Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612781

RESUMO

Poplars provide medicinal raw plant materials used in pharmacy. Leaf buds are one of the herbal medicinal products collected from poplars, having anti-inflammatory and antiseptic properties, but there are no quality standards for their production and there is a need to determine their botanical sources. Therefore, the chemical compositions of the leaf buds from four species and varieties of poplars, Populus balsamifera, P. × berolinensis, P. × canadensis 'Marilandica', and P. wilsonii were investigated and compared using gas chromatography coupled with mass detection (GC-MS) and two-dimensional high-performance thin-layer chromatography (2D-HPTLC) in order to search for taxa characterized by a high content of biologically active compounds and with a diverse chemical composition that determines their therapeutic effects. The presence of 163 compounds belonging to the groups of flavonoids, phenolic acids derivatives, glycerides, and sesquiterpenes was revealed. Moreover, the conditions for the separation and identification of biologically active compounds occurring in analyzed leaf buds using 2D-HPTLC were optimized and used for metabolomic profiling of the studied poplars, enabling their fast and simple botanical identification. The total phenolic (TPC) and flavonoid (TFC) contents of examined extracts were determined and their antioxidant capacities were estimated by spectrophotometric DPPH, ABTS, and FRAP assays. Based on the analysis of phytochemicals and antioxidant activity, P. × berolinensis buds were selected as the raw plant material for medicinal purposes with the highest content of active compounds and the strongest antioxidant activity.


Assuntos
Antioxidantes , Populus , Cromatografia em Camada Fina , Cromatografia Gasosa , Flavonoides , Folhas de Planta
2.
Ying Yong Sheng Tai Xue Bao ; 34(4): 1043-1050, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37078324

RESUMO

We examined the growth decline and health status of farmland protective forest belt (Populus alba var. pyramidalis and Populus simonii shelterbelts) in Ulanbuh Desert Oasis by using airborne hyperspectral and ground-based LiDAR to collect the hyperspectral images and point cloud data of the whole forest belt respectively. Through correlation analysis and stepwise regression analysis, we constructed the evaluation model of the decline degree of farmland protection forest with the spectral differential value, vegetation index, and forest structure parameters as independent variables and the tree canopy dead branch index of the field survey as dependent variables. We further tested the accuracy of the model. The results showed that the evaluation accuracy of the decline degree of P. alba var. pyramidalis and P. simonii by LiDAR method was better than that by hyperspectral method, and that the evaluation accuracy of the combined LiDAR and hyperspectral method was the highest. Using the LiDAR method, hyperspectral method, the combined method, the optimal model of P. alba var. pyramidalis was all light gradient boosting machine model, with the overall classification accuracy being 0.75, 0.68, 0.80, and Kappa coefficient being 0.58, 0.43, 0.66, respectively. The optimal model of P. simonii was random forest model, random forest model, and multilayer perceptron model, with the overall classification accuracy being 0.76, 0.62, 0.81, and Kappa coefficient being 0.60, 0.34, 0.71, respectively. This research method could accurately check and monitor the decline of plantations.


Assuntos
Clima Desértico , Fazendas , Florestas , Populus
3.
Int J Phytoremediation ; 25(3): 283-292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35605106

RESUMO

Fast-growing hybrid poplars have been tested for their potential to remove trace elements (TE) from polluted soil in several temperate regions. Despite their potential, they have rarely been tested in countries with a cold temperate climate. The current study screened four different Populus hybrids for phytoextraction of four TEs (i.e., As, Cu, Pb, and Zn) on an abandoned brownfield site in southern Quebec (Canada). The main results showed that under the current experimental conditions, the most important traits determining the actual phytoextraction rate are Biological Concentration Factor (BCF) and TE accumulation in the aboveground biomass, rather than biomass productivity. Although the overall performance of the chosen hybrids was rather poor, the presence of poplar stands enhanced the movement of mobile contaminants in soil, which led to an increase in their concentration in the root zone. This aspect suggests possible strategies for using these plants with high transpiration rates in future phytoremediation projects, including either possible rotation with more effective TE phytoextractor plants (e.g., hyperaccumulators) that can remove high TE amounts that have migrated from the deeper soil layers following poplar plantation, or phytostabilization.


Although the use of fast-growing woody species is commonly reported as a feasible option for the phytoextraction of TEs in temperate climates, most available information pertains to only a few species, mostly willows. This is one of the few studies reporting the results of a field test carried out in a cold temperate region, in which different poplar hybrid clones were tested for their potential in TEs phytoextraction. This research determined that although the studied poplar genotypes have no potential under these experimental conditions, the increase in TE concentration observed in the rhizosphere after two years suggests possible alternative phytoremediation strategies (phytostabilization) for managing polluted sites in cold temperate climates.


Assuntos
Metais Pesados , Populus , Salix , Poluentes do Solo , Oligoelementos , Quebeque , Metais Pesados/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Canadá , Solo
4.
Int J Phytoremediation ; 25(2): 137-145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35475769

RESUMO

In this study, cottonwood seeds (CWS) were introduced as a novel, green, and low-cost biosorbents for the removal of crystal violet (CV) dye from aqueous solutions. To illustrate the characteristics of CWS, surface morphology, Fourier-transform infrared spectroscopy, field emission scanning electron microscopes, and energy dispersive X-ray spectroscopy techniques were employed. Important adsorption variables (i.e., equilibrium time, solution pH, CWS amount, CV concentration, and temperature) were systematically studied. Maximum CV dye adsorption was observed at pH 10 using 20 mg of the adsorbent. Different adsorption isotherms were investigated, and the results were more accurately consistent with the Langmuir model (R2 = 0.992). The maximum capacity of adsorption was 153.85 mg g-1 at 60 min. The kinetic data were examined by different models and a pseudo-second-order model supplied the best correlation between experimental data. Investigated thermodynamic parameters at different temperatures illustrated that the CV adsorption procedure was spontaneous and endothermic with an increase in entropy. The percentage removal and the relative standard deviations for the real sample analysis were in the range of 89-98% and 4.9-9.5%, respectively. High adsorption capacity and low equilibrium time demonstrated that CWS is an impressive biosorbent for dye pollutants uptakes from aqueous solutions and real industrial wastewater samples.


A novel, green, available, and low-cost cottonwood seeds were introduced for the removal of crystal violet from aqueous media. In terms of adsorption capacity and contact time, cottonwood seeds show excellent performance compared to the other low-cost biosorbents previously reported for the adsorption of the organic dye from wastewater. The use of cottonwood seeds to remove environmental pollutants has not been introduced yet.


Assuntos
Populus , Poluentes Químicos da Água , Violeta Genciana/análise , Violeta Genciana/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , Termodinâmica , Cinética , Adsorção , Sementes/química , Água/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
5.
Oecologia ; 199(1): 119-128, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35449362

RESUMO

Patterns of trait expression within some plant species have recently been shown to align with the leaf economics spectrum paradigm. Resistance to herbivores is also expected to covary with leaf economics traits. We selected 36 mature Populus tremuloides genotypes in a common garden to assess whether aspen leaf economics patterns follow those observed among species globally. We also evaluated leaf economics strategies in the context of insect resistance by conducting bioassays to determine the effects of plant traits on preference and performance of Lymantria dispar. We found that: (1) intraspecific trait patterns of P. tremuloides parallel those exhibited by the interspecific leaf economics spectrum, (2) herbivores preferred leaves from genotypes with resource-acquisitive strategies, and (3) herbivores also performed best on genotypes with resource-acquisitive strategies. We conclude that a leaf economics spectrum that incorporates defense traits is a useful tool for explaining intraspecific patterns of variation in plant strategies, including resistance to herbivores.


Assuntos
Herbivoria , Populus , Animais , Insetos , Fenótipo , Folhas de Planta/genética , Plantas , Populus/genética
6.
Plant Cell Environ ; 45(4): 1286-1297, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35128680

RESUMO

Across plant species and biomes, a conserved set of leaf traits govern the economic strategy used to assimilate and invest carbon. As plants age, they face new challenges that may require shifts in this leaf economic strategy. In this study, we investigate the role of the developmental transition, vegetative phase change (VPC), in altering carbon economics as plants age. We used overexpression of microRNA 156 (miR156), the master regulator of VPC, to modulate the timing of VPC in Populus tremula x alba, Arabidopsis thaliana and Zea mays to understand the impact of this transition on leaf economic traits, including construction cost, payback time and return on investment. Here, we find that VPC causes a shift from a low-cost, quick return juvenile strategy to a high-cost, high-return adult strategy. The juvenile strategy is advantageous in light-limited conditions, whereas the adult strategy provides greater returns in high light. The transition between these strategies is correlated with the developmental decline in the level of miR156, suggesting that is regulated by the miR156/SPL pathway. Our results provide an ecophysiological explanation for the existence of juvenile and adult leaf types and suggest that natural selection for these alternative economic strategies could be an important factor in plant evolution.


Assuntos
Arabidopsis , MicroRNAs , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Folhas de Planta/metabolismo , Populus/genética , Populus/metabolismo
7.
Molecules ; 25(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967253

RESUMO

Most of the current commercial production of glacial acetic acid (GAA) is by petrochemical routes, primarily methanol carbonylation. GAA is an intermediate in the production of plastics, textiles, dyes, and paints. GAA production from biomass might be an economically viable and sustainable alternative to petroleum-derived routes. Separation of acetic acid from water is a major expense and requires considerable energy. This study evaluates and compares the technical and economic feasibility of GAA production via bioconversion using either ethyl acetate or alamine in diisobutylkerosene (DIBK) as organic solvents for purification. Models of a GAA biorefinery with a production of 120,650 tons/year were simulated in Aspen software. This biorefinery follows the path of pretreatment, enzymatic hydrolysis, acetogen fermentation, and acid purification. Estimated capital costs for different scenarios ranged from USD 186 to 245 million. Recovery of GGA using alamine/DIBK was a more economical process and consumed 64% less energy, due to lower steam demand in the recovery distillation columns. The estimated average minimum selling prices of GGA were USD 756 and 877/ton for alamine/DIBK and ethyl acetate scenarios, respectively. This work establishes a feasible and sustainable approach to produce GGA from poplar biomass via fermentation.


Assuntos
Ácido Acético/metabolismo , Biomassa , Custos e Análise de Custo , Populus/metabolismo , Ácido Acético/isolamento & purificação , Biotransformação
8.
Plant Physiol ; 183(1): 123-136, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139476

RESUMO

The lignin biosynthetic pathway is highly conserved in angiosperms, yet pathway manipulations give rise to a variety of taxon-specific outcomes. Knockout of lignin-associated 4-coumarate:CoA ligases (4CLs) in herbaceous species mainly reduces guaiacyl (G) lignin and enhances cell wall saccharification. Here we show that CRISPR-knockout of 4CL1 in poplar (Populus tremula × alba) preferentially reduced syringyl (S) lignin, with negligible effects on biomass recalcitrance. Concordant with reduced S-lignin was downregulation of ferulate 5-hydroxylases (F5Hs). Lignification was largely sustained by 4CL5, a low-affinity paralog of 4CL1 typically with only minor xylem expression or activity. Levels of caffeate, the preferred substrate of 4CL5, increased in line with significant upregulation of caffeoyl shikimate esterase1 Upregulation of caffeoyl-CoA O-methyltransferase1 and downregulation of F5Hs are consistent with preferential funneling of 4CL5 products toward G-lignin biosynthesis at the expense of S-lignin. Thus, transcriptional and metabolic adaptations to 4CL1-knockout appear to have enabled 4CL5 catalysis at a level sufficient to sustain lignification. Finally, genes involved in sulfur assimilation, the glutathione-ascorbate cycle, and various antioxidant systems were upregulated in the mutants, suggesting cascading responses to perturbed thioesterification in lignin biosynthesis.


Assuntos
Lignina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Xilema/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Catálise , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Xilema/genética
9.
Int J Phytoremediation ; 22(1): 98-110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31397174

RESUMO

Despite the growing need to produce energy crops, information on comprehensive feasibility of growing short-rotation woody crops (SRWCs) on non-contentious and less-utilized lands and lands transitioning from previous uses in the southeastern USA is limited. An assessment model (SRWC-PEAM) was developed and tested for assessing the feasibility of SRWCs on lands targeted for ecosystem-service enhancements based on land conditions, species, and stand and economic variables in the southeastern USA. Productivity and economic returns of sweetgum (Liquidambar styraciflua L.), sycamore (Platanus occidentalis L.), and poplar (Populus) stand differed due to land types, species' adaptability and biomass potential, and optimal land-type-based management schemes. Poplar stands had the greatest biomass and the highest returns on all land types although returns from the three species on most land types were poor using current reported regional delivered prices. Irrigating stands increased yields but returns were poorer than from non-irrigated stands due to high costs of irrigation. Longer rotations resulted in greater biomass and returns and were more crucial for irrigated stands. Significantly higher feedstock prices and productivities are requisite for SRWC viability in the southeastern USA. SRWC-PEAM is a web-based tool and can accommodate other SRWC species and assessment of environmental services associated with SRWCs.


Assuntos
Ecossistema , Populus , Biodegradação Ambiental , Biomassa , Análise Custo-Benefício
10.
Am J Bot ; 106(11): 1423-1434, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31657872

RESUMO

PREMISE: Plant endophytic bacterial strains can influence plant traits such as leaf area and root length. Yet, the influence of more complex bacterial communities in regulating overall plant phenotype is less explored. Here, in two complementary experiments, we tested whether we can predict plant phenotype response to changes in microbial community composition. METHODS: In the first study, we inoculated a single genotype of Populus deltoides with individual root endophytic bacteria and measured plant phenotype. Next, data from this single inoculation were used to predict phenotypic traits after mixed three-strain community inoculations, which we tested in the second experiment. RESULTS: By itself, each bacterial endophyte significantly but weakly altered plant phenotype relative to noninoculated plants. In a mixture, bacterial strain Burkholderia BT03, constituted at least 98% of community relative abundance. Yet, plant resource allocation and tissue nutrient concentrations were disproportionately influenced by Pseudomonas sp. GM17, GM30, and GM41. We found a 10% increase in leaf mass fraction and an 11% decrease in root mass fraction when replacing Pseudomonas GM17 with GM41 in communities containing both Pseudomonas GM30 and Burkholderia BT03. CONCLUSIONS: Our results indicate that interactions among endophytic bacteria may drive plant phenotype over the contribution of each strain individually. Additionally, we have shown that low-abundance strains contribute to plant phenotype challenging the assumption that the dominant strains will drive plant function.


Assuntos
Endófitos , Populus , Bactérias , Nutrientes , Raízes de Plantas , Alocação de Recursos
11.
Int J Biol Macromol ; 133: 226-234, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30986456

RESUMO

In our previous study, we could achieve high soluble expression of Candida antarctica lipase B (CalB) in E. coli by fusion poly­amino acid tags on CalB (pCalB). Herein, we are surprised to find that pCalB can be easily and directly covalent binding on a simply oxidized aspen powder (OAP) by the aid of poly­lysine tags. Under the optimal conditions, 72.9 ±â€¯3.6% of the total protein could be immobilized, and the activity recovery of immobilized pCalB (pCalB-OAP) was 98.9 ±â€¯3.8%. The analysis of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) indicated that OAP was a suitable carrier for enzyme immobilization. The immobilized pCalB-OAP could exhibit excellent thermal stabilities, and it retained a residual activity of 58.4 ±â€¯2.8% at 55 °C, whereas only 21.2 ±â€¯2.2% of its initial activity for free pCalB was observed. And it could also display a nice tolerance for the changes of pH environment, compared with that of free pCalB. The results that pCalB-OAP could retained 73.6 ±â€¯2.9% of their initial activity in (R, S)-NEMPAME hydrolysis after the tenth cycles, suggested that pCalB-OAP could be effectively recycled. The immobilization strategies established here were simple and inexpensive.


Assuntos
Biomassa , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lipase/química , Lipase/metabolismo , Polilisina/química , Populus/química , Estabilidade Enzimática , Oxirredução , Pós
12.
G3 (Bethesda) ; 8(12): 3961-3972, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30373914

RESUMO

Genomic selection - the prediction of breeding values using DNA polymorphisms - is a disruptive method that has widely been adopted by animal and plant breeders to increase productivity. It was recently shown that other sources of molecular variations such as those resulting from transcripts or metabolites could be used to accurately predict complex traits. These endophenotypes have the advantage of capturing the expressed genotypes and consequently the complex regulatory networks that occur in the different layers between the genome and the phenotype. However, obtaining such omics data at very large scales, such as those typically experienced in breeding, remains challenging. As an alternative, we proposed using near-infrared spectroscopy (NIRS) as a high-throughput, low cost and non-destructive tool to indirectly capture endophenotypic variants and compute relationship matrices for predicting complex traits, and coined this new approach "phenomic selection" (PS). We tested PS on two species of economic interest (Triticum aestivum L. and Populus nigra L.) using NIRS on various tissues (grains, leaves, wood). We showed that one could reach predictions as accurate as with molecular markers, for developmental, tolerance and productivity traits, even in environments radically different from the one in which NIRS were collected. Our work constitutes a proof of concept and provides new perspectives for the breeding community, as PS is theoretically applicable to any organism at low cost and does not require any molecular information.


Assuntos
Genótipo , Melhoramento Vegetal , Populus/genética , Característica Quantitativa Herdável , Triticum/genética , Estudo de Prova de Conceito
13.
Plant Mol Biol ; 97(6): 525-535, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30051252

RESUMO

KEY MESSAGE: Transgenomics for gene discovery in Populus euphratica. Transgenomics, a member of the omics family of methodologies, is characterized as the introduction of DNA from one organism into another on a genome-wide scale followed by the identification of recipients with altered phenotypes. This strategy allows investigators to identify the gene(s) involved in these phenotypic changes. It is particularly promising for woody plants that have a long life cycle and for which molecular tools are limited. In this study, we constructed a large-insert binary bacterial artificial chromosome library of Populus euphratica, a stress-tolerant poplar species, which included 55,296 clones with average insert sizes of about 127 kb. To date, 1077 of the clones have been transformed into Arabidopsis thaliana via Agrobacterium by the floral dip method. Of these, 69 transgenic lines showed phenotypic changes represented by diverse aspects of plant form and development, 22 of which were reproducibly associated with the same phenotypic change. One of the clones conferring transgenic plants with increased salt tolerance, 002A1F06, was further analyzed and the 127,284 bp insert in this clone harbored eight genes that have been previously reported to be involved in stress resistance. This study demonstrates that transgenomics is useful in the study of functional genomics of woody plants and in the identification of novel gene(s) responsible for economically important traits. Thus, transgenomics can also be used for validation of quantitative trait loci mapped by molecular markers.


Assuntos
Estudos de Associação Genética/métodos , Plantas Geneticamente Modificadas/genética , Populus/genética , Arabidopsis/genética , Cromossomos Artificiais/genética , Genoma de Planta/genética , Genômica/métodos , Fenótipo , Locos de Características Quantitativas/genética , Tolerância ao Sal/genética
14.
Environ Pollut ; 238: 812-822, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29627751

RESUMO

Assessing ozone (O3) risk to vegetation is crucial for informing policy making. Soil nitrogen (N) and phosphorus (P) availability could change stomatal conductance which is the main driver of O3 uptake into a leaf. In addition, the availability of N and P could influence photosynthesis and growth. We thus postulated that the sensitivity of plants to O3 may be changed by the levels of N and P in the soil. In this study, a sensitive poplar clone (Oxford) was subject to two N levels (N0, 0 kg N ha-1; N80, 80 kg N ha-1), three P levels (P0, 0 kg P ha-1; P40, 40 kg P ha-1; P80, 80 kg P ha-1) and three levels of O3 exposure (ambient concentration, AA; 1.5 × AA; 2.0 × AA) for a whole growing season in an O3 free air controlled exposure (FACE) facility. Flux-based (POD0 to 6) and exposure-based (W126 and AOT40) dose-response relationships were fitted and critical levels (CLs) were estimated for a 5% decrease of total annual biomass. It was found that N and P availability modified the dose-response relationships of biomass responses to O3. Overall, the N supply decreased the O3 CLs i.e. increased the sensitivity of poplar to O3. Phosphorus alleviated the O3-caused biomass loss and increased the CL. However, such mitigation effects of P were found only in low N and not in high N conditions. In each nutritional treatment, similar performance was found between flux-based and exposure-based indices. However, the flux-based approach was superior, as compared to exposure indices, to explain the biomass reduction when all nutritional treatments were pooled together. The best O3 metric for risk assessments was POD4, with 4.6 mmol m-2 POD4 as a suitable CL for Oxford poplars grown under various soil N and P conditions.


Assuntos
Poluentes Atmosféricos/análise , Ozônio/análise , Populus/fisiologia , Ar , Poluentes Atmosféricos/toxicidade , Biomassa , Alimentos , Nitrogênio/análise , Nitrogênio/metabolismo , Ozônio/toxicidade , Fósforo/análise , Fósforo/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/química , Populus/efeitos dos fármacos , Medição de Risco , Estações do Ano
15.
PLoS One ; 13(3): e0193896, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29509777

RESUMO

Lignin is a polymer present in the secondary cell walls of all vascular plants. It is a known barrier to pulping and the extraction of high-energy sugars from cellulosic biomass. The challenge faced with predicting outcomes of transgenic plants with reduced lignin is due in part to the presence of unique protein-protein interactions that influence the regulation and metabolic flux in the pathway. Yet, it is unclear why certain plants have evolved to create these protein complexes. In this study, we use mathematical models to investigate the role that the protein complex, formed specifically between Ptr4CL3 and Ptr4CL5 enzymes, have on the monolignol biosynthesis pathway. The role of this Ptr4CL3-Ptr4CL5 enzyme complex on the steady state flux distribution was quantified by performing Monte Carlo simulations. The effect of this complex on the robustness and the homeostatic properties of the pathway were identified by performing sensitivity and stability analyses, respectively. Results from these robustness and stability analyses suggest that the monolignol biosynthetic pathway is resilient to mild perturbations in the presence of the Ptr4CL3-Ptr4CL5 complex. Specifically, the presence of Ptr4CL3-Ptr4CL5 complex increased the stability of the pathway by 22%. The robustness in the pathway is maintained due to the presence of multiple enzyme isoforms as well as the presence of alternative pathways resulting from the presence of the Ptr4CL3-Ptr4CL5 complex.


Assuntos
Lignina/biossíntese , Redes e Vias Metabólicas , Vias Biossintéticas , Homeostase , Método de Monte Carlo , Proteínas de Plantas/metabolismo , Populus/enzimologia , Populus/metabolismo
16.
Environ Sci Pollut Res Int ; 25(7): 6668-6679, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29260473

RESUMO

Biochar is a product of the thermal decomposition of biomass under a limited supply of oxygen and can be deriving from pyrolysis or gasification. As the product is rich in highly recalcitrant carbon, it has been proposed as a soil amendment to improve soil fertility and to stock carbon in soils. However, the contaminant compounds present in biochar could represent potential environmental threats. The gasification biochar is a promising by-product, but its effects on soil microarthropods are still nearly unknown. The aim of this study was to assess, using a prognosis approach, any ecotoxicological consequences of four biochars (conifer, poplar, grape marc, and wheat straw) on the springtail Folsomia candida. This was assessed through a series of tests: an avoidance behavior test, a survival and reproduction test, and a test based on the hatching of eggs. Biochars were tested at different concentrations (pulverized and diluted w/w with an artificial standard soil). The results showed that the springtails did not tend to avoid the biochars' substrates up to the rate of 2-5%, but any higher levels of concentration caused the animals to keep away from it. While mortality was negatively affected only in the grape marc biochar, reproduction was significantly reduced in all biochars considered. The hatching of the eggs was anticipated at even the lowest concentrations of herbaceous biochars, while a severe delay was observed in both concentrations tested of the conifer biochar. The endpoints considered were negatively affected by pH, polycyclic aromatic hydrocarbons, and heavy metals (in order of importance). The findings confirmed the potential adverse effects that gasification biochars could have on soil microarthropods and demonstrated the necessity of introducing these tests into biochar characterization protocols.


Assuntos
Artrópodes/efeitos dos fármacos , Carvão Vegetal/efeitos adversos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Populus/química , Reprodução/efeitos dos fármacos , Testes de Toxicidade , Traqueófitas/química , Triticum/química , Vitis/química
17.
New Phytol ; 217(4): 1726-1736, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29178135

RESUMO

Whether species demography and diversification are driven primarily by extrinsic environmental changes such as climatic oscillations in the Quaternary or by intrinsic biological interactions like coevolution between antagonists is a matter of active debate. In fact, their relative importance can be assessed by tracking past population fluctuations over considerable time periods. We applied the pairwise sequentially Markovian coalescent approach on the genomes of 11 temperate Juglans species to estimate trajectories of changes in effective population size (Ne ) and used a Bayesian-coalescent based approach that simultaneously considers multiple genomes (G-PhoCS) to estimate divergence times between lineages. Ne curves of all study species converged 1.0 million yr ago, probably reflecting the time when the walnut genus last shared a common ancestor. This estimate was confirmed by the G-PhoCS estimates of divergence times. But all species did not react similarly to the dramatic climatic oscillations following early Pleistocene cooling, so the timing and amplitude of changes in Ne differed among species and even among conspecific lineages. The population histories of temperate walnut species were not driven by extrinsic environmental changes alone, and a key role was probably played by species-specific factors such as coevolutionary interactions with specialized pathogens.


Assuntos
Mudança Climática , Variação Genética , Genoma de Planta , Juglans/genética , Sequenciamento Completo do Genoma , Sequência de Bases , Fraxinus/genética , Cadeias de Markov , Filogenia , Densidade Demográfica , Populus/genética , Especificidade da Espécie , Fatores de Tempo
18.
BMC Bioinformatics ; 18(1): 515, 2017 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-29169342

RESUMO

BACKGROUND: With the plummeting cost of the next-generation sequencing technologies, high-density genetic linkage maps could be constructed in a forest hybrid F1 population. However, based on such genetic maps, quantitative trait loci (QTL) mapping cannot be directly conducted with traditional statistical methods or tools because the linkage phase and segregation pattern of molecular markers are not always fixed as in inbred lines. RESULTS: We implemented the traditional composite interval mapping (CIM) method to multivariate trait data in forest trees and developed the corresponding software, mvqtlcim. Our method not only incorporated the various segregations and linkage phases of molecular markers, but also applied Takeuchi's information criterion (TIC) to discriminate the QTL segregation type among several possible alternatives. QTL mapping was performed in a hybrid F1 population of Populus deltoides and P. simonii, and 12 QTLs were detected for tree height over 6 time points. The software package allowed many options for parameters as well as parallel computing for permutation tests. The features of the software were demonstrated with the real data analysis and a large number of Monte Carlo simulations. CONCLUSIONS: We provided a powerful tool for QTL mapping of multiple or longitudinal traits in an outbred F1 population, in which the traditional software for QTL mapping cannot be used. This tool will facilitate studying of QTL mapping and thus will accelerate molecular breeding programs especially in forest trees. The tool package is freely available from https://github.com/tongchf /mvqtlcim.


Assuntos
Mapeamento Cromossômico/métodos , Cruzamentos Genéticos , Hibridização Genética , Populus/genética , Característica Quantitativa Herdável , Segregação de Cromossomos/genética , Simulação por Computador , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Genética Populacional , Genoma de Planta , Funções Verossimilhança , Método de Monte Carlo , Fenótipo , Locos de Características Quantitativas/genética , Especificidade da Espécie
19.
Plant Physiol Biochem ; 118: 449-459, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28743038

RESUMO

Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that there were no drawbacks in the leaf physiological performance which could be attributed to the micropropagated plants of fast growing hybrid poplar.


Assuntos
Melhoramento Vegetal/métodos , Folhas de Planta , Raízes de Plantas , Estômatos de Plantas , Populus , Característica Quantitativa Herdável , Quimera , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Populus/genética , Populus/crescimento & desenvolvimento
20.
PLoS One ; 12(1): e0170201, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28085955

RESUMO

To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar) and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0%) compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture) after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.


Assuntos
Ecossistema , Fluxo Gênico , Plantas Geneticamente Modificadas/genética , Populus/genética , Dispersão de Sementes , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Germinação , Plantas Geneticamente Modificadas/fisiologia , Pólen/genética , Populus/fisiologia , Risco , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA