Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35202132

RESUMO

Botulinum neurotoxin (BoNT) is commonly used to manage focal spasticity in stroke survivors. This study aimed to a perform comprehensive assessment of the effects of BoNT injection. Twelve stroke subjects with spastic hemiplegia (age: 52.0 ± 10.1 year; 5 females) received 100 units of BoNT to the spastic biceps brachii muscles. Clinical, biomechanical, electrophysiological, and neuro-motor assessments were performed one week (wk) before (pre-injection), 3 weeks (wks) after, and 3 months (mons) after BoNT injection. BoNT injection significantly reduced spasticity, muscle strength, reflex torque, and compound muscle action potential (CMAP) amplitude of spastic elbow flexors (all p < 0.05) during the 3-wks visit, and these values return to the pre-injection level during the 3-mons visit. Furthermore, the degree of reflex torque change was negatively correlated to the amount of non-reflex component of elbow flexor resistance torque. However, voluntary force control and non-reflex resistance torque remained unchanged throughout. Our results revealed parallel changes in clinical, neurophysiological and biomechanical assessment after BoNT injection; BoNT injection would be more effective if hypertonia was mainly mediated by underlying neural mechanisms. BoNT did not affect voluntary force control of spastic muscles.


Assuntos
Toxinas Botulínicas/administração & dosagem , Hemiplegia/tratamento farmacológico , Espasticidade Muscular/tratamento farmacológico , Fármacos Neuromusculares/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Potenciais de Ação/efeitos dos fármacos , Adulto , Fenômenos Biomecânicos , Doença Crônica , Estudos Transversais , Cotovelo , Feminino , Hemiplegia/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Espasticidade Muscular/etiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Reflexo/efeitos dos fármacos , Acidente Vascular Cerebral/complicações , Sobreviventes , Torque
2.
Eur J Pharmacol ; 913: 174632, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785211

RESUMO

Chloroquine and hydroxychloroquine have been proposed recently as therapy for SARS-CoV-2-infected patients, but during 3 months of extensive use concerns were raised related to their clinical effectiveness and arrhythmogenic risk. Therefore, we estimated for these compounds several proarrhythmogenic risk predictors according to the Comprehensive in vitro Proarrhythmia Assay (CiPA) paradigm. Experiments were performed with either CytoPatch™2 automated or manual patch-clamp setups on HEK293T cells stably or transiently transfected with hERG1, hNav1.5, hKir2.1, hKv7.1+hMinK, and on Pluricyte® cardiomyocytes (Ncardia), using physiological solutions. Dose-response plots of hERG1 inhibition fitted with Hill functions yielded IC50 values in the low micromolar range for both compounds. We found hyperpolarizing shifts of tens of mV, larger for chloroquine, in the voltage-dependent activation but not inactivation, as well as a voltage-dependent block of hERG current, larger at positive potentials. We also found inhibitory effects on peak and late INa and on IK1, with IC50 of tens of µM and larger for chloroquine. The two compounds, tested on Pluricyte® cardiomyocytes using the ß-escin-perforated method, inhibited IKr, ICaL, INa peak, but had no effect on If. In current-clamp they caused action potential prolongation. Our data and those from literature for Ito were used to compute proarrhythmogenic risk predictors Bnet (Mistry HB, 2018) and Qnet (Dutta S et al., 2017), with hERG1 blocking/unblocking rates estimated from time constants of fractional block. Although the two antimalarials are successfully used in autoimmune diseases, and chloroquine may be effective in atrial fibrillation, assays place these drugs in the intermediate proarrhythmogenic risk group.


Assuntos
Antivirais/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Cloroquina/farmacologia , Hidroxicloroquina/efeitos adversos , Potenciais de Ação/efeitos dos fármacos , Bioensaio , Simulação por Computador , Correlação de Dados , Relação Dose-Resposta a Droga , Canal de Potássio ERG1/agonistas , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo , Células HEK293 , Humanos , Concentração Inibidora 50 , Canal de Potássio KCNQ1/antagonistas & inibidores , Canal de Potássio KCNQ1/metabolismo , Cinética , Miócitos Cardíacos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Medição de Risco , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
3.
Molecules ; 26(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834026

RESUMO

Modern societies use a continuously growing number of chemicals. Because these are released into the environment and are taken up by humans, rigorous (but practicable) risk assessment must precede the approval of new substances for commerce. A number of tests is applicable, but it has been very difficult to efficiently assay the effect of chemicals on communication and information processing in vivo in the adult vertebrate brain. Here, we suggest a straightforward way to rapidly and accurately detect effects of chemical exposure on action potential generation, synaptic transmission, central information processing, and even processing in sensory systems in vivo by recording from a single neuron. The approach is possible in an identified neuron in the hindbrain of fish that integrates various sources of information and whose properties are ideal for rapid analysis of the various effects chemicals can have on the nervous system. The analysis uses fish but, as we discuss here, key neuronal functions are conserved and differences can only be due to differences in metabolism or passage into the brain, factors that can easily be determined. Speed and efficiency of the method, therefore, make it suitable to provide information in risk assessment, as we illustrate here with the effects of bisphenols on adult brain function.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Encéfalo/metabolismo , Peixes/metabolismo , Neurônios/metabolismo , Fenóis/toxicidade , Transmissão Sináptica/efeitos dos fármacos , Animais , Humanos , Medição de Risco
4.
PLoS Comput Biol ; 17(6): e1009145, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185778

RESUMO

State-dependent sodium channel blockers are often prescribed to treat cardiac arrhythmias, but many sodium channel blockers are known to have pro-arrhythmic side effects. While the anti and proarrhythmic potential of a sodium channel blocker is thought to depend on the characteristics of its rate-dependent block, the mechanisms linking these two attributes are unclear. Furthermore, how specific properties of rate-dependent block arise from the binding kinetics of a particular drug is poorly understood. Here, we examine the rate-dependent effects of the sodium channel blocker lidocaine by constructing and analyzing a novel drug-channel interaction model. First, we identify the predominant mode of lidocaine binding in a 24 variable Markov model for lidocaine-sodium channel interaction by Moreno et al. Specifically, we find that (1) the vast majority of lidocaine bound to sodium channels is in the neutral form, i.e., the binding of charged lidocaine to sodium channels is negligible, and (2) neutral lidocaine binds almost exclusively to inactivated channels and, upon binding, immobilizes channels in the inactivated state. We then develop a novel 3-variable lidocaine-sodium channel interaction model that incorporates only the predominant mode of drug binding. Our low-dimensional model replicates an extensive amount of the voltage-clamp data used to parameterize the Moreno et al. model. Furthermore, the effects of lidocaine on action potential upstroke velocity and conduction velocity in our model are similar to those predicted by the Moreno et al. model. By exploiting the low-dimensionality of our model, we derive an algebraic expression for level of rate-dependent block as a function of pacing frequency, restitution properties, diastolic and plateau potentials, and drug binding rate constants. Our model predicts that the level of rate-dependent block is sensitive to alterations in restitution properties and increases in diastolic potential, but it is insensitive to variations in the shape of the action potential waveform and lidocaine binding rates.


Assuntos
Coração/efeitos dos fármacos , Lidocaína/farmacologia , Lidocaína/farmacocinética , Modelos Cardiovasculares , Miocárdio/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Antiarrítmicos/farmacocinética , Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Biologia Computacional , Simulação por Computador , Frequência Cardíaca/fisiologia , Humanos , Cinética , Cadeias de Markov , Técnicas de Patch-Clamp , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
5.
Sci Rep ; 11(1): 10228, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986332

RESUMO

Cardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critical for defining safety profiles. Currently available approaches have limitations including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. We have advanced the robustness and reproducibility of in vitro platforms for assessing pro-arrhythmic cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts in 3-dimensional microtissues. Using automated algorithms and statistical analyses of eight comprehensive evaluation metrics of cardiac action potentials, we demonstrate that tissue-engineered human cardiac microtissues respond appropriately to physiological stimuli and effectively differentiate between high-risk and low-risk compounds exhibiting blockade of the hERG channel (E4031 and ranolazine, respectively). Further, we show that the environmental endocrine disrupting chemical bisphenol-A (BPA) causes acute and sensitive disruption of human action potentials in the nanomolar range. Thus, this novel human 3D in vitro pro-arrhythmic risk assessment platform addresses critical needs in cardiotoxicity testing for both environmental and pharmaceutical compounds and can be leveraged to establish safe human exposure levels.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Medição de Risco/métodos , Engenharia Tecidual/métodos , Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Cardiotoxicidade/prevenção & controle , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Morte Súbita Cardíaca/prevenção & controle , Fibroblastos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Modelos Biológicos , Contração Miocárdica/efeitos dos fármacos , Reprodutibilidade dos Testes
6.
Toxicol Appl Pharmacol ; 418: 115480, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689843

RESUMO

Drug-induced cardiotoxicity is a major barrier to drug development and a main cause of withdrawal of marketed drugs. Drugs can strongly alter the spontaneous functioning of the heart by interacting with the cardiac membrane ion channels. If these effects only surface during in vivo preclinical tests, clinical trials or worse after commercialization, the societal and economic burden will be significant and seriously hinder the efficient drug development process. Hence, cardiac safety pharmacology requires in vitro electrophysiological screening assays of all drug candidates to predict cardiotoxic effects before clinical trials. In the past 10 years, microelectrode array (MEA) technology began to be considered a valuable approach in pharmaceutical applications. However, an effective tool for high-throughput intracellular measurements, compatible with pharmaceutical standards, is not yet available. Here, we propose laser-induced optoacoustic poration combined with CMOS-MEA technology as a reliable and effective platform to detect cardiotoxicity. This approach enables the acquisition of high-quality action potential recordings from large numbers of cardiomyocytes within the same culture well, providing reliable data using single-well MEA devices and single cardiac syncytia per each drug. Thus, this technology could be applied in drug safety screening platforms reducing times and costs of cardiotoxicity assessments, while simultaneously improving the data reliability.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lasers , Microeletrodos , Miócitos Cardíacos/efeitos dos fármacos , Técnicas Fotoacústicas/instrumentação , Testes de Toxicidade/instrumentação , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Cardiotoxicidade , Redução de Custos , Análise Custo-Benefício , Frequência Cardíaca/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microeletrodos/economia , Miócitos Cardíacos/metabolismo , Técnicas Fotoacústicas/economia , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Tempo , Testes de Toxicidade/economia , Fluxo de Trabalho
7.
SLAS Discov ; 26(3): 364-372, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32914673

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been widely used for the assessment of drug proarrhythmic potential through multielectrode array (MEA). HiPSC-CM cultures beat spontaneously with a wide range of frequencies, however, which could affect drug-induced changes in repolarization. Pacing hiPSC-CMs at a physiological heart rate more closely resembles the state of in vivo ventricular myocytes and permits the standardization of test conditions to improve consistency. In this study, we systematically investigated the time window of stable ion currents in high-purity hiPSC-derived ventricular cardiomyocytes (hiPSC-vCMs) and confirmed that these cells could be used to correctly predict the proarrhythmic risk of Comprehensive In Vitro Proarrhythmia Assay (CiPA) reference compounds. To evaluate drug proarrhythmic potentials at a physiological beating rate, we used a MEA to electrically pace hiPSC-vCMs, and we recorded regular field potential waveforms in hiPSC-vCMs treated with DMSO and 10 CiPA reference drugs. Prolongation of field potential duration was detected in cells after exposure to high- and intermediate-risk drugs; in addition, drug-induced arrhythmia-like events were observed. The results of this study provide a simple and feasible method to investigate drug proarrhythmic potentials in hiPSC-CMs at a physiological beating rate.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/farmacologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Fenetilaminas/efeitos adversos , Quinidina/efeitos adversos , Sulfonamidas/efeitos adversos , Potenciais de Ação/fisiologia , Arritmias Cardíacas/prevenção & controle , Cálcio/metabolismo , Cátions Bivalentes , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Transporte de Íons/efeitos dos fármacos , Microeletrodos , Modelos Biológicos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Nifedipino/farmacologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Sotalol/efeitos adversos , Tetrodotoxina/antagonistas & inibidores , Tetrodotoxina/toxicidade , Verapamil/farmacologia
8.
Prog Biophys Mol Biol ; 159: 58-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32710902

RESUMO

Human-based computational modelling and simulation are powerful tools to accelerate the mechanistic understanding of cardiac patho-physiology, and to develop and evaluate therapeutic interventions. The aim of this study is to calibrate and evaluate human ventricular electro-mechanical models for investigations on the effect of the electro-mechanical coupling and pharmacological action on human ventricular electrophysiology, calcium dynamics, and active contraction. The most recent models of human ventricular electrophysiology, excitation-contraction coupling, and active contraction were integrated, and the coupled models were calibrated using human experimental data. Simulations were then conducted using the coupled models to quantify the effects of electro-mechanical coupling and drug exposure on electrophysiology and force generation in virtual human ventricular cardiomyocytes and tissue. The resulting calibrated human electro-mechanical models yielded active tension, action potential, and calcium transient metrics that are in agreement with experiments for endocardial, epicardial, and mid-myocardial human samples. Simulation results correctly predicted the inotropic response of different multichannel action reference compounds and demonstrated that the electro-mechanical coupling improves the robustness of repolarisation under drug exposure compared to electrophysiology-only models. They also generated additional evidence to explain the partial mismatch between in-silico and in-vitro experiments on drug-induced electrophysiology changes. The human calibrated and evaluated modelling and simulation framework constructed in this study opens new avenues for future investigations into the complex interplay between the electrical and mechanical cardiac substrates, its modulation by pharmacological action, and its translation to tissue and organ models of cardiac patho-physiology.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Simulação por Computador , Ventrículos do Coração/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Fenômenos Biomecânicos , Cálcio/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fenômenos Eletrofisiológicos , Humanos , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Medição de Risco
9.
J Med Chem ; 63(21): 12773-12785, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33078946

RESUMO

Voltage-gated sodium (NaV) channels are pore-forming transmembrane proteins that play essential roles in excitable cells, and they are key targets for antiepileptic, antiarrhythmic, and analgesic drugs. We implemented a heterobivalent design strategy to modulate the potency, selectivity, and binding kinetics of NaV channel ligands. We conjugated µ-conotoxin KIIIA, which occludes the pore of the NaV channels, to an analogue of huwentoxin-IV, a spider-venom peptide that allosterically modulates channel gating. Bioorthogonal hydrazide and copper-assisted azide-alkyne cycloaddition conjugation chemistries were employed to generate heterobivalent ligands using polyethylene glycol linkers spanning 40-120 Å. The ligand with an 80 Å linker had the most pronounced bivalent effects, with a significantly slower dissociation rate and 4-24-fold higher potency compared to those of the monovalent peptides for the human NaV1.4 channel. This study highlights the power of heterobivalent ligand design and expands the repertoire of pharmacological probes for exploring the function of NaV channels.


Assuntos
Ligantes , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Potenciais de Ação/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Conotoxinas/química , Conotoxinas/metabolismo , Reação de Cicloadição , Humanos , Concentração Inibidora 50 , Cinética , Simulação de Acoplamento Molecular , Canal de Sódio Disparado por Voltagem NAV1.4/química , Canal de Sódio Disparado por Voltagem NAV1.7/química , Técnicas de Patch-Clamp , Polietilenos/química , Venenos de Aranha/síntese química , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Aranhas/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/síntese química , Bloqueadores do Canal de Sódio Disparado por Voltagem/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
10.
J Pharmacol Toxicol Methods ; 105: 106888, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32579903

RESUMO

INTRODUCTION: Voltage and calcium-sensing optical recording (VSOR and CSOR, respectively) from human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been validated for in vitro evaluation of cardiotropic effects of drugs. When compared to electrophysiological devices like microelectrode array, multi-well optical recordings present a lower sample rate that may limit their capacity to detect fast depolarization or propagation velocity alterations. Additionally, the respective sensitivities of VSOR and CSOR to different cardiac electrophysiological effects have not been compared in the same conditions. METHODS: FluoVolt and Cal520 dyes were used in 96 well format on hPSC-CMs to report sodium channel block by lidocaine and propagation slowing by the junctional uncoupler carbenoxolone at three recording frequencies (60, 120 and 200 Hz) as well as their sensitivity to early and late repolarization delay. RESULTS: Sodium channel block led to a dose-dependent decrease of the VSOR signal rising slope that was improved by an increased sampling frequency. In contrast, the CSOR signal rising slope was only decreased at the highest concentration with no influence from the sampling rate. A similar result was obtained with carbenoxolone. Early repolarization delay by Bay K8644 showed the same effects on VSOR and CSOR signal durations while repolarization slowing by dofetilide had a significantly stronger prolongating effect on the VSOR signal at the lowest concentration. DISCUSSION: VSOR showed a higher capacity to detect sodium channel block, propagation slowing and modest late repolarization delay than CSOR. Increasing the sampling rate improved the detection threshold of VSOR for excitability and conduction velocity alterations.


Assuntos
Fármacos Cardiovasculares/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Cálcio/metabolismo , Carbenoxolona/farmacologia , Células Cultivadas , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microeletrodos , Miócitos Cardíacos/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia
11.
Curr Pharm Biotechnol ; 21(9): 829-841, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31749424

RESUMO

Current cardiac safety assessment platforms (in vitro hERG-centric, APD, and/or in vivo animal QT assays) are not fully predictive of drug-induced Torsades de Pointes (TdP) and do not address other mechanism-based arrhythmia, including ventricular tachycardia or ventricular fibrillation, or cardiac safety liabilities such as contractile and structural cardiotoxicity which are another growing safety concerns. We organized the Consortium for Safety Assessment using Human iPS cells (CSAHi; http://csahi.org/en/) in 2013, based on the Japan Pharmaceutical Manufacturers Association (JPMA), to verify the application of human iPS/ES cell-derived cardiomyocytes for drug safety evaluation. The CSAHi HEART team focused on comprehensive screening strategies to predict a diverse range of cardiotoxicities using recently introduced platforms such as the Multi-Electrode Array (MEA), cellular impedance, Motion Field Imaging (MFI), and optical imaging of Ca transient to identify strengths and weaknesses of each platform. Our study showed that hiPS-CMs used in these platforms could detect pharmacological responses that were more relevant to humans compared to existing hERG, APD, or Langendorff (MAPD/contraction) assays. Further, MEA and other methods such as impedance, MFI, and Ca transient assays provided paradigm changes of platforms for predicting drug-induced QT risk and/or arrhythmia or contractile dysfunctions. In contrast, since discordances such as overestimation (false positive) of arrhythmogenicity, oversight, or opposite conclusions in positive inotropic and negative chronotropic activities to some compounds were also confirmed, possibly due to their functional immaturity of hiPS-CMs, hiPS-CMs should be used in these platforms for cardiac safety assessment based upon their advantages and disadvantages.


Assuntos
Descoberta de Drogas , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/induzido quimicamente , Bioensaio , Cardiotoxicidade , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Síndrome do QT Longo/induzido quimicamente , Miócitos Cardíacos/fisiologia
12.
Curr Pharm Biotechnol ; 21(9): 780-786, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31782362

RESUMO

Neurotoxicity, as well as cardiotoxicity and hepatotoxicity, resulting from administration of a test article is considered a major adverse effect both pre-clinically and clinically. Among the different types of neurotoxicity occurring during the drug development process, seizure is one of the most serious one. Seizure occurrence is usually assessed using in vivo animal models, the Functional Observational Battery, the Irwin test or electroencephalograms. In in vitro studies, a number of assessments can be performed using animal organs/cells. Interestingly, recent developments in stem cell biology, especially the development of Human-Induced Pluripotent Stem (iPS) cells, are enabling the assessment of neurotoxicity in human iPS cell-derived neurons. Further, a Multi-Electrode Array (MEA) using rodent neurons is a useful tool for identifying seizure-inducing compounds. The Consortium for Safety Assessment using Human iPS Cells (CSAHi; http://csahi.org/en/) was established in 2013 by the Japan Pharmaceutical Manufacturers Association (JPMA) to verify the application of human iPS cell-derived neuronal cells to drug safety evaluation. The Neuro Team of CSAHi has been attempting to evaluate the seizure risk of compounds using the MEA platform. Here, we review the current status of neurotoxicity and recent work, including problems related to the use of the MEA assay with human iPS neuronal cell-derived neurons, and future developments.


Assuntos
Desenvolvimento de Medicamentos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Convulsões/induzido quimicamente , Potenciais de Ação/efeitos dos fármacos , Animais , Bioensaio , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Síndromes Neurotóxicas/patologia , Convulsões/patologia
13.
J Toxicol Sci ; 44(12): 859-870, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31813905

RESUMO

We validated a motion field imaging (MFI) assay with human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) as a model to assess multiple cardiac liabilities by comparing the guinea-pig Langendorff heart with hiPS-CMs using 4 reference compounds and 9 internal compounds. We investigated repolarization duration, beating rate (BR), conduction speed, contractility, and inhibitory profile of three cardiac ion channels: hERG, Cav1.2, and Nav1.5. For repolarization, the contraction-relaxation duration (CRDc) of hiPS-CMs was generally consistent with the QTc interval of Langendorff heart. However, 2 internal compounds shortened CRDc despite QTc prolongation in Langendorff heart. Cardiac ion channel profiling revealed that hiPS-CMs could not be used to detect QTc prolongation when the value of Cav1.2 IC50 / hERG IC50 for a compound was between 1 and 10, whereas hiPS-CMs showed responses largely consistent with Langendorff heart when Cav1.2 IC50 / hERG IC50 was below 1 or above 10. The accuracy of hiPS-CMs for the BR was not high, mainly because the BR of hiPS-CMs was increased by an inhibition of Cav1.2. The hiPS-CMs were highly sensitive to conduction speed and contractility, able to detect QRS widening caused by Nav1.5-inhibition, as well as decreased LVdP/dtmax caused by the inhibition of Cav1.2 and/or Nav1.5. In conclusion, the MFI assay with hiPS-CMs would be useful for evaluating multiple cardiac liabilities. The ion channel profile helps to interpret the results of MFI assay and correctly evaluate cardiac risks. Therefore, an integrated cardiac safety assessment with MFI and ion channel profiling is recommended.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Canais Iônicos/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Cardiotoxicidade , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Cobaias , Testes de Função Cardíaca , Humanos , Masculino , Microeletrodos , Microscopia de Vídeo , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Preparações Farmacêuticas/administração & dosagem
14.
Neurotoxicology ; 67: 215-225, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29909083

RESUMO

Neurotoxicity testing still relies on ethically debated, expensive and time consuming in vivo experiments, which are unsuitable for high-throughput toxicity screening. There is thus a clear need for a rapid in vitro screening strategy that is preferably based on human-derived neurons to circumvent interspecies translation. Recent availability of commercially obtainable human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes holds great promise in assisting the transition from the current standard of rat primary cortical cultures to an animal-free alternative. We therefore composed several hiPSC-derived neuronal models with different ratios of excitatory and inhibitory neurons in the presence or absence of astrocytes. Using immunofluorescent stainings and multi-well micro-electrode array (mwMEA) recordings we demonstrate that these models form functional neuronal networks that become spontaneously active. The differences in development of spontaneous neuronal activity and bursting behavior as well as spiking patterns between our models confirm the importance of the presence of astrocytes. Preliminary neurotoxicity assessment demonstrates that these cultures can be modulated with known seizurogenic compounds, such as picrotoxin (PTX) and endosulfan, and the neurotoxicant methylmercury (MeHg). However, the chemical-induced effects on different parameters for neuronal activity, such as mean spike rate (MSR) and mean burst rate (MBR), may depend on the ratio of inhibitory and excitatory neurons. Our results thus indicate that hiPSC-derived neuronal models must be carefully designed and characterized prior to large-scale use in neurotoxicity screening.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/efeitos dos fármacos , Potenciais de Ação/fisiologia , Astrócitos/fisiologia , Células Cultivadas , Técnicas de Cocultura/métodos , Endossulfano/toxicidade , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Neurônios/fisiologia , Picrotoxina/toxicidade
15.
J Tissue Eng Regen Med ; 12(6): 1389-1401, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29701919

RESUMO

Facial nerve injury can cause severe long-term physical and psychological morbidity. There are limited repair options for an acutely transected facial nerve not amenable to primary neurorrhaphy. We hypothesize that a peptide amphiphile nanofiber neurograft may provide the nanostructure necessary to guide organized neural regeneration. Five experimental groups were compared, animals with (1) an intact nerve, (2) following resection of a nerve segment, and following resection and immediate repair with either a (3) autograft (using the resected nerve segment), (4) neurograft, or (5) empty conduit. The buccal branch of the rat facial nerve was directly stimulated with charge balanced biphasic electrical current pulses at different current amplitudes whereas nerve compound action potentials (nCAPs) and electromygraphic responses were recorded. After 8 weeks, the proximal buccal branch was surgically reexposed and electrically evoked nCAPs were recorded for groups 1-5. As expected, the intact nerves required significantly lower current amplitudes to evoke an nCAP than those repaired with the neurograft and autograft nerves. For other electrophysiologic parameters such as latency and maximum nCAP, there was no significant difference between the intact, autograft, and neurograft groups. The resected group had variable responses to electrical stimulation, and the empty tube group was electrically silent. Immunohistochemical analysis and transmission electron microscopy confirmed myelinated neural regeneration. This study demonstrates that the neuroregenerative capability of peptide amphiphile nanofiber neurografts is similar to the current clinical gold standard method of repair and holds potential as an off-the-shelf solution for facial reanimation and potentially peripheral nerve repair.


Assuntos
Fenômenos Eletrofisiológicos , Nervo Facial/fisiopatologia , Nanofibras/química , Regeneração Nervosa/efeitos dos fármacos , Peptídeos/farmacologia , Tensoativos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Estimulação Elétrica , Eletromiografia , Nervo Facial/efeitos dos fármacos , Nervo Facial/cirurgia , Nervo Facial/ultraestrutura , Feminino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/ultraestrutura , Nanofibras/ultraestrutura , Ratos Sprague-Dawley
16.
Comput Math Methods Med ; 2018: 3719703, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29531576

RESUMO

Human heart electrophysiology is complex biological phenomenon, which is indirectly assessed by the measured ECG signal. ECG trace is further analyzed to derive interpretable surrogates including QT interval, QRS complex, PR interval, and T wave morphology. QT interval and its modification are the most commonly used surrogates of the drug triggered arrhythmia, but it is known that the QT interval itself is determined by other nondrug related parameters, physiological and pathological. In the current study, we used the computational intelligence algorithms to analyze correlations between various simulated physiological parameters and QT interval. Terfenadine given concomitantly with 8 enzymatic inhibitors was used as an example. The equation developed with the use of genetic programming technique leads to general reasoning about the changes in the prolonged QT. For small changes of the QT interval, the drug-related IKr and ICa currents inhibition potentials have major impact. The physiological parameters such as body surface area, potassium, sodium, and calcium ions concentrations are negligible. The influence of the physiological variables increases gradually with the more pronounced changes in QT. As the significant QT prolongation is associated with the drugs triggered arrhythmia risk, analysis of the role of physiological parameters influencing ECG seems to be advisable.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Inteligência Artificial , Eletrocardiografia , Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Algoritmos , Cálcio/química , Membrana Celular/metabolismo , Ensaios Clínicos como Assunto , Eletrofisiologia , Humanos , Íons , Modelos Estatísticos , Miócitos Cardíacos/citologia , Variações Dependentes do Observador , Potássio/química , Linguagens de Programação , Análise de Regressão , Reprodutibilidade dos Testes , Risco , Sódio/química , Software , Terfenadina/administração & dosagem , Terfenadina/efeitos adversos
17.
Neurol Sci ; 39(2): 329-332, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29128986

RESUMO

The aim of this study is to assess the neurophysiological abnormalities of type A botulin toxin-infiltrated human muscle, and their evolution over time. Seried cMAP measurements, 3 and 20 Hz repetitive nerve stimulation, EMG, SFEMG over 3 months from toxin injection. Our findings consist in lack of decrement with 3 Hz repetitive nerve stimulation and facilitation with 20 Hz repetitive nerve stimulation; progressive increasing of jitter; early appearance of fibrillations; small and short motor unit action potential in the first 3 weeks, followed by increasing of MUAP amplitude and duration, with polyphasic morphology. Although claimed as highly specific and sensible, neuromuscular junction facilitation is an inconstant finding in human botulism. Therefore, lack of neuromuscular junction facilitation cannot exclude a diagnosis of botulism. Our findings are compatible with a process of acute denervation followed by distal reinnervation, favored by terminal nerve sprouting.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Toxinas Botulínicas Tipo A/farmacologia , Eletromiografia , Fármacos Neuromusculares/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Adulto , Estimulação Elétrica , Feminino , Voluntários Saudáveis , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
18.
Artigo em Inglês | MEDLINE | ID: mdl-29066291

RESUMO

We propose a mathematical approach for the analysis of drugs effects on the electrical activity of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) based on multi-electrode array (MEA) experiments. Our goal is to produce an in silico tool able to simulate drugs action in MEA/hiPSC-CM assays. The mathematical model takes into account the geometry of the MEA and the electrodes' properties. The electrical activity of the stem cells at the ion-channel level is governed by a system of ordinary differential equations (ODEs). The ODEs are coupled to the bidomain equations, describing the propagation of the electrical wave in the stem cells preparation. The field potential (FP) measured by the MEA is modeled by the extracellular potential of the bidomain equations. First, we propose a strategy allowing us to generate a field potential in good agreement with the experimental data. We show that we are able to reproduce realistic field potentials by introducing different scenarios of heterogeneity in the action potential. This heterogeneity reflects the differentiation atria/ventricles and the age of the cells. Second, we introduce a drug/ion channels interaction based on a pore block model. We conduct different simulations for five drugs (mexiletine, dofetilide, bepridil, ivabradine and BayK). We compare the simulation results with the field potential collected from experimental measurements. Different biomarkers computed on the FP are considered, including depolarization amplitude, repolarization delay, repolarization amplitude and depolarization-repolarization segment. The simulation results show that the model reflect properly the main effects of these drugs on the FP.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Biomarcadores/análise , Diferenciação Celular , Células Cultivadas , Simulação por Computador , Humanos , Canais Iônicos/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Microeletrodos , Miócitos Cardíacos/fisiologia
19.
Chaos ; 27(9): 093918, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964116

RESUMO

The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti-AF options.


Assuntos
Fibrilação Atrial/fisiopatologia , Ativação do Canal Iônico/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Simulação por Computador , Átrios do Coração/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Cinética , Cadeias de Markov , Modelos Cardiovasculares , Período Refratário Eletrofisiológico/efeitos dos fármacos
20.
Neuron ; 95(4): 955-970.e4, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28757304

RESUMO

How environmental and physiological signals interact to influence neural circuits underlying developmentally programmed social interactions such as male territorial aggression is poorly understood. We have tested the influence of sensory cues, social context, and sex hormones on progesterone receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) that are critical for male territorial aggression. We find that these neurons can drive aggressive displays in solitary males independent of pheromonal input, gonadal hormones, opponents, or social context. By contrast, these neurons cannot elicit aggression in socially housed males that intrude in another male's territory unless their pheromone-sensing is disabled. This modulation of aggression cannot be accounted for by linear integration of environmental and physiological signals. Together, our studies suggest that fundamentally non-linear computations enable social context to exert a dominant influence on developmentally hard-wired hypothalamus-mediated male territorial aggression.


Assuntos
Agressão/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Neurônios/fisiologia , Comportamento Social , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Adenoviridae/genética , Animais , Antipsicóticos/farmacologia , Clozapina/análogos & derivados , Clozapina/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Feminino , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Fatores Sexuais , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA