Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 644
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Science ; 384(6691): 33-34, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574150

RESUMO

A broader approach to assessing the burden of disease from air pollution is required.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Efeitos Psicossociais da Doença , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Humanos
2.
Environ Pollut ; 348: 123852, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531468

RESUMO

Model-estimated air pollution exposure assessments have been extensively employed in the evaluation of health risks associated with air pollution. However, few studies synthetically evaluate the reliability of model-estimated PM2.5 products in health risk assessment by comparing them with ground-based monitoring station air quality data. In response to this gap, we undertook a meticulously structured systematic review and meta-analysis. Our objective was to aggregate existing comparative studies to ascertain the disparity in mortality effect estimates derived from model-estimated ambient PM2.5 exposure versus those based on monitoring station-observed PM2.5 exposure. We conducted searches across multiple databases, namely PubMed, Scopus, and Web of Science, using predefined keywords. Ultimately, ten studies were included in the review. Of these, seven investigated long-term annual exposure, while the remaining three studies focused on short-term daily PM2.5 exposure. Despite variances in the estimated Exposure-Response (E-R) associations, most studies revealed positive associations between ambient PM2.5 exposure and all-cause and cardiovascular mortality, irrespective of the exposure being estimated through models or observed at monitoring stations. Our meta-analysis revealed that all-cause mortality risk associated with model-estimated PM2.5 exposure was in line with that derived from station-observed sources. The pooled Relative Risk (RR) was 1.083 (95% CI: 1.047, 1.119) for model-estimated exposure, and 1.089 (95% CI: 1.054, 1.125) for station-observed sources (p = 0.795). In conclusion, most model-estimated air pollution products have demonstrated consistency in estimating mortality risk compared to data from monitoring stations. However, only a limited number of studies have undertaken such comparative analyses, underscoring the necessity for more comprehensive investigations to validate the reliability of these model-estimated exposure in mortality risk assessment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Reprodutibilidade dos Testes , Poluição do Ar/análise , Medição de Risco
3.
J Glob Health ; 14: 04032, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38299774

RESUMO

*Joint senior authorship. BACKGROUND: Previous studies have observed the adverse effects of ambient fine particulate matter pollution (PM2.5) on heart failure (HF). However, evidence regarding the impacts of specific PM2.5 components remains scarce. METHODS: We included 58 129 patients hospitalised for HF between 2013 and 2017 in 11 cities of Shanxi, China from inpatient discharge database. We evaluated exposure to PM2.5 and its components ((sulphate (SO42-), nitrate (NO3-), ammonium (NH4+), organic matter (OM) and black carbon (BC)), along with meteorological factors using bilinear interpolation at each patients' residential address. We used multivariable logistic and linear regression models to assess the associations of these components with in-hospital case fatality, hospital expenses, and length of hospital stay. RESULTS: Increase equivalents to the interquartile range (IQR) in OM (odds ratio (OR) = 1.13; 95% confidence interval (CI) = 1.02, 1.26) and BC (OR = 1.14; 95% CI = 1.02, 1.26) were linked to in-hospital case fatality. Per IQR increments in PM2.5, SO42-, NO3-, OM, and BC were associated with cost increases of 420.62 (95% CI = 285.75, 555.49), 221.83 (95% CI = 96.95, 346.71), 214.93 (95% CI = 68.66, 361.21), 300.06 (95% CI = 176.96, 423.16), and 303.09 (95% CI = 180.76, 425.42) CNY. Increases of 1 IQR in PM2.5, SO42-, OM, and BC were associated with increases in length of hospital stay of 0.10 (95% CI = 0.02, 0.19), 0.09 (95% CI = 0.02, 0.17), 0.10 (95% CI = 0.03, 0.17), and 0.16 (95% CI = 0.08, 0.23) days. CONCLUSIONS: Our findings suggest that ambient SO42-, OM, and BC might be significant risk factors for HF, emphasising the importance of formulating customised guidelines for the chemical constituents of PM and controlling the emissions of the most dangerous components.


Assuntos
Poluentes Atmosféricos , Insuficiência Cardíaca , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Tempo de Internação , China/epidemiologia , Exposição Ambiental/efeitos adversos
4.
Environ Res ; 246: 118175, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215924

RESUMO

BACKGROUND: The relationship between long-term exposure to PM2.5 and mortality is well-established; however, the role of individual species is less understood. OBJECTIVES: In this study, we assess the overall effect of long-term exposure to PM2.5 as a mixture of species and identify the most harmful of those species while controlling for the others. METHODS: We looked at changes in mortality among Medicare participants 65 years of age or older from 2000 to 2018 in response to changes in annual levels of 15 PM2.5 components, namely: organic carbon, elemental carbon, nickel, lead, zinc, sulfate, potassium, vanadium, nitrate, silicon, copper, iron, ammonium, calcium, and bromine. Data on exposure were derived from high-resolution, spatio-temporal models which were then aggregated to ZIP code. We used the rate of deaths in each ZIP code per year as the outcome of interest. Covariates included demographic, temperature, socioeconomic, and access-to-care variables. We used a mixtures approach, a weighted quantile sum, to analyze the joint effects of PM2.5 species on mortality. We further looked at the effects of the components when PM2.5 mass levels were at concentrations below 8 µg/m3, and effect modification by sex, race, Medicaid status, and Census division. RESULTS: We found that for each decile increase in the levels of the PM2.5 mixture, the rate of all-cause mortality increased by 1.4% (95% CI: 1.3%-1.4%), the rate of cardiovascular mortality increased by 2.1% (95% CI: 2.0%-2.2%), and the rate of respiratory mortality increased by 1.7% (95% CI: 1.5%-1.9%). These effects estimates remained significant and slightly higher when we restricted to lower concentrations. The highest weights for harmful effects were due to organic carbon, nickel, zinc, sulfate, and vanadium. CONCLUSIONS: Long-term exposure to PM2.5 species, as a mixture, increased the risk of all-cause, cardiovascular, and respiratory mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Respiratórias , Humanos , Idoso , Estados Unidos/epidemiologia , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Poluição do Ar/análise , Níquel , Vanádio/análise , Medicare , Doenças Respiratórias/etiologia , Carbono/análise , Sulfatos , Zinco/análise , Exposição Ambiental/análise
5.
Environ Geochem Health ; 46(1): 21, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168721

RESUMO

This article elucidates the role of the short-term combustion of firecrackers and sparklers as a significant source of atmospheric pollutants that deteriorate ambient air quality and increase health risks during the popular Diwali festival. The study was conducted at Bhubaneswar during the festive celebration in early November 2021 (4th Nov) and late October 2022 (24th Oct) to assess the level of particulates (PM2.5 and PM10 mass concentration) and the relative health risks associated with them. PM2.5 (113.83 µg/m3) and PM10 (204.32 µg/m3) showed significant rises on D-day at all seven different sites that exceeded the NAAQS in 2021. From 2021 to 2022, an overall decrease in PM2.5 (41%) and PM10 (36%) was observed. On D-day, the total concentration of quantified metals in PM2.5 and PM10 were found to be 4.83 µg/m3 5.97 µg/m3 (2021) and 5.08 µg/m3 5.18 µg/m3 (2022) respectively. The AQI during both years (2021-2022) was found to be high for PM2.5 (unhealthy) and PM10 (moderate), but it was markedly good for all other pollutants on the scale. The overall population in the study area were under a significant health risk was observed in the overall population as PM surpassed the threshold concentration amid the festivities for consecutive years, with PM2.5 being more potent than PM10. The total excess health risk in 2022 was found to be decreased lower by ~ 88% from 2021 on D-day. But, metal exposure (through inhalation) in children were more compared to the adults for both the years. However, the exposure risk of both children and adults were high in the year 2022 with inhalation of metals like K, Al, Ba, Fe and Ca found in higher concentration and directly emitted from the firecrackers.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Criança , Adulto , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Férias e Feriados , Monitoramento Ambiental , Poeira , Medição de Risco , Metais/análise
6.
Int J Environ Health Res ; 34(4): 1926-1943, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36745741

RESUMO

Air pollution is a critical public health concern. The present study assessed the risk to human health of airborne Potentially Toxic Elements (PTE) arsenic, nickel and lead exposure in particulate matter (PM10-2.5) in Sao Paulo, Brazil. Statistical analysis was performed using R Software and the risk assessment for human health was carried out according to the methods of the United States Environmental Protection Agency. The results for mean annual concentration of PTE (ng m-3) were within the limits stipulated for air-quality by international agencies (arsenic <6, nickel <20 and lead <150). Airborne arsenic and lead showed higher mean concentrations during the winter than the other seasons (p < 0.05). However, the results showed a greater health risk for the adult population and during the winter season. These findings highlight the importance of air pollution as a risk factor for population health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Arsênio , Humanos , Adulto , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Arsênio/toxicidade , Arsênio/análise , Níquel/toxicidade , Níquel/análise , Brasil , Chumbo/toxicidade , Chumbo/análise , Poluição do Ar/análise , Estações do Ano , Monitoramento Ambiental
7.
Environ Pollut ; 342: 123143, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097156

RESUMO

Tropospheric ozone (O3) is a significant phytotoxic air pollutant that has a negative impact on plant carbon gain. Although date palm (Phoenix dactylifera L.) is a globally important crop in arid or semi-arid regions, so far O3 risk assessment for this species has not been reported. This study estimated leaf- and plant-level photosynthetic CO2 uptake for understanding how elevated levels of O3 affects date palm biomass growth. Ozone risks to date palm plants were assessed based on exposure- (AOT40) or flux-based indices (Phytotoxic Ozone Dose, PODy, where y is a threshold of uptake). For this purpose, plants were exposed to three levels of O3 [ambient air, AA (45 ppb as daily average); 1.5 × AA; 2.0 × AA] for 92 days in an O3 Free-Air Controlled Exposure facility. According to the model simulations, the negative effects of O3 on plant-level net photosynthetic CO2 uptake were attributed to reduced gross photosynthetic carbon gain and increased respiratory carbon loss. Season-long O3 exposure and elevated temperatures promoted the negative O3 effect because of a further increase of respiratory carbon loss, which was caused by increased leaf temperature due to stomatal closure. POD1 nonlinearly affected the photosynthetic CO2 uptake, which was closely related to the variation of dry mass increment during the experiment. Although the dose-response relationship suggested that a low O3 dose (POD1 < 5.2 mmol m-2) may even positively affect photosynthetic CO2 uptake in date palms, stomatal O3 uptake at the current ambient O3 levels has potentially a negative impact on date palm growth. The results indicate 5.8 mmol m-2 POD1 or 21.1 ppm h AOT40 as critical levels corresponding to a 4% reduction of net CO2 uptake for date palm, suggesting that this species can be identified as a species moderately sensitive to O3.


Assuntos
Poluentes Atmosféricos , Ozônio , Phoeniceae , Ozônio/análise , Dióxido de Carbono/toxicidade , Folhas de Planta/química , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Fotossíntese
8.
Environ Monit Assess ; 195(12): 1460, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950805

RESUMO

Air pollution is one of the killers of our age especially for the urban areas. Urban forestry which involves planting more trees has been considered as one of the prominent strategies to mitigate air pollution. Identification of trees tolerant to air pollution is important for plantation drives being organized across the country. The present study aimed to compare the air pollution tolerance potential of 46 tree species growing in Guru Nanak Dev University (GNDU) campus, Amritsar, using two indices, viz., Air Pollution Tolerance Index (APTI) and Anticipated Performance Index (API). APTI is based on four biochemical parameters, viz., relative water content, leaf extract pH, total chlorophyll, and ascorbic acid contents of leaf samples, whereas API takes into consideration morphological and socioeconomic values of plant species along with their APTI. Based on APTI values calculated for 46 tree species, only 2 tree species, viz., Psidium guajava (46.26) and Cassia fistula (41.83), were found to be tolerant to air pollution, while 25 species showed intermediate tolerance. API scores revealed one tree species, namely, P. guajava, as an excellent performer, 8 species as very good performers, and 28 species as moderate to good performers against air pollution. In conclusion, tree species like Alstonia scholaris, C. fistula, Ficus tsjakela, Grevillea robusta, Kigelia africana, Mangifera indica, Melia azedarach, P. guajava, Pongamia pinnata, Pterospermum acerifolium, Putranjiva roxburghii, Syzygium cumini, Terminalia arjuna, and Toona ciliata can be considered as most desirable for plantations in areas around GNDU campus.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Árvores , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Agricultura Florestal , Monitoramento Ambiental , Poluição do Ar/análise
9.
Sci Rep ; 13(1): 17858, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857811

RESUMO

Exposure to particulate matter (PM) can be considered as a factor affecting human health. The aim of this study was to investigate the concentration of PM2.5 and heavy metals and their influence on survival of A549 human lung cells in exposure to PM2.5 breathing air of Ahvaz city. In order to assess the levels of PM2.5 and heavy metals, air samples were collected from 14 sampling stations positioned across Ahvaz city during both winter and summer seasons. The concentration of heavy metals was determined using ICP OES. Next, the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was employed to ascertain the survival rate of A549 cells. The findings from this research demonstrated that average PM2.5 of the study period was (149.5 µg/m3). Also, the average concentration of PM2.5 in the urban area in winter and summer was (153.3- and 106.9 µg/m3) and in the industrial area this parameter was (191.6 and 158.3 µg/m3). The average concentration of metals (ng/m3) of urban areas against industrial, Al (493 vs. 485), Fe (536 vs. 612), Cu (198 vs. 212), Ni (128 vs. 129), Cr (48.5 vs. 54), Cd (118 vs. 124), Mn (120 vs. 119), As (51 vs. 67), Hg (37 vs. 50), Zn (302 vs. 332) and Pb (266 vs. 351) were obtained. The results of the MTT assay showed that the highest percentage of cell survival according to the exposure concentration was 25 > 50 > 100 > 200. Also, the lowest percentage of survival (58.8%) was observed in the winter season and in industrial areas with a concentration of 200 µg/ml. The carcinogenic risk assessment of heavy metals indicated that except for Cr, whose carcinogenicity was 1.32E-03, other metals were in the safe range (10-4-10-6) for human health. The high concentration of PM2.5 and heavy metals can increase respiratory and cardiovascular diseases and reduce the public health level of Ahvaz citizens.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Monitoramento Ambiental/métodos , Metais Pesados/toxicidade , Metais Pesados/análise , Estações do Ano , Oriente Médio , Medição de Risco , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , China
10.
Environ Pollut ; 338: 122626, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778493

RESUMO

Tropospheric ozone (O3) is an oxidative air pollutant that promotes damage to several crops, including grapevine, which is considered moderately resistant to O3 stress. To study the O3 effect on this perennial crop species under realistic environmental conditions, a three-year experiment was performed using an innovative O3-FACE facility located in the Mediterranean climate region, where the target species, Vitis vinifera cv. "Cabernet sauvignon", was exposed to three O3 levels: ambient (AA), 1.5 × ambient (×1.5), and 2 × ambient (×2.0). A stomatal conductance model parameterization was conducted, and O3-exposure (AOT40) and flux-based indices (PODy) were estimated. An assessment of O3-induced visible foliar injury (O3_VFI) was conducted by estimating VFI_Incidence (percentage of symptomatic leaves per branch) and VFI_Severity (average percentage of O3_VFI surface in symptomatic leaves). Biomass parameters were used to assess the cumulative O3 effect and calculate the most appropriate critical levels (CL) for a 5% yield loss and for the induction of 5, 10, and 15% of O3_VFI. We confirmed that the O3 effect on this grapevine variety VFI was cumulative and that POD0 values accumulated over the two or three years preceding the assessment were better related to the response variables than single-year values, with the response increasing with increasing O3 level. The estimated CL for 5% yield loss based on the O3-exposure index was 25 ppm h AOT40 and 21 or 23 ppm h for a 10% of VFI_Incidence or VFI_Severity, respectively. The suggested flux-based index value for 5% yield loss was 5.2 POD3 mmol m-2, and for 10% of VFI_Incidence or VFI_Severity, the values were 7.7 or 8.6 POD3 mmol m-2, respectively. The results presented in this study demonstrate that O3 risk assessment for this grapevine varietyproduces consistent and comparable results when using either yield or O3_VFI as response parameter.


Assuntos
Poluentes Atmosféricos , Ozônio , Vitis , Ozônio/análise , Folhas de Planta/química , Biomassa , Produtos Agrícolas , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise
11.
Environ Monit Assess ; 195(9): 1135, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656289

RESUMO

Rapid urbanization and rising vehicular population are the main precursors in increasing air pollutants concentration which negatively influences the surrounding ecosystem. Roadside plants are frequently used as the barrier against traffic emissions to minimize the effects of air pollution. They are, however, vulnerable to various contaminants, and their tolerance capacity varies. This necessitates a scientific inquiry into the role of roadside plantations in improved urban sprawl planning and management, where chosen trees could be cultivated to reduce air pollution. The present study assesses biochemical and physiological characteristics to evaluate the air pollution tolerance index (APTI) in Ranchi, Jharkhand. The anticipated performance index (API) was assessed based on calculated APTI and socioeconomic characteristics of a selected common tree species along the roadside at different sites. According to APTI, Mangifera indica and Eugenia jambolana were the most tolerant species throughout all the sites, while Ficus benghalensis and Ficus religiosa were intermediately tolerant towards air pollution. The one-way ANOVA shows no significant variation in APTI throughout all the sites. The regression plot shows the positive correlation of APTI with ascorbic acid among all the parameters. According to API, the Mangifera indica, Eugenia jambolana Ficus religiosa and Ficus benghalensis were excellent and best performers among all the sites. So, the air pollution-resistant tree species can be recommended for roadside plantations for the development of green belt areas in urban regions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Mangifera , Árvores , Ecossistema , Monitoramento Ambiental , Folhas de Planta/química , Poluição do Ar/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise
12.
Cad Saude Publica ; 39(7): e00145922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37585903

RESUMO

Exposure to ambient air pollution increases mortality and morbidity, leading disabilities, and premature deaths. Air pollution has been identified as a leading cause of global disease burden, especially in low- and middle-income countries in 2015 (Global Burden of Diseases, Injuries and Risk Factors Study, 2015). This study explores the relation between mortality rates and particulate matter (PM) concentrations in the 50 Spanish regions for the period 2002-2017. Moreover, we estimated the premature deaths due to PM in Spain according to welfare and production losses in 2017. Random-effects models were developed to evaluate the relation between mortality rates and PM concentrations. The economic cost of premature deaths was assessed using the Willingness to Pay approach to quantify welfare losses and the Human Capital method to estimate production losses. PM10 concentrations are positively related to mortality due to respiratory diseases and stroke. Based on 10,342 premature deaths in 2017, losses in welfare amount to EUR 36,227 million (3.1% of Spanish GDP). The economic value of current and future production losses reached EUR 229 million (0.02% of GDP). From a social perspective, air pollution is a public health concern that greatly impacts health and quality of life. Results highlight the need to implement or strengthen regulatory, fiscal, and health public policies to substantially benefit the population's health by reducing their exposure to air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Mortalidade Prematura , Qualidade de Vida , Espanha/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Brasil , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/toxicidade , Material Particulado/análise
13.
Environ Geochem Health ; 45(11): 7651-7663, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37407725

RESUMO

Trace metals (TRs) and polycyclic aromatic hydrocarbons (PAHs) are major toxic components of fine particulate matter (PM2.5) and related to various health adverse outcomes. The study aims to get a better understanding of the contents, sources and risks of PM2.5-bounded TRs and PAHs in Hefei, China, during the period of 2019-2021. We collected 504 samples and measured twelve TRs and sixteen priority PAHs by inductively coupled plasma mass spectrometry and high-performance liquid chromatography. The annual mass concentrations of PM2.5 was fluctuated in the year of 2019-2021 at 50.95, 47.48 and 59.38 µg/m3, with seasonal variations in rank order of winter > spring > autumn > summer. The median concentrations of PM2.5-bounded Æ©TRs and Æ©PAHs were also fluctuated, 132.85, 80.93 and 120.27 ng/m3 for Æ©TRs, 2.57, 5.85 and 2.97 ng/m3 for Æ©PAHs, in the year of 2019, 2020 and 2021, respectively. Seasonal variations of Æ©TRs and Æ©PAHs show the highest concentration in winter. Positive matrix factorization was used for identified pollution emission sources, and TRs mainly originated from coal combustion, traffic emission and fugitive dust, while PAHs stemmed from biomass, diesel, gasoline and coal combustion. Health risk assessment indicated that adults were more vulnerable than children, the carcinogenic risk assessment of As and Cr manifested a certain degree of cancer risk (1.0 × 10-6 < CR < 1.0 × 10-4) in adults group, and health risks of TRs were higher than PAHs in Hefei. These findings suggest that PM2.5-bounded TRs and PAHs should be considered when making emission control strategies for air pollution, and winter, combustion sources and adults should achieve more policy attention to decrease exposure risks in Hefei.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Oligoelementos , Adulto , Criança , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Material Particulado/análise , Estações do Ano , Medição de Risco , China , Oligoelementos/análise , Monitoramento Ambiental/métodos , Carvão Mineral/análise
15.
J Toxicol Environ Health A ; 86(18): 653-660, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37489027

RESUMO

While numerous studies have found a relationship between long-term exposure to airborne fine particulate matter (PM2.5) and higher risk of death, few investigations examined the contribution that a reduction of exposure to ambient PM2.5 levels might exert on mortality rates. This study aimed to collect data on changes in annual average ambient levels of PM2.5 from 2006 to 2020 and consequent health impact in public health in 65 municipalities in Taiwan. Avoidable premature mortality was used here as an indicator of adverse health impact or health benefits. Annual PM2.5 levels were averaged for the years 2006, 2010, and 2020. In accordance with World Health Organization (WHO) methodology, differences were estimated in the number of deaths attributed to ambient PM2.5 exposure which were derived from concentration-response data from prior epidemiological studies. PM2.5 concentrations were found to have been decreased markedly throughout Taiwan over the two-decade study. As the PM2.5 concentrations fell, so was the health burden as evidenced by number of deaths concomitantly reduced from 22.4% in 2006 to 8.47% in 2020. Data demonstrated that reducing annual mean levels of PM2.5 to PM10 ug/m3 was associated with decrease in the total burden of mortality, with a 2.22-13.18% fall in estimated number of PM2.5-related deaths between 2006 and 2020. Based upon these results, these declines in ambient PM2.5 levels were correlated with significant improvement in public health (health benefits) and diminished number of deaths in Taiwan.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/toxicidade , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Taiwan/epidemiologia , Exposição Ambiental/efeitos adversos
17.
Environ Pollut ; 333: 121860, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37268219

RESUMO

Tropospheric ozone (O3) is a secondary atmospheric pollutant known to cause negative effects on vegetation in terms of physiological oxidative stress, growth rate reductions and yield losses. In recent years, dose-response relationships based on the O3 stomatal flux and effects on the biomass growth have been defined for several crop species. This study was aimed at developing a dual-sink big-leaf model for winter wheat (Triticum aestivum L.) to map the seasonal Phytotoxic Ozone Dose above a threshold of 6nmolm-2s-1 (POD6) in a domain centered on the Lombardy region (Italy). The model runs on local measured data of air temperature, relative humidity, precipitation, wind speed, global radiation and background O3 concentration provided by regional monitoring networks, and includes parameterizations for the crop's geometry and phenology, the light penetration within the canopy, the stomatal conductance, the atmospheric turbulence, and the soil water availability for the plants. For the 2017 an average POD6 of 2.03mmolm-2PLA (Projected Leaf Area) was found for the Lombardy regional domain, corresponding to an average relative yield loss of 7.5%, using the finest spatio-temporal resolution (1×1km2 and 1-h). An analysis of the model's response to different spatio-temporal resolutions (from 2×2 to 50×50km2 and from 1 to 6 h) suggests that coarser resolution maps underestimated the average POD6 regional value from 8to16%, and were unable to detect O3 hotspots. Nevertheless, resolutions of 5×5km2 1-h, and 1×1km2 3-h, can still be considered reliable for the estimation of the O3 risk at the regional level since they presented relatively low root mean squared error. Furthermore, although temperature was the main limiting factor for the wheat stomatal conductance in most of the domain, soil water availability emerged as the key factor for determining the spatial patterns of the POD6.


Assuntos
Poluentes Atmosféricos , Ozônio , Triticum , Estações do Ano , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Folhas de Planta , Ozônio/análise , Itália , Solo , Medição de Risco , Água/análise
18.
Environ Res ; 232: 116391, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37308068

RESUMO

The societal costs of air pollution have historically been measured in terms of premature deaths (including the corresponding values of statistical lives lost), disability-adjusted life years, and medical costs. Emerging research, however, demonstrated potential impacts of air pollution on human capital formation. Extended contact with pollutants such as airborne particulate matter among young persons whose biological systems are still developing can result in pulmonary, neurobehavioral, and birth complications, hindering academic performance as well as skills and knowledge acquisition. Using a dataset that tracks 2014-2015 incomes for 96.2% of Americans born between 1979 and 1983, we assessed the association between childhood exposure to fine particulate matter (PM2.5) and adult earnings outcomes across U.S. Census tracts. After accounting for pertinent economic covariates and regional random effects, our regression models indicate that early-life exposure to PM2.5 is associated with lower predicted income percentiles by mid-adulthood; all else equal, children raised in high pollution tracts (at the 75th percentile of PM2.5) are estimated to have approximately a 0.51 decrease in income percentile relative to children raised in low pollution tracts (at the 25th percentile of PM2.5). For a person earning the median income, this difference corresponds to a $436 lower annual income (in 2015 USD). We estimate that 2014-2015 earnings for the 1978-1983 birth cohort would have been ∼$7.18 billion higher had their childhood exposure met U.S. air quality standards for PM2.5. Stratified models show that the relationship between PM2.5 and diminished earnings is more pronounced for low-income children and for children living in rural environments. These findings raise concerns about long-term environmental and economic justice for children living in areas with poor air quality where air pollution could act as a barrier to intergenerational class equity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Criança , Humanos , Adulto , Material Particulado , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Poluição do Ar/análise , Renda
19.
Chemosphere ; 332: 138862, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150457

RESUMO

Air pollution is a complex mixture of gases and particulate matter (PM) with local and non-local emission sources, resulting in spatiotemporal variability in concentrations and composition, and thus associated health risks. To study this in the greater Stockholm area, a yearlong monitoring campaign with in situ measurements of PM10, PM1, black carbon, NOx, O3, and PM10-sampling was performed. The locations included an Urban and a Rural background site and a Highway site. Chemical analysis of PM10 was performed to quantify monthly levels of polycyclic aromatic compounds (PACs), which together with other air pollution data were used for source apportionment and health risk assessment. Organic extracts from PM10 were tested for oxidative potential in human bronchial epithelial cells. Strong seasonal patterns were found for most air pollutants including PACs, with higher levels during the winter months than summer e.g., highest levels of PM10 were detected in March at the Highway site (33.2 µg/m3) and lowest in May at the Rural site (3.6 µg/m3). In general, air pollutant levels at the sites were in the order Highway > Urban > Rural. Multivariate analysis identified several polar PACs, including 6H-Benzo[cd]pyren-6-one, as possible discriminatory markers for these sites. The main sources of particulate pollution for all sites were vehicle exhaust and biomass burning emissions, although diesel exhaust was an important source at the Highway site. In vitro results agreed with air pollutant levels, with higher oxidative potential from the winter samples. Estimated lung cancer cases were in the order PM10 > NO2 > PACs for all sites, and with less evident seasonal differences than in vitro results. In conclusion, our study presents novel seasonal data for many PACs together with air pollutants more traditionally included in air quality monitoring. Moreover, seasonal differences in air pollutant levels correlated with differences in toxicity in vitro.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Policíclicos , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Compostos Policíclicos/análise , Suécia , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Material Particulado/toxicidade , Material Particulado/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Compostos Orgânicos/análise , Estações do Ano , Medição de Risco
20.
Sci Total Environ ; 889: 164275, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209728

RESUMO

The multifunctionality of plants is well known to be compromised in the areas experiencing higher concentrations of tropospheric ozone (O3). Mango (Mangifera indica L.) cultivation is essential to the economy of tropical regions, including India. Mango, widely grown in suburban and rural areas, experiences production loss due to air pollutants. Ozone, the most important phytotoxic gas in mango growing areas, warrants an investigation of its effects. Therefore, we assessed the differential sensitivity of mango saplings (two-year-old hybrid and regular-bearing mango varieties, Amrapali and Mallika) at two levels of O3: ambient and elevated (ambient + 20 ppb) using open-top chambers from September 2020 to July 2022. Under elevated O3, both varieties showed similar seasonal responses (winter and summer) for all the growth parameters but differed in their height-diameter allocation pattern. A decrease in stem diameter and an increase in plant height were observed in Amrapali, whereas Mallika showed a reverse response. Early emergence of phenophases was noticed during the reproductive growth of both varieties under elevated O3 exposure. However, these changes were more pronounced in Amrapali. Stomatal conductance was more negatively affected in Amrapali than in Mallika under elevated O3 during both seasons. Furthermore, leaf morpho-physiological traits (leaf nitrogen concentration, leaf area, leaf mass per area, and photosynthetic nitrogen use efficiency) and inflorescence parameters responded variably in both varieties under elevated O3 stress. A decrease in photosynthetic nitrogen use efficiency, further enhanced yield loss which was more pronounced in Mallika than in Amrapali under elevated O3 exposure. The results of this study could be useful in selecting a better-performing variety based on its productivity, which will be economically more beneficial in achieving the goal of sustainable production at the anticipated high O3 levels under a climate change scenario.


Assuntos
Poluentes Atmosféricos , Mangifera , Ozônio , Fotossíntese/fisiologia , Ozônio/toxicidade , Poluentes Atmosféricos/toxicidade , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA