Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Dent ; 145: 105015, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38657726

RESUMO

OBJECTIVES: To assess and compare the cell viability and ion release profiles of two conventional glass ionomer cements (GICs), Fuji IX and Ketac Molar EasyMix, modified with TiO2 and Mg-doped-HAp nanoparticles (NPs). METHODS: TiO2 NPs, synthesized via a sol-gel method, and Mg-doped hydroxyapatite, synthesized via a hydrothermal process, were incorporated into GICs at a concentration of 5 wt.%. The biocompatibility of prepared materials was assessed by evaluating their effects on the viability of dental pulp stem cells (DPSCs), together with monitoring ion release profiles. Statistical analysis was performed using One-way analysis of variance, with significance level p < 0.05. RESULTS: The addition of NPs did not significantly affect the biocompatibility of GICs, as evidenced by comparable decreased levels in cell viability to their original formulations. Distinct variations in cell viability were observed among Fuji IX and Ketac Molar, including their respective modifications. FUJI IX and its modification with TiO2 exhibited moderate decrease in cell viability, while other groups exhibited severe negative effects. While slight differences in ion release profiles were observed among the groups, significant variations compared to original cements were not achieved. Fluoride release exhibited an initial "burst release" within the initial 24 h in all samples, stabilizing over subsequent days. CONCLUSIONS: The addition of NPs did not compromise biocompatibility, nor anticariogenic potential of tested GICs. However, observed differences among FUJI IX and Ketac Molar, including their respective modifications, as well as induced low viability of DPSC by all tested groups, suggest the need for careful consideration of cement composition in their biological assessments. CLINICAL SIGNIFICANCE: The findings contribute to understanding the complex interaction between NPs and GIC matrices. However, the results should be interpreted recognizing the inherent limitations associated with in vitro studies. Further research avenues could explore long-term effects, in vivo performance, and potential clinical applications.


Assuntos
Sobrevivência Celular , Polpa Dentária , Durapatita , Fluoretos , Cimentos de Ionômeros de Vidro , Magnésio , Teste de Materiais , Nanopartículas , Titânio , Titânio/química , Cimentos de Ionômeros de Vidro/química , Sobrevivência Celular/efeitos dos fármacos , Durapatita/química , Humanos , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Nanopartículas/química , Fluoretos/química , Magnésio/química , Células-Tronco/efeitos dos fármacos , Materiais Biocompatíveis/química , Íons , Células Cultivadas
2.
Chem Biol Interact ; 349: 109674, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562440

RESUMO

We have assessed the molecular role of Rutin and rutin-Zn(II) complex on osteoblast differentiation and mineralization in human dental pulp cells and zebrafish model. The biocompatibility of the rutin-Zn(II) complex was determined using MTT and chick embryotoxicity assays. Alizarin red staining and ALP measurements were performed to study the osteogenic role of Rutin and rutin-Zn(II) complex at the cellular level in hDPSCs. At molecular level, following rutin and rutin-Zn(II) exposure, the mRNA expression profile of osteoblast markers such Runx2, type 1 col, OC, and ON were investigated. In addition to this, the expression of negative regulators of osteoblast development such Smad7, Smurf1, and HDAC7 waere studied by Real time RT-PCR analysis. The osteogenic role of prepared complex under in vivo was studied by an in-house zebrafish scale model followed by osteoblast differentiation markers expression profiling and Ca:P level measurement by ICP-MS. Rutin and the rutin-Zn(II) complex were found to be non-toxic till 10 µM and increased the expression of osteoblast differentiation marker genes. It also enhanced calcium deposition in both in vitro and in vivo models. Osteogenic property of rutin-Zn(II) in hDPSCs was found be mediated by Smad7, Smurf1, and HDAC7 and enhancing Runx2 expression. Our study warrants the possible use of rutin-Zn(II) as naïve agent or in combination with other bone scaffolding systems/materials for bone tissue engineering applications.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Osteogênese/efeitos dos fármacos , Rutina/química , Zinco/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Polpa Dentária/citologia , Humanos , Osteocalcina/genética , Osteocalcina/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Peixe-Zebra/metabolismo
3.
Trials ; 21(1): 520, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532356

RESUMO

OBJECTIVES: To assess the safety and therapeutic effects of allogeneic human dental pulp stem cells (DPSCs) in treating severe pneumonia caused by COVID-19. TRIAL DESIGN: This is a single centre, two arm ratio 1:1, triple blinded, randomized, placebo-controlled, parallel group, clinical trial. PARTICIPANTS: Twenty serious COVID-19 cases will be enrolled in the trial from April 6th to December 31st 2020. INCLUSION CRITERIA: hospitalised patients at Renmin Hospital of Wuhan University satisfy all criteria as below: 1)Adults aged 18-65 years;2)Voluntarily participate in this clinical trial and sign the "informed consent form" or have consent from a legal representative.3)Diagnosed with severe pneumonia of COVID-19: nucleic acid test SARS-CoV-2 positive; respiratory distress (respiratory rate > 30 times / min); hypoxia (resting oxygen saturation < 93% or arterial partial pressure of oxygen / oxygen concentration < 300 mmHg).4)COVID-19 featured lung lesions in chest X-ray image. EXCLUSION CRITERIA: Patients will be excluded from the study if they meet any of the following criteria. 1.Patients have received other experimental treatment for COVID-19 within the last 30 days;2.Patients have severe liver condition (e.g., Child Pugh score >=C or AST> 5 times of the upper limit);3.Patients with severe renal insufficiency (estimated glomerular filtration rate <=30mL / min/1.73 m2) or patients receiving continuous renal replacement therapy, hemodialysis, peritoneal dialysis;4.Patients who are co-infected with HIV, hepatitis B, tuberculosis, influenza virus, adenovirus or other respiratory infection viruses;5.Female patients who have no sexual protection in the last 30 days prior to the screening assessment;6.Pregnant or lactating women or women using estrogen contraception;7.Patients who are planning to become pregnant during the study period or within 6 months after the end of the study period;8.Other conditions that the researchers consider not suitable for participating in this clinical trial. INTERVENTION AND COMPARATOR: There will be two study groups: experimental and control. Both will receive all necessary routine treatment for COVID-19. The experimental group will receive an intravenous injection of dental pulp stem cells suspension (3.0x107 human DPSCs in 30ml saline solution) on day 1, 4 and 7; The control group will receive an equal amount of saline (placebo) on the same days. Clinical and laboratory observations will be performed for analysis during a period of 28 days for each case since the commencement of the study. MAIN OUTCOMES: 1. Primary outcome The primary outcome is Time To Clinical Improvement (TTCI). By definition, TTCI is the time (days) it takes to downgrade two levels from the following six ordered grades [(grade 1) discharge to (grade 6) death] in the clinical state of admission to the start of study treatments (hDPSCs or placebo). Six grades of ordered variables: GradeDescriptionGrade 1:Discharged of patient;Grade 2:Hospitalized without oxygen supplement;Grade 3:Hospitalized, oxygen supplement is required, but NIV / HFNC is not required;Grade 4:Hospitalized in intensive care unit, and NIV / HFNC treatment is required;Grade 5:Hospitalized in intensive care unit, requiring ECMO and/or IMV;Grade 6:Death. ABBREVIATIONS: NIV, non-invasive mechanical ventilation; HFNC, high-flow nasal catheter; IMV, invasive mechanical ventilation. 2. Secondary outcomes 2.1 vital signs: heart rate, blood pressure (systolic blood pressure, diastolic blood pressure). During the screening period, hospitalization every day (additional time points of D1, D4, D7 30min before injection, 2h ± 30min, 24h ± 30min after the injection) and follow-up period D90 ± 3 days. 2.2 Laboratory examinations: during the screening period, 30 minutes before D1, D4, D7 infusion, 2h ± 30min, 24h ± 30min after the end of infusion, D10, D14, D28 during hospitalization or discharge day and follow-up period D90 ± 3 days. 2.3 Blood routine: white blood cells, neutrophils, lymphocytes, monocytes, eosinophils, basophils, neutrophils, lymphocytes, monocytes, eosinophils Acidic granulocyte count, basophil count, red blood cell, hemoglobin, hematocrit, average volume of red blood cells, average red blood cell Hb content, average red blood cell Hb concentration, RDW standard deviation, RDW coefficient of variation, platelet count, platelet specific platelet average Volume, platelet distribution width,% of large platelets; 2.4 Liver and kidney function tests: alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl transferase, prealbumin, total protein, albumin, globulin, white / globule ratio , Total bilirubin, direct bilirubin, cholinesterase, urea, creatinine, total carbon dioxide, uric acid glucose, potassium, sodium, chlorine, calcium, corrected calcium, magnesium, phosphorus, calcium and phosphorus product, anion gap, penetration Pressure, total cholesterol, triacylglycerol, high density lipoprotein cholesterol, Low density lipoprotein cholesterol, lipoprotein a, creatine kinase, lactate dehydrogenase, estimated glomerular filtration rate. 2.5 Inflammation indicators: hypersensitive C-reactive protein, serum amyloid (SAA); 2.6 Infectious disease testing: Hepatitis B (HBsAg, HBsAb, HBeAg, HBeAb, HBcAb), Hepatitis C (Anti-HCV), AIDS (HIVcombin), syphilis (Anti-TP), cytomegalovirus CMV-IgM, cytomegalovirus CMV-IgG; only during the screening period and follow-up period D90 ± 3. 2.7 Immunological testing: Collect peripheral blood to detect the phenotype of T lymphocyte, B lymphocyte, natural killer cell, Macrophage and neutrophil by using flow cytometry. Collect peripheral blood to detect the gene profile of mononuclear cells by using single-cell analyses. Collect peripheral blood serum to detect various immunoglobulin changes: IgA, IgG, IgM, total IgE; Collect peripheral blood serum to explore the changes of cytokines, Th1 cytokines (IL-1 ß, IL-2, TNF-a, ITN-γ), Th2 cytokines (IL-4, IL-6, IL -10). 2.8 Pregnancy test: blood ß-HCG, female subjects before menopause are examined during the screening period and follow-up period D90 ± 3. 2.9 Urine routine: color, clarity, urine sugar, bilirubin, ketone bodies, specific gravity, pH, urobilinogen, nitrite, protein, occult blood, leukocyte enzymes, red blood cells, white blood cells, epithelial cells, non-squamous epithelial cells , Transparent cast, pathological cast, crystal, fungus; 2.10 Stool Routine: color, traits, white blood cells, red blood cells, fat globules, eggs of parasites, fungi, occult blood (chemical method), occult blood (immune method), transferrin (2h ± 30min after the injection and not detected after discharge). RANDOMIZATION: Block randomization method will be applied by computer to allocate the participants into experimental and control groups. The random ratio is 1:1. BLINDING (MASKING): Participants, outcomes assessors and investigators (including personnel in laboratory and imaging department who issue the sample report or image observations) will be blinded. Injections of cell suspension and saline will be coded in accordance with the patient's randomisation group. The blind strategy is kept by an investigator who does not deliver the medical care or assess primary outcome results. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): Twenty participants will be randomized to the experimental and control groups (10 per group). TRIAL STATUS: Protocol version number, hDPSC-CoVID-2019-02-2020 Version 2.0, March 13, 2020. Patients screening commenced on 16th April and an estimated date of the recruitment of the final participants will be around end of July. . TRIAL REGISTRATION: Registration: World Health Organization Trial Registry: ChiCTR2000031319; March 27,2020. ClinicalTrials.gov Identifier: NCT04336254; April 7, 2020 Other Study ID Numbers: hDPSC-CoVID-2019-02-2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Assuntos
Infecções por Coronavirus/terapia , Polpa Dentária/citologia , Pneumonia Viral/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Transplante de Células-Tronco/métodos , Adolescente , Adulto , Idoso , Betacoronavirus , COVID-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Pandemias , SARS-CoV-2 , Transplante de Células-Tronco/efeitos adversos , Transplante Homólogo , Adulto Jovem
4.
Mater Sci Eng C Mater Biol Appl ; 107: 110243, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761159

RESUMO

In this work, dextran based membranes with potential to be used as implantable devices in Tissue Engineering and Regenerative Medicine (TERM) were prepared by a straightforward strategy. Briefly, two polymers approved by the Food and Drug Administration, viz. dextran and poly(ε-caprolactone) (PCL) were functionalized with methacrylate moieties, and subjected to photocrosslinking. Employing different weight ratios of each polymer in the formulations allowed to obtain transparent membranes with tunable physicochemical properties and low adverse host tissue response. Independently of the material, all formulations have shown to be thermally stable up to 300 °C whilst variations in the polymer ratio resulted in membranes with different glass transition temperatures (Tg) and flexibility. The swelling capacity ranged from 50% to 200%. On the other hand, in vitro hydrolytic degradation did not show to be material-dependent and all membranes maintained their structural integrity for more than 30 days, losing only 8-12% of their initial weight. Preliminary in vitro biological tests did not show any cytotoxic effect on seeded human dental pulp stem cells (hDPSCs), suggesting that, in general, all membranes are capable of supporting cell adhesion and viability. The in vivo biocompatibility of membranes implanted subcutaneously in rats' dorsum indicate that M100/0 (100%wt dextran) and M25/75 (25 %wt dextran) formulations can be classified as "slight-irritant" and "non-irritant", respectively. From the histological analysis performed on the main tissue organs it was not possible to detect any signs of fibrosis or necrosis thereby excluding the presence of toxic degradation by-products deposited or accumulated in these tissues. In combination, these results suggest that the newly developed formulations hold great potential as engineered devices for biomedical applications, where the biological response of cells and tissues are greatly dependent on the physical and chemical cues provided by the substrate.


Assuntos
Materiais Biocompatíveis/química , Dextranos/química , Membranas Artificiais , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Cálcio/metabolismo , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Polpa Dentária/citologia , Humanos , Masculino , Metacrilatos/química , Poliésteres/química , Próteses e Implantes , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/metabolismo , Tela Subcutânea/metabolismo , Tela Subcutânea/patologia
5.
Chem Commun (Camb) ; 55(14): 2058-2061, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30688964

RESUMO

It is of great interest to prepare osteogenic and antibacterial coatings for successful implants. Current coating techniques suffer from being time-consuming, substrate material or shape dependence, expensive equipment, environmental pollution, low stability, processes that are difficult to control, etc. Herein, inspired by mussels, we report a one-step and versatile method to fabricate a dual functional coating. The coating is finished in minutes independently of materials or dimensions of substrates. Thus, our coatings exhibit strong antibacterial ability against both Gram-positive bacteria S. aureus, and Gram-negative bacteria E. coli, support the proliferation of dental pulp stem cells (DPSCs), and are powerful for inducing osteogenic differentiation. The universality, facility, rapidness, and mildness of our coating process, which is also environmentally-friendly and cost-effective, points towards potential applications in bone or dental implants.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/síntese química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Bivalves , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Análise Custo-Benefício , Polpa Dentária/citologia , Humanos , Proteínas/química , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Propriedades de Superfície
6.
ACS Appl Mater Interfaces ; 10(45): 38739-38748, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30351898

RESUMO

The identification of biomaterials that modulate cell responses is a crucial task for tissue engineering and cell therapy. The identification of novel materials is complicated by the immense number of synthesizable polymers and the time required for testing each material experimentally. In the current study, polymeric biomaterial-cell interactions were assessed rapidly using a microarray format. The attachment, proliferation, and differentiation of human dental pulp stem cells (hDPSCs) were investigated on 141 homopolymers and 400 diverse copolymers. The copolymer of isooctyl acrylate and 2-(methacryloyloxy)ethyl acetoacetate achieved the highest attachment and proliferation of hDPSC, whereas high cell attachment and differentiation of hDPSC were observed on the copolymer of isooctyl acrylate and trimethylolpropane ethoxylate triacrylate. Computational models were generated, relating polymer properties to cellular responses. These models could accurately predict cell behavior for up to 95% of materials within a test set. The models identified several functional groups as being important for supporting specific cell responses. In particular, oxygen-containing chemical moieties, including fragments from the acrylate/acrylamide backbone of the polymers, promoted cell attachment. Small hydrocarbon fragments originating from polymer pendant groups promoted cell proliferation and differentiation. These computational models constitute a key tool to direct the discovery of novel materials within the enormous chemical space available to researchers.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Polpa Dentária/citologia , Polímeros/farmacologia , Células-Tronco/citologia , Diferenciação Celular/efeitos dos fármacos , Polpa Dentária/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Teste de Materiais/métodos , Modelos Biológicos , Modelos Químicos , Odontogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
7.
Dent Mater J ; 37(6): 889-896, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30224601

RESUMO

The objective of this study was to investigate the effects of a silicate-based composite material on proliferation and mineralization of human dental pulp cells (hDPCs), which was compared with those of calcium hydroxide (Ca(OH)2, CH) and tricalcium silicate (Ca3SiO5, C3S). HDPCs were cultured with CH, C3S and tricalcium silicate/dicalcium silicate (Ca3SiO5/Ca2SiO4, C3S/C2S) composites extract. The CCK-8 assay showed that the composite material stimulated the proliferation of hDPCs. The odontogenic marker genes and DSPP protein expression were more significantly up-regulated by the C3S/C2S composite material compared with pure CH and C3S. HDPCs cultured with composite material extract exert stronger ALP activity and alizarin red S staining. C3S/C2S composite material was advantageous over pure C3S by showing enhanced ability to stimulate the proliferation and odontogenic differentiation of hDPCs, suggesting that the C3S/C2S composite materials possess desirable biocompatibility and bioactivity, and might be a new type of pulp-capping agent and dentin alternative materials.


Assuntos
Compostos de Cálcio/farmacologia , Resinas Compostas/farmacologia , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Fosfatase Alcalina/biossíntese , Western Blotting , Hidróxido de Cálcio/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Reação em Cadeia da Polimerase em Tempo Real , Silicatos/farmacologia , Calcificação de Dente/efeitos dos fármacos
8.
Dent Mater ; 34(8): 1175-1187, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29779627

RESUMO

OBJECTIVE: Collagen fibrils aid in anchoring resin composite restorations to the dentine substrate. The aim of the study was to investigate effect of non-enzymatic glycation on bond strength and durability of demineralized dentine specimens in a modified two-step etch-and-rinse dentine adhesive. METHODS: Dentine surfaces were etched with 37% phosphoric acid, bonded with respective in vitro ethanol and acetone adhesives modified with (m/m, 0, 1%, 2% and 3% ribose), restored with restorative composite-resin, and sectioned into resin-dentine slabs and beams to be stored for 24h or 12 months in artificial saliva. Bond-strength testing was performed with bond failure analysis. Pentosidine assay was performed on demineralized ribose modified dentine specimens with HPLC sensitive fluorescent detection. The structural variations of ribose-modified dentine were analysed using TEM and human dental pulpal cells were used for cell viability. Three-point bending test of ribose-modified dentine beams were performed and depth of penetration of adhesives evaluated with micro-Raman spectroscopy. The MMP-2 and cathepsin K activities in ribose-treated dentine powder were also quantified using ELISA. Bond strength data was expressed using two-way ANOVA followed by Tukey's test. Paired T tests were used to analyse the specimens for pentosidine crosslinks. The modulus of elasticity and dentinal MMP-2 and cathepsin K concentrations was separately analyzed using one-way ANOVA. RESULTS: The incorporation of RB in the experimental two-step etch-and-rinse adhesive at 1% improved the adhesive bond strength without adversely affecting the degree of polymerisation. The newly developed adhesive increases the resistance of dentine collagen to degradation by inhibiting endogenous matrix metalloproteinases and cysteine cathepsins. The application of RB to acid-etched dentine helps maintain the mechanical properties. SIGNIFICANCE: The incorporation of 1%RB can be considered as a potential candidate stabilizing resin dentine bond.


Assuntos
Adesivos Dentinários/química , Ribose/química , Condicionamento Ácido do Dente , Catepsina K/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Polpa Dentária/citologia , Análise do Estresse Dentário , Ensaio de Imunoadsorção Enzimática , Humanos , Técnicas In Vitro , Teste de Materiais , Metaloproteinase 2 da Matriz/metabolismo , Microscopia Eletrônica , Saliva Artificial , Análise Espectral Raman , Propriedades de Superfície
9.
Toxicol In Vitro ; 47: 207-212, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29247761

RESUMO

Biphasic Calcium Phosphate (BCP) with a ratio of 20/80 Hydroxyapatite (HA)/Beta-tricalcium phosphate (ß-TCP) promotes the differentiation of human dental pulp cells (HDPCs). In the current study, the genotoxicity of locally produced BCP of modified porosity (65%) with a mean pore size of 300micrometer (µm) was assessed using Comet and Ames assays. HDPCs were treated with BCP extract at three different inhibitory concentrations which were obtained based on cytotoxicity test conducted with concurrent negative and positive controls. The tail moment of HDPCs treated with BCP extract at all three concentrations showed no significant difference compared to negative control (p>0.05), indicating that BCP did not induce DNA damage to HDPCs. The BCP was evaluated using five tester strains of Salmonella typhimurium TA98, TA100, TA102, TA1537 and TA1538. Each strain was incubated with BCP extract with five different concentrations in the presence and absence of metabolic activation system (S9) mix. Concurrently, negative and positive controls were included. The average number of revertant colonies per plate treated with the BCP extract was less than double as compared to the number of revertant colonies in negative control plate and no dose-related increase was observed. Results from both assays suggested that the BCP of modified porosity did not exhibit any genotoxic effect under the present test conditions.


Assuntos
Implantes Dentários/efeitos adversos , Polpa Dentária/efeitos dos fármacos , Hidroxiapatitas/efeitos adversos , Ativação Metabólica , Adolescente , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Polpa Dentária/citologia , Humanos , Hidroxiapatitas/química , Hidroxiapatitas/metabolismo , Malásia , Masculino , Microscopia de Fluorescência , Microssomos/enzimologia , Testes de Mutagenicidade , Porosidade , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética
10.
Stem Cell Res Ther ; 8(1): 247, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096714

RESUMO

BACKGROUND: Development of clinical-grade cell preparations is central to meeting the regulatory requirements for cellular therapies under good manufacturing practice-compliant (cGMP) conditions. Since addition of animal serum in culture media may compromise safe and efficient expansion of mesenchymal stem cells (MSCs) for clinical use, this study aimed to investigate the potential of two serum/xeno-free, cGMP culture systems to maintain long-term "stemness" of oral MSCs (dental pulp stem cells (DPSCs) and alveolar bone marrow MSCs (aBMMSCs)), compared to conventional serum-based expansion. METHODS: DPSC and aBMMSC cultures (n = 6/cell type) were established from pulp and alveolar osseous biopsies respectively. Three culture systems were used: StemPro_MSC/SFM_XenoFree (Life Technologies); StemMacs_MSC/XF (Miltenyi Biotek); and α-MEM (Life Technologies) with 15% fetal bovine serum. Growth (population doublings (PDs)), immunophenotypic (flow cytometric analysis of MSC markers) and senescence (ß-galactosidase (SA-ß-gal) activity; telomere length) characteristics were determined during prolonged expansion. Gene expression patterns of osteogenic (ALP, BMP-2), adipogenic (LPL, PPAR-γ) and chondrogenic (ACAN, SOX-9) markers and maintenance of multilineage differentiation potential were determined by real-time PCR. RESULTS: Similar isolation efficiency and stable growth dynamics up to passage 10 were observed for DPSCs under all expansion conditions. aBMMSCs showed lower cumulative PDs compared to DPSCs, and when StemMacs was used substantial delays in cell proliferation were noted after passages 6-7. Serum/xeno-free expansion produced cultures with homogeneous spindle-shaped phenotypes, while serum-based expansion preserved differential heterogeneous characteristics of each MSC population. Prolonged expansion of both MSC types but in particular the serum/xeno-free-expanded aBMMSCs was associated with downregulation of CD146, CD105, Stro-1, SSEA-1 and SSEA-4, but not CD90, CD73 and CD49f, in parallel with an increase of SA-gal-positive cells, cell size and granularity and a decrease in telomere length. Expansion under both serum-free systems resulted in "osteogenic pre-disposition", evidenced by upregulation of osteogenic markers and elimination of chondrogenic and adipogenic markers, while serum-based expansion produced only minor changes. DPSCs retained a diminishing (CCM, StemPro) or increasing (StemMacs) mineralization potential with passaging, while aBMMSCs lost this potential after passages 6-7 under all expansion conditions. CONCLUSIONS: These findings indicate there is still a vacant role for development of qualified protocols for clinical-grade expansion of oral MSCs; a key milestone achievement for translation of research from the bench to clinics.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Meios de Cultura Livres de Soro/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Agrecanas/genética , Agrecanas/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Processo Alveolar/citologia , Processo Alveolar/efeitos dos fármacos , Processo Alveolar/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Meios de Cultura Livres de Soro/química , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Indústria Farmacêutica/legislação & jurisprudência , Expressão Gênica/efeitos dos fármacos , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , PPAR gama/genética , PPAR gama/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Homeostase do Telômero , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
11.
J Mater Sci Mater Med ; 28(5): 77, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28386853

RESUMO

The objective of the present study was to investigate the effect of a fabricated combination of poly-ɛ-caprolactone (PCL)-biphasic calcium phosphate (BCP) with the modified melt stretching and multilayer deposition (mMSMD) technique on human dental pulp stem cell (hDPSC) differentiation to be osteogenic like cells for bone regeneration of calvarial defects in rabbit models. hDPSCs extracted from human third molars were seeded onto mMSMD PCL-BCP scaffolds and the osteogenic gene expression was tested prior to implantation in vivo. Two standardized 11 mm in diameter circular calvarial defects were created in 18 adult male New Zealand white rabbits. The rabbits were divided into 4 groups: (1) hDPSCs seeded in mMSMD PCL-BCP scaffolds; (2) mMSMD PCL-BCP scaffolds alone, (3) empty defects and (4) autogenous bone (n = 3 site/time point/groups). After two, four and eight weeks after the operation, the specimens were harvested for micro-CT including histological and histomorphometric analysis. The explicit results presented an interesting view of the bioengineered constructs of hDPSCs in PCL-BCP scaffolds that increased the newly formed bone compared to the empty defect and scaffold alone groups. The results demonstrated that hDPSCs combined with mMSMD PCL-BCP scaffolds may be an augmentation material for bony defect.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Polpa Dentária/citologia , Crânio/patologia , Células-Tronco/citologia , Engenharia Tecidual , Alicerces Teciduais , Animais , Diferenciação Celular , Humanos , Hidroxiapatitas/química , Imunofenotipagem , Masculino , Dente Molar , Poliésteres/química , Coelhos , Tomografia Computadorizada por Raios X , Microtomografia por Raio-X
12.
J Nanobiotechnology ; 14(1): 59, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27431051

RESUMO

BACKGROUND: Nanoparticles' unique features have been highly explored in cellular therapies. However, nanoparticles can be cytotoxic. The cytotoxicity can be overcome by coating the nanoparticles with an appropriated surface modification. Nanoparticle coating influences biocompatibility between nanoparticles and cells and may affect some cell properties. Here, we evaluated the biocompatibility of gold and maghemite nanoparticles functionalized with 2,3-dimercaptosuccinic acid (DMSA), Au-DMSA and γ-Fe2O3-DMSA respectively, with human mesenchymal stem cells. Also, we tested these nanoparticles as tracers for mesenchymal stem cells in vivo tracking by computed tomography and as agents for mesenchymal stem cells magnetic targeting. RESULTS: Significant cell death was not observed in MTT, Trypan Blue and light microscopy analyses. However, ultra-structural alterations as swollen and degenerated mitochondria, high amounts of myelin figures and structures similar to apoptotic bodies were detected in some mesenchymal stem cells. Au-DMSA and γ-Fe2O3-DMSA labeling did not affect mesenchymal stem cells adipogenesis and osteogenesis differentiation, proliferation rates or lymphocyte suppression capability. The uptake measurements indicated that both inorganic nanoparticles were well uptaken by mesenchymal stem cells. However, Au-DMSA could not be detected in microtomograph after being incorporated by mesenchymal stem cells. γ-Fe2O3-DMSA labeled cells were magnetically responsive in vitro and after infused in vivo in an experimental model of lung silicosis. CONCLUSION: In terms of biocompatibility, the use of γ-Fe2O3-DMSA and Au-DMSA as tracers for mesenchymal stem cells was assured. However, Au-DMSA shown to be not suitable for visualization and tracking of these cells in vivo by standard computed microtomography. Otherwise, γ-Fe2O3-DMSA shows to be a promising agent for mesenchymal stem cells magnetic targeting.


Assuntos
Rastreamento de Células/métodos , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Silicose/diagnóstico por imagem , Coloração e Rotulagem/métodos , Succímero/farmacologia , Adolescente , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Compostos Férricos/química , Compostos Férricos/farmacologia , Ouro/química , Ouro/farmacologia , Humanos , Nanopartículas de Magnetita/ultraestrutura , Células-Tronco Mesenquimais/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Tamanho da Partícula , Cultura Primária de Células , Silicose/patologia , Succímero/química , Microtomografia por Raio-X
13.
J Biomed Mater Res A ; 104(11): 2723-9, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27341787

RESUMO

Dental implantology is still an expanding field of scientific study because of the number of people that receive dental therapies throughout their lives worldwide. Recovery times associated to dental surgery are still long and demand strategies to improve integration of metallic devices with hard tissues. In this work, an in vitro ceramic coating is proposed to improve and accelerate osseointegration of titanium surfaces conceived to be used as dental implants or hip or knee prosthesis, shaped either as dishes or screws. Such coating consists of hydroxyapatite microdomains on the implant surfaces obtained in vitro by immersion of titanium alloy samples (Ti6Al4V) in a simulated body fluid. This titanium alloy is highly used in implant dentistry and trauma surgery, among other fields. Once the immersion times under physiological conditions yielding to different ceramic topographies on this alloy were set, the acellular coating time of major interest so as to optimize its biological development was determined. For this purpose, dental pulp mesenchymal cells were cultured on titanium coated surfaces with different hydroxyapatite outline, and cell adhesion, proliferation and morphology were followed through histological techniques and scanning electron microscopy. It was found that 4 days of acellular hydroxyapatite coating led to a significant cell adhesion on the titanium alloys at an early stage (6 h). Cells tended although to detach from the surface of the coating over time, but those adhered on domains of intricated topography or hydroxyapatite cauliflowers proliferated on them, leading to isolated large cell clusters. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2723-2729, 2016.


Assuntos
Materiais Revestidos Biocompatíveis/química , Implantes Dentários , Materiais Dentários/química , Durapatita/química , Titânio/química , Ligas , Adesão Celular , Células Cultivadas , Polpa Dentária/citologia , Humanos , Osseointegração , Propriedades de Superfície
14.
J Endod ; 42(3): 397-401, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26778266

RESUMO

INTRODUCTION: This study was designed to evaluate the usefulness of magnetic resonance imaging (MRI) to assess the regeneration of pulp tissue. METHODS: Mobilized dental pulp stem cells and granulocyte colony-stimulating factor with collagen were transplanted into mature pulpectomized teeth for pulp regeneration (n = 4). The controls consisted of pulpectomized teeth with or without collagen and normal teeth with intact pulp tissue (n = 4, each). The signal intensity (SI) of MRI using T2 sequences was compared after the extraction of teeth in dogs. MRI was correlated with the corresponding histologic findings. RESULTS: Pulp tissue was fully regenerated 90 days after cell transplantation. On the other hand, the root canal was empty in the control collagen-transplanted teeth at 90 days. The SI of the normal teeth was significantly higher than that of nonvital pulpectomized teeth and the controls of collagen transplanted teeth at 90 days. The stem cell transplanted teeth showed a gradual decrease in the SI until 180 days at which time the SI was similar to that in the normal teeth and significantly higher than that in the teeth transplanted with collagen alone without the stem cells. CONCLUSIONS: The changes in the SI of the pulplike tissue were consistent with the histologic findings, showing the potential usefulness of the noninvasive method to serially access the efficacy of pulp regenerative therapy.


Assuntos
Polpa Dentária/fisiologia , Imageamento por Ressonância Magnética/métodos , Regeneração/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Dente Canino/citologia , Dente Canino/efeitos dos fármacos , Dente Canino/crescimento & desenvolvimento , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Cavidade Pulpar/anatomia & histologia , Cavidade Pulpar/citologia , Cães , Fator Estimulador de Colônias de Granulócitos/farmacologia , Modelos Animais , Distribuição Aleatória , Regeneração/efeitos dos fármacos , Células-Tronco/citologia
15.
Stem Cells Transl Med ; 4(8): 905-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26032749

RESUMO

Dental pulp stem cells (DPSCs) provide an exciting new avenue to study neurogenetic disorders. DPSCs are neural crest-derived cells with the ability to differentiate into numerous tissues including neurons. The therapeutic potential of stem cell-derived lines exposed to culturing ex vivo before reintroduction into patients could be limited if the cultured cells acquired tumorigenic potential. We tested whether DPSCs that spontaneously immortalized in culture acquired features of transformed cells. We analyzed immortalized DPSCs for anchorage-independent growth, genomic instability, and ability to differentiate into neurons. Finally, we tested both spontaneously immortalized and human telomerase reverse transcriptase (hTERT)-immortalized DPSC lines for the ability to form tumors in immunocompromised animals. Although we observed increased colony-forming potential in soft agar for the spontaneously immortalized and hTERT-immortalized DPSC lines relative to low-passage DPSC, no tumors were detected from any of the DPSC lines tested. We noticed some genomic instability in hTERT-immortalized DPSCs but not in the spontaneously immortalized lines tested. We determined that immortalized DPSC lines generated in our laboratory, whether spontaneously or induced, have not acquired the potential to form tumors in mice. These data suggest cultured DPSC lines that can be differentiated into neurons may be safe for future in vivo therapy for neurobiological diseases.


Assuntos
Polpa Dentária/transplante , Crista Neural/transplante , Neurônios/citologia , Transplante de Células-Tronco/efeitos adversos , Animais , Diferenciação Celular/genética , Transformação Celular Neoplásica , Polpa Dentária/citologia , Humanos , Camundongos , Telomerase/farmacologia
16.
Rev Stomatol Chir Maxillofac ; 112(4): 240-8, 2011 Sep.
Artigo em Francês | MEDLINE | ID: mdl-21802102

RESUMO

The currently available options for tooth-loss are prostheses, implants, or surgery (auto-transplantation). They all have their limitations. The emergence of tissue engineering, 15 years ago, was made possible by a better knowledge of the various stages of dental development, and the mastery of stem cell differentiation. It opened a new alternative approach for tooth regeneration. Even if animal experiments have demonstrated that it was possible to obtain a biological tooth from stem cells, two major issues remain to be discussed. Is it possible to use induced pluripotent stem cells instead of embryonic stem cells, which raise an ethical problem? Is it possible to reproduce a dental crown with an adapted shape and colour? Or should we consider the simpler creation of a biological root secondarily covered by a ceramic prosthesis? Our study mentions the main landmarks and the key cells involved in the embryological development of the tooth, establishes a mapping and a list of the various types of stem cells. It details the various methods used to create a biological implant.


Assuntos
Polpa Dentária/citologia , Odontogênese , Regeneração , Células-Tronco , Engenharia Tecidual , Dente/embriologia , Animais , Técnicas de Cultura de Células , Custos e Análise de Custo , Humanos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Odontogênese/genética , Dente/crescimento & desenvolvimento , Coroa do Dente/crescimento & desenvolvimento , Germe de Dente/citologia , Raiz Dentária/crescimento & desenvolvimento
17.
Calcif Tissue Int ; 88(2): 130-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21153807

RESUMO

Human deciduous teeth have been proposed as a promising source of mesenchymal stem cells for application in bone and dental tissue engineering. We established cultures of mesenchymal stem cells from the pulp of human deciduous teeth (deciduous teeth stem cells, DTSCs) and analyzed their morphologic, growth, immunophenotypic, and osteo/odontogenic differentiation characteristics using different isolation methods and culturing environments. We compared the biologic behavior of DTSCs isolated either by enzymatic dissociation (DTSCs-ED) or by direct outgrowth from pulp tissue explants (DTSCs-OG). We found that different isolation methods give rise to different populations/lineages of cells with respect to their phenotypic and differentiation characteristics. DTSCs-ED cultures comprised heterogeneous cell populations, whereas DTSCs-OG comprised more homogenous spindle-shaped cells. We have characterized DTSCs as STRO-1(+)/CD146(+)/CD34(+)/CD45(-) cells. However, the percentage of STRO-1(+) and CD34(+) cells was higher in DTSCs-ED (STRO-1, 17.01 ± 5.04%; CD34, 19.79 ± 4.66%) compared to DTSCs-OG cultures (STRO-1, 5.18 ± 2.39%; CD34, 9.94 ± 3.41%), probably as a result of a higher release of stem/progenitor cells from the perivascular niche during enzymatic dissociation. DTSCs isolated using either method displayed an active potential for cellular migration and biomineralization, giving rise to 3D mineralized structures when challenged with dexamethasone, monopotassium phosphate, and ß-glycerophosphate. These cellular aggregates progressively expressed differentiation markers of functional odontoblasts, including dentin sialophosphoprotein, bone sialoprotein, osteocalcin, and alkaline phosphatase, having the characteristics of osteodentin. However, in DTSCs-ED, the mineralization rate and the amount of mineralized matrix produced was higher compared to DTSCs-OG cultures. Therefore, DTSCs-ED cells display enhanced biomineralization potential, which might be of advantage for application in clinical therapy.


Assuntos
Diferenciação Celular , Separação Celular/métodos , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Odontogênese/fisiologia , Osteogênese/fisiologia , Dente Decíduo/citologia , Células Cultivadas , Criança , Pré-Escolar , Polpa Dentária/metabolismo , Humanos , Lactente , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual , Dente Decíduo/metabolismo
18.
In Vitro Cell Dev Biol Anim ; 46(9): 764-73, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20725801

RESUMO

Stem cells isolated from dental pulp possess the capacity for self-renewal and the potential for multi-lineage differentiation. However, dental pulp stem cells have different characteristics in terms of their culture conditions. The success of stem cells culture is governed by its micro-environmental niche. Therefore, we studied the effects of culture niche on long-term expansion of dental pulp stem cells in terms of cell morphology, growth kinetics, senescence pattern, cell surface marker expression differentiation capacity, and seeding plating density of dental pulp stem cells in four different, widely used media composition Among the various basal media tested, α-minimum essential media and knock out-minimum essential media supplemented with 10% fetal bovine serum were found to be the most optimal media composition in preserving the phenotypic characteristics and differentiation potential for prolonged periods as compared with DMEM-F12 and DMEM-LG. Plating density has been shown to affect overall yield. As a conclusion, the adoption of an appropriate culture system significantly improved cell yield, thus enabling the attainment of sufficient yields for therapeutic applications economizing in terms of cost of production and minimizing seeding cell density for maximum yield.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Polpa Dentária/citologia , Células-Tronco Multipotentes/citologia , Adolescente , Análise de Variância , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Primers do DNA/genética , Citometria de Fluxo , Humanos , Cariotipagem , Cinética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
19.
Odontology ; 95(1): 30-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17660979

RESUMO

Numerous and varied chemical agents are used as topically applied drugs in dental practice. As they are administered directly to the oral cavity, it is important to study the safety of these agents. In the present study, to assess safety regarding mutagenicity, we investigated the abilities of six antiseptics to induce chromosome aberrations in human dental pulp cells. The antiseptics tested were benzalkonium chloride, benzethonium chloride, iodine glycerin, iodine tincture, oxydol, and povidone-iodine. In addition, we tested two agents used for root canal enlargement and cleaning, ethylenediaminetetraacetic acid and sodium hypochlorite. Chromosome aberrations were induced only in cells treated with the highest concentration of iodine tincture for 30 h. The other chemical agents failed to induce chromosome aberrations in the presence or absence of exogenous metabolic activation. The concentration of iodine tincture to which patients are exposed in dental practice is 1000-fold the concentration that induced chromosome aberrations in the present study. Our findings suggest that iodine tincture is mutagenic to human cells.


Assuntos
Anti-Infecciosos Locais/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Polpa Dentária/efeitos dos fármacos , Iodo/toxicidade , Irrigantes do Canal Radicular/toxicidade , Células Cultivadas , Polpa Dentária/citologia , Humanos
20.
Toxicol In Vitro ; 19(1): 145-54, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15582365

RESUMO

The aim was to compare the use of different cell-material contact test methods with two different biological systems (cell line and tooth slice cultures) for cytotoxicity assessment of dental materials. Cytotoxicity of composites polymerized with two halogen-based and two light-emitting diode (LED) light-curing units (LCUs) served as the basis for comparison. Disk shaped specimens (7 x 2 mm) were fabricated using the four light sources. Composites were tested using L-929 cell line using direct/indirect/extract tests in accordance to standard protocols. Cytotoxicity was assessed using neutral red uptake. Tooth slice organ cultures were also employed to test the dental materials using direct/indirect test methods. Histomorphometric cell counting of intact odontoblasts and pulp fibroblasts and the use of tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were applied for cytotoxicity evaluation. Discrepancy in result presentation was observed in the different tests used with L-929. Sensitivity levels of the L-929 tests ranked as follows: extract test < direct contact test < indirect contact test. Tooth slice tests confirmed that L-929 direct contact test proved to be the most reliable test among the three. In conclusion, this study highlights the risk involved when relying on a single test method for cytotoxicity assessment. It would be advisable to test different culture models and then proceed using more clinically relevant biological system that stimulate the in vivo situation for confirmation.


Assuntos
Linhagem Celular , Resinas Compostas/toxicidade , Materiais Dentários/toxicidade , Polpa Dentária/efeitos dos fármacos , Técnicas de Cultura de Órgãos/métodos , Testes de Toxicidade/métodos , Animais , Contagem de Células , Resinas Compostas/química , Materiais Dentários/química , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Incisivo , Masculino , Camundongos , Vermelho Neutro/metabolismo , Odontoblastos/citologia , Odontoblastos/efeitos dos fármacos , Odontoblastos/patologia , Ratos , Ratos Wistar , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA