and promote more consistent performance, a rapid cell membrane adhesion to hydrocarbon assay was developed based on the adhesive properties of cell membranes to selective hydrocarbons. The assay can identify a poor-performing poloxamer characterized by significant drop in viable cell density and percent viability. The assay was verified across multiple good and bad poloxamer lots, and the results were in agreement with established cell growth and high-performance liquid chromatography assays.


Assuntos
Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Poloxâmero/farmacologia , Substâncias Protetoras/farmacologia , Animais , Células CHO , Contagem de Células/métodos , Técnicas de Cultura de Células/economia , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Cricetulus , Células HEK293 , Humanos , Poloxâmero/análise , Substâncias Protetoras/análise , Fatores de Tempo
18.
J Burn Care Res ; 40(3): 327-330, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30801643

RESUMO

Lubricating agents facilitate effective harvesting of split-thickness skin grafts. Multiple agents, including water-based gel, mineral oil, glycerin, and poloxamer 188, have been utilized in this capacity. The agent selected is typically at the discretion of the provider and institution, as a single "ideal" lubricant remains to be objectively established. Furthermore, a recent discontinuation of Shur-Clens® Skin Wound Cleanser1 (a wound cleansing solution consisting of the surfactant poloxamer 188) has prompted the search for a suitable substitute for many providers. The purpose of this study is to directly compare five lubricants (including a novel surgical lubricant-based solution) to select a preferred agent. Four practitioners blindly tested five lubricants while harvesting a split-thickness skin graft on a porcine skin model (glycerin, mineral oil, saline, poloxamer 188, and a novel lubricant solution created with surgical lube and sterile water). The results were recorded on a Likert scale where 1 indicated poor performance and 5 indicated excellent performance. Data were pooled, and means were compared with analysis of variance and post hoc Tukey test. The cost of each lubricating solution was also reported. Mean scores for each of the solutions were as follows: dry control = 1.1 ± 0.1; glycerin = 2.62 ± 1.02, saline = 3.88 ± 0.81, mineral oil = 3.75 ± 1.00, novel water-based lubricant solution = 4.63 ± 0.71, and poloxamer 188 = 3.88 ± 0.81. All solutions were superior to dry control (P < .01). Glycerin was noted to have statistically lower scores than all of the other solutions (P < .01). The novel water-based surgical lubricant solution had significantly higher mean scores than both glycerin (P < .01) and mineral oil (P < .05). Each solution was compared according to dollars per 100cc with glycerin and Shur-Clens® representing the most expensive options at almost $3/100cc and saline the least expensive at less than $0.15/100cc. In a porcine skin model, the novel water-based surgical lubricant solution had the best performance. It was statistically superior to glycerin and mineral oil and was also found to be the most cost-effective option in terms of overall performance compared with relative cost. Glycerin had the worst performance with statistically lower scores than all other solutions. Glycerin was also found to be the least cost-effective due to a large discrepancy between high cost and low overall performance. Saline performed better than expected. These results may be skewed due to the inherently greasy nature of the butcher shop porcine skin, creating limitations and decreasing the fidelity of the model. In a search for the "ideal" lubricant, other models should be further studied.


Assuntos
Lubrificantes/química , Lubrificantes/economia , Poloxâmero/química , Transplante de Pele/métodos , Coleta de Tecidos e Órgãos/métodos , Análise de Variância , Animais , Análise Custo-Benefício , Géis/química , Glicerol/química , Rejeição de Enxerto , Sobrevivência de Enxerto , Humanos , Óleo Mineral/química , Sensibilidade e Especificidade , Suínos
19.
AAPS PharmSciTech ; 20(3): 106, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30746582

RESUMO

Kaempferol (KPF), an important flavonoid, has been reported to exert antioxidant, anti-inflammatory, and anticancer activity. However, this compound has low water solubility and hence poor oral bioavailability. This work aims to prepare a solid dispersion (SD) of KPF using Poloxamer 407 in order to improve the water solubility, dissolution rate, and pharmacokinetic properties KPF. After optimization, SDs were prepared at a 1:5 weight ratio of KPF:carrier using the solvent method (SDSM) and melting method (SDMM). Formulations were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) analysis, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The solubility in water of carried-KPF was about 4000-fold greater than that of free KPF. Compared with free KPF or the physical mixture, solid dispersions significantly increased the extent of drug release (approximately 100% within 120 min) and the dissolution rate. Furthermore, after oral administration of SDMM in rats, the area under the curve (AUC) and the peak plasma concentration (Cmax) of KPF from SDMM were twofold greater than those of free KPF (p < 0.05). In conclusion, SD with Poloxamer 407 is a feasible pharmacotechnical strategy to ameliorate the dissolution and bioavailability of KPF.


Assuntos
Quempferóis/química , Quempferóis/farmacocinética , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Masculino , Microscopia Eletrônica de Varredura , Poloxâmero/química , Ratos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
20.
Mater Sci Eng C Mater Biol Appl ; 92: 69-76, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184796

RESUMO

In this study the effect of nature of nanostructural materials used as colorimetric optical probes on the analytical performance of the resulting sensors is compared. Different effects related to the nanoprobe materials - probe structure and properties: surface charge and stability, but also effects related to the analyte - receptor interactions - complex formation kinetics and transport of ions from the sample to the probe were taken into account. Presence of charge on the nanostructural colorimetric sensor effectively hinders ions exchange between the probe and the sample, leading to a linear dependence of absorbance on logarithm of analyte concentration changes. Interestingly, both anionic and cationic micelles are offering linear dependence on logarithm of concentration, covering 2 logarithmic units. Nanostructures, e.g. prepared from amphiphilic polymer Pluronic F127, lead to absorbance dependence on concentration observed in rather narrow concentration range. In this respect crosslinked poly(maleic anhydride-alt-1-octadecene) nanostructures of pH tunable surface charge, due to the presence of carboxyl and amine group on the surface, seem an attractive alternative, offering also the lowest detection limits among tested systems. This system is stable even in the presence of high concentration of background electrolyte in the sample and offers the lowest detection limit, what makes it useful as e.g. indicator for titration. Generally from the results obtained it follows that inert complexes, hindering ion transport to the probe, can be used to expose a linear dependence of the optical signal on logarithm of concentration, whereas for labile complexes formed sigmoidal type dependences of higher sensitivity over limited concentration range are obtained.


Assuntos
Colorimetria , Nanoestruturas/química , Polímeros/química , Concentração de Íons de Hidrogênio , Íons/química , Limite de Detecção , Micelas , Naftóis/química , Níquel/análise , Poloxâmero/química , Propriedades de Superfície , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA