Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38886121

RESUMO

Hafnia sp. was one of the specific spoilage bacteria in aquatic products, and the aim of the study was to investigate the inhibition ability of the silver nanoparticles (AgNPs) biosynthesis by an aqueous extract of Prunus persica leaves toward the spoilage-related virulence factors of Hafnia sp. The synthesized P-AgNPs were spherical, with a mean particle size of 36.3 nm and zeta potential of 21.8 ± 1.33 mV. In addition, the inhibition effects of P-AgNPs on the growth of two Hafnia sp. strains and their quorum sensing regulated virulence factors, such as the formation of biofilm, secretion of N-acetyl-homoserine lactone (AHLs), proteases, and exopolysaccharides, as well as their swarming and swimming motilities were evaluated. P-AgNPs had a minimum inhibitory concentration (MIC) of 64 µg ml-1 against the two Hafnia sp. strains. When the concentration of P-AgNPs was below MIC, it could inhibit the formation of biofilms by Hafnia sp at 8-32 µg ml-1, but it promoted the formation of biofilms by Hafnia sp at 0.5-4 µg ml-1. P-AgNPs exhibited diverse inhibiting effects on AHLs and protease production, swimming, and swarming motilities at various concentrations.


Assuntos
Antibacterianos , Biofilmes , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Extratos Vegetais , Folhas de Planta , Prunus persica , Percepção de Quorum , Prata , Percepção de Quorum/efeitos dos fármacos , Prata/farmacologia , Prata/química , Prata/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/microbiologia , Folhas de Planta/química , Nanopartículas Metálicas/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Prunus persica/microbiologia , Aizoaceae/química , Fatores de Virulência/metabolismo
2.
PeerJ ; 12: e17328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770094

RESUMO

Nanotechnology and nanoparticles have gained massive attention in the scientific community in recent years due to their valuable properties. Among various AgNPs synthesis methods, microbial approaches offer distinct advantages in terms of cost-effectiveness, biocompatibility, and eco-friendliness. In the present research work, investigators have synthesized three different types of silver nanoparticles (AgNPs), namely AgNPs-K, AgNPs-M, and AgNPs-E, by using Klebsiella pneumoniae (MBC34), Micrococcus luteus (MBC23), and Enterobacter aerogenes (MBX6), respectively. The morphological, chemical, and elemental features of the synthesized AgNPs were analyzed by using UV-Vis spectroscopy (UV-Vis), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and energy-dispersive spectroscopy (EDX). UV-Vis absorbance peaks were obtained at 475, 428, and 503 nm for AgNPs-K, AgNPs-M, and AgNPs-E, respectively. The XRD analysis confirmed the crystalline nature of the synthesized AgNPs, having peaks at 26.2°, 32.1°, and 47.2°. At the same time, the FTIR showed bands at 599, 963, 1,693, 2,299, 2,891, and 3,780 cm-1 for all the types of AgNPs indicating the presence of bacterial biomolecules with the developed AgNPs. The size and morphology of the AgNPs varied from 10 nm to several microns and exhibited spherical to porous sheets-like structures. The percentage of Ag varied from 37.8% (wt.%) to 61.6%, i.e., highest in AgNPs-K and lowest in AgNPs-M. Furthermore, the synthesized AgNPs exhibited potential for environmental remediation, with AgNPs-M exhibiting the highest removal efficiency (19.24% at 120 min) for methyl orange dye in simulated wastewater. Further, all three types of AgNPs were evaluated for the removal of methyl orange dye from the simulated wastewater, where the highest dye removal percentage was 19.24% at 120 min by AgNPs-M. Antibacterial potential of the synthesized AgNPs assessment against both Gram-positive (GPB) Bacillus subtilis (MBC23), B. cereus (MBC24), and Gram-negative bacteria Enterococcus faecalis (MBP13) revealed promising results, with AgNPs-M, exhibiting the largest zone of inhibition (12 mm) against GPB B. megaterium. Such investigation exhibits the potential of the bacteria for the synthesis of AgNPs with diverse morphology and potential applications in environmental remediation and antibacterial therapy-based synthesis of AgNPs.


Assuntos
Compostos Azo , Nanopartículas Metálicas , Micrococcus luteus , Prata , Prata/química , Prata/farmacologia , Prata/metabolismo , Nanopartículas Metálicas/química , Compostos Azo/química , Compostos Azo/farmacologia , Compostos Azo/metabolismo , Micrococcus luteus/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Enterobacter aerogenes/efeitos dos fármacos , Enterobacter aerogenes/metabolismo , Difração de Raios X , Poluentes Químicos da Água/metabolismo , Corantes/química , Corantes/farmacologia
3.
Chemosphere ; 322: 138163, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804250

RESUMO

Hazardous pollutants released into the real environment mostly own long-lasting cumulative characteristics and have progressively negative impacts on organisms, which are always neglected in laboratory toxicological tests. Here in this study, the different ecotoxicity of Ag nanoparticles (AgNPs) on earthworm Eisenia fetida was compared via various endpoints and transcriptional sequencing between the 28-day progressively repeated (from 60 to 80, final 100 mg/kg) and one-step (directly to 100 mg/kg) exposure. The results showed that earthworms under progressively repeated exposure showed significantly less biomass loss and reproductive inhibition, as well as lower Ag bioaccumulation (15.6 mg/kg) compared with one-step exposure (17.9 mg/kg). The increases in enzyme activities (superoxide enzyme and catalase) and gene expression (metallothionein) also implied higher antioxidant and genetic toxicity in one-step exposed earthworms compared with those from progressively repeated exposure. Furthermore, the transcriptomic analysis identified 582 and 854 differentially expressed genes in the treatments of one-step and repeated exposure respectively compared with the control group. The results of pathway annotation and classification suggested similar enrichments of damage induction but different in toxic stress responses, whereas earthworms from repeated exposure possessed more detoxification-related pathways like translation and multicellular organismal processes. This study innovatively took into account the impacts of processive exposure occurring in the real environment and elucidated distinctions of toxicity and adaptation caused by different exposure patterns, which provided the theoretical basis for real risk identification under the framework and guidance of traditional toxicology, also the implication for the improvement of eco-toxicological risk assessment.


Assuntos
Nanopartículas Metálicas , Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Prata/metabolismo , Antioxidantes/metabolismo , Medição de Risco , Poluentes do Solo/análise , Solo , Superóxido Dismutase/metabolismo , Estresse Oxidativo
4.
Biotechnol Adv ; 59: 107967, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35489656

RESUMO

The non-conventional yeast Yarrowia lipolytica has been popular as a model system for understanding biological processes such as dimorphism and lipid accumulation. The organism can efficiently utilize hydrophobic substrates (hydrocarbons and triglycerides) thereby rendering it relevant in bioremediation of oil polluted environments. The current review focuses on the interactions of this fungus with metal pollutants and its potential application in bioremediation of metal contaminated locales. This fungus is intrinsically equipped with a variety of physiological and biochemical features that enable it to tide over stress conditions induced by the presence of metals. Production of enzymes such as phosphatases, reductases and superoxide dismutases are worth a special mention. In the presence of metals, levels of inherently produced metal binding proteins (metallothioneins) and the pigment melanin are seen to be elevated. Morphological alterations with respect to biofilm formation and dimorphic transition from yeast to mycelial form are also induced by certain metals. The biomass of Y. lipolytica is inherently important as a biosorbent and cell surface modification, process optimization or whole cell immobilization techniques have aided in improving this capability. In the presence of metals such as mercury, cadmium, copper and uranium, the culture forms nanoparticulate deposits. In addition, on account of its intrinsic reductive ability, Y. lipolytica is being exploited for synthesizing nanoparticles of gold, silver, cadmium and selenium with applications as antimicrobial compounds, location agents for bioimaging and as feed supplements. This versatile organism thus has great potential in interacting with various metals and addressing problems related to their pollutant status.


Assuntos
Poluentes Ambientais , Yarrowia , Biodegradação Ambiental , Cádmio/metabolismo , Poluentes Ambientais/metabolismo , Hidrocarbonetos , Prata/metabolismo , Yarrowia/metabolismo
5.
Nanotoxicology ; 15(10): 1295-1311, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35015612

RESUMO

With ever-increasing production and use of nanoparticles (NPs), there is a necessity to evaluate the probability of consequential adverse effects in individuals exposed to these particles. It is now understood that a proportion of NPs can translocate from primary sites of exposure to a range of secondary organs, with the liver, kidneys and spleen being some of the most important. In this study, we carried out a comprehensive toxicological profiling (inflammation, changes in serum biochemistry, oxidative stress, acute phase response and histopathology) of Ag NP induced adverse effects in the three organs of interest following acute exposure of the materials at identical doses via intravenous (IV), intratracheal (IT) instillation and oral administration. The data clearly demonstrated that bioaccumulation and toxicity of the particles were most significant following the IV route of exposure, followed by IT. However, oral exposure to the NPs did not result in any changes that could be interpreted as toxicity in any of the organs of interest within the confines of this investigation. The finding of this study clearly indicates the importance of the route of exposure in secondary organ hazard assessment for NPs. Finally, we identify Connexin 32 (Cx32) as a novel biomarker of NP-mediated hepatic damage which is quantifiable both (in vitro) and in vivo following exposure of physiologically relevant doses.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Injeções Intravenosas , Fígado , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo , Prata/metabolismo
6.
Arch Toxicol ; 94(3): 773-784, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32157349

RESUMO

Recently revised OECD inhalation toxicity testing guidelines require measurements of lung burden immediately after and for periods following exposure for nanomaterials. Lung burden is a function of pulmonary deposition and retention of nanoparticles. Using lung burden studies as per OECD guidelines, it may be possible to assess clearance mechanisms of nanoparticles. In this study, male rats were exposed to silver nanoparticle (AgNP) aerosols (18.1-19.6 nm) generated from a spark generator. Exposure groups consisted of (1) control (fresh air), (2) low (31.2 ± 8.5 µg/m3), (3) moderate (81.8 ± 11.4 µg/m3), and (4) high concentrations (115.6 ± 30.5 µg/m3). Rats were exposed for 6-h/day, 5-days/week for 4 weeks (28-days) based on the revised OECD test guideline 412. Bronchoalveolar lavage (BAL) fluids were collected on post-exposure observation (PEO)-1 and PEO-7 days and analyzed for inflammatory cells and inflammatory biomarkers. The lung burdens of Ag from AgNPs were measured on PEO-1, PEO-7, and PEO-28 days to obtain quantitative mass concentrations per lung. Differential counting of blood cells and inflammatory biomarkers in BAL fluid and histopathological evaluation of lung tissue indicated that exposure to the high concentrations of AgNP aerosol induced inflammation at PEO-1, slowly resolved at PEO-7 and completely resolved at PEO-28 days. Lung burden measurement suggested that Ag from AgNPs was cleared through two different modes; fast and slow clearance. The fast clearance component was concentration-dependent with half-times ranging from two to four days and clearance rates of 0.35-0.17/day-1 from low to high concentrations. The slow clearance had half-times of 100, 57, and 76 days and clearance rates of 0.009, 0.012, and 0.007/day-1 for the high, moderate and low concentration exposure. The exact mechanism of clearance is not known currently. The fast clearance component which was concentration-dependent could be dependent on the dissolution of AgNPs and the slow clearance would be due to slow clearance of the low dissolution AgNPs secondary particles originating from silver ions reacting with biogenic anions. These secondary AgNPs might be cleared by mechanisms other than dissolution such as mucociliary escalation, translocation to the lymphatic system or other organs.


Assuntos
Exposição por Inalação/análise , Nanopartículas Metálicas/análise , Prata/metabolismo , Aerossóis , Animais , Líquido da Lavagem Broncoalveolar , Masculino , Taxa de Depuração Metabólica , Nanopartículas Metálicas/toxicidade , Tamanho da Partícula , Ratos , Prata/toxicidade
7.
Anat Histol Embryol ; 49(4): 433-439, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32092175

RESUMO

Metallophilic macrophages (MMs) are a distinct cell type of the rodent thymus. Our previous research has focused on the morphological characteristics of MMs, as well as on the molecular mechanisms involved in the development and tissue positioning of these cells. However, the postnatal development of MMs has not been sufficiently studied. In the present study, we investigated the positioning of MMs in the rat thymus between postnatal day 0 (P0) and P30. On P0, MMs were evenly distributed all over the thymic tissue-that is, the cortex, cortico-medullary zone and medulla. From P0 to P15, the number of MMs in the thymic cortex significantly decreased, and after P15, this number did not change. Thus, the present study shows that on P15, MMs almost completely disappear from the thymic cortex and show their adult position in the cortico-medullary zone and in the medulla.


Assuntos
Macrófagos/citologia , Prata/metabolismo , Timo/citologia , Análise de Variância , Animais , Intervalos de Confiança , Feminino , Imuno-Histoquímica , Macrófagos/metabolismo , Masculino , Método de Monte Carlo , Ratos , Ratos Wistar , Análise de Regressão , Coloração pela Prata , Timo/crescimento & desenvolvimento
8.
Med Chem ; 16(4): 495-506, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31713490

RESUMO

BACKGROUND: Silver nanoparticles synthesized by the bio-green method have been applied to various biomedical applications. These procedures are simple, eco-friendly and serve as an alternative to complex chemical methods for the preparation of nanomaterials. OBJECTIVE: In the present study, phytosynthesis of silver nanoparticles, to examine their antioxidant potential, toxic effects towards bacterial-, fungal-strains, brine shrimp nauplii and cancer cells was focused. METHODS: Methanolic extract of Euphorbia wallichii roots was used for the synthesis of silver nanoparticles. The synthesis was monitored and confirmed by UV-visible spectroscopy, Fourier Transform Infra-Red (FTIR) spectrometric analysis, Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-ray (EDX) and X-Ray Powder Diffraction (XRD). RESULTS: The synthesized particles were average 63±8 nm in size. Involvement of phenolic (46.7±2.4 µg GAE/mg) and flavonoid (11.7±1.2 µg QE/mg) compounds as capping agents was also measured. Nanoparticles showed antioxidant properties in terms of free radical scavenging potential (59.63±1.0 %), reducing power (44.52±1.34 µg AAE/mg) and total antioxidant capacity (60.48±2.2 µg AAE/mg). The nanoparticles showed potent cytotoxic effects against brine shrimp nauplii (LD50 66.83 µg/ml), proliferation and cell death of HeLa cells as determined by MTT (LD50 0.3923 µg/ml) and TUNEL assays, respectively. Antimicrobial results revealed that silver nanoparticles were found to be more potent against pathogenic fungal (maximum active against A. fumigatus, MIC 15 µg/disc) and bacterial strains (maximum active against S. aureus, MIC 3.33 µg/disc) than the E. wallichii extract alone. CONCLUSION: These results support the advantages of using an eco-friendly and cost-effective method for synthesis of nanoparticles with antioxidant, cytotoxic and antimicrobial potential.


Assuntos
Euphorbia/química , Nanopartículas Metálicas/química , Extratos Vegetais/metabolismo , Prata/metabolismo , Prata/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Flavonoides/análise , Células HeLa , Humanos , Fenóis/análise , Prata/química
9.
IET Nanobiotechnol ; 13(7): 726-735, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31573542

RESUMO

The study was focused on the phytochemicals-mediated biosynthesis of silver nanoparticles using leaf extracts and infusions from Cynara scolymus. To identify the antioxidant activity and total phenolic content, the 1,1-diphenyl-1-picrylhydrazyl and Folin-Ciocalteau methods were applied, respectively. The formation and stability of the reduced silver ions were monitored by UV-vis spectrophotometer. The particle sizes of the silver nanoparticles were characterised using the dynamic light scattering technique and scanning electron microscope. The phase composition of the obtained silver nanoparticles was characterised by X-ray diffraction. The silver nanoparticles suspension, artichoke infusion, and silver ions were separately tested towards potential cytotoxicity and pro-inflammatory effect using mouse fibroblasts and human monocytes cell line, respectively. The total phenolic content and antioxidant activity of ethanol extract and infusion were found significantly higher as compared to aqueous extract and infusion. The UV-visible spectrophotometric analysis revealed the presence of the characteristic absorption band of the Ag nanoparticles. Moreover, it was found that with the increasing volume of plant extract, the average size of particles was increased. Biocompatibility results evidently showed that silver nanoparticles do not induce monocyte activation, however in order to avoid their cytotoxicity suspension at a concentration <2 ppm should be applied.


Assuntos
Cynara scolymus , Sistema Imunitário/efeitos dos fármacos , Nanopartículas Metálicas , Compostos Fitoquímicos/farmacologia , Prata , Animais , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cynara scolymus/química , Cynara scolymus/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Teste de Materiais , Nanopartículas Metálicas/química , Camundongos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Compostos Fitoquímicos/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Prata/química , Prata/metabolismo , Prata/farmacologia , Testes de Toxicidade
10.
Colloids Surf B Biointerfaces ; 184: 110508, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31546223

RESUMO

Extensive utilization of silver nanoparticles (AgNP) has raised concerns of their safety profile upon interaction with biological system. In past decade, various nanoparticles (NPs) with excellent antimicrobial potential have been synthesized, a majority of which have struggled with the established toxicity in biological systems. The NPs safety is still a hot debate and various strategies are being adopted to overcome this giant limitation. This paper successfully reports comparative toxicity profiles of previously synthesized antimicrobial NPs in our lab and concludes the effectiveness of biologically synthesized NPs for its safe usage in biological systems. In this study, five of our previously synthesized NPs that showed excellent antimicrobial potential were compared for their in vivo toxicity and corresponding radical scavenging activities. Based on lowest morbidity, mortality, weight loss, toxicity and agglomeration profile, best NPs with highest antimicrobial potentials were screened out and used for further biomedical applications. The previously reported NPs used in this study included Aerva javanica synthesized nanoparticles (AjNPs), Heliotropium crispium synthesized nanoparticles (HcNPs), and violacein capped nanoparticles (VNPs), these showed least toxicity upon in vivo histological analysis. AjNPs among them showed maximum safety and efficacy profile and consistently showed least production of reactive oxygen species, least mortality and morbidity rate as compared to other groups. Present study establishes that all these biologically synthesized NPs and specifically AjNPs can be efficiently employed as antimicrobial agents as they have not exhibited toxic profile and have shown least accumulation into the organs such as liver spleen and kidney.


Assuntos
Antibacterianos/toxicidade , Sequestradores de Radicais Livres/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Antibacterianos/análise , Antibacterianos/metabolismo , Coloides/análise , Coloides/metabolismo , Coloides/toxicidade , Sequestradores de Radicais Livres/análise , Sequestradores de Radicais Livres/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Nanopartículas Metálicas/análise , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Prata/análise , Prata/metabolismo , Baço/efeitos dos fármacos , Baço/patologia , Propriedades de Superfície
11.
J Photochem Photobiol B ; 194: 119-127, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30953913

RESUMO

'Go green' has also been implied to nanotechnology by harbouring eco-benign principle for a cleaner production of silver nanoparticles (AgNPs). This was achieved using a nitrate reducing Bacillus subtilis L1 (KT266579.1) inhabiting rhizosphere soil under optimized laboratory conditions, highlighting on its antibacterial modus operandi. Nano-characteristics and antimicrobial mechanism were investigated using spectroscopic and electron microscopic studies. Spectroscopic and microscopic characterization revealed typical surface plasmon resonance (SPR) with λmax 420 nm showing mean particle size of ~28.30 nm and spherical shaped nanoparticles. Antimicrobial susceptibility pattern of clinically important pathogens (n = 15) exposed to AgNPs at 10 µg, 15 µg and 20 µg/mL for 18 h was found significant in a dose dependent fashion. Electron and atomic force microscopic (AFM) studies have demonstrated the typical bactericidal effect of AgNPs (<25 µg/mL) associated with 'pitting effect', cell shrinkage and increase in surface roughness. The EDX spectrum of the control and treated bacteria showed the intrusion of AgNPs inside the bacterial cells endorsing the event of bacterial paralysis. DNA fragmentation assay demonstrated significant DNA damage in the form of smear, indicative of genotoxicity at ≤32 µg and ≤16 µg/mL of AgNPs respectively for Gram positive and negative strains in <12 h. These results suggest that AgNPs possess excellent antimicrobial activity, providing a potential lead for developing a broad spectrum antibacterial agent and extending its therapeutic modalities targeting antibiotic resistant strains at gene level.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bioengenharia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Nanopartículas Metálicas , Prata/metabolismo , Prata/farmacologia , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/farmacologia , Análise Custo-Benefício , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Imagem Molecular , Prata/química , Temperatura
12.
Microb Pathog ; 125: 33-42, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30171981

RESUMO

Silver nanoparticles, one of the most popular nanomaterials, are used extensively in medicine and industries. The present study biosynthesized spherical Ag/AgCl nanoparticles with a size range of 10-50 nm in less than 5 min. The synthesis was performed in a single step, in a low-cost and eco-friendly manner, from the aqueous extract of Malva Sylvestris leaves. The aqueous extract had a large number of phenolic compounds and carbohydrates as reducing and capping agents. The nanoparticles also showed significant antibacterial and anti-biofilm activities against some multi drug resistant bacteria. They additionally showed antifungal activities on several Candida species. The highest concentration of Ag/AgCl-NPs (62.5 µg/ml) was required in order to inhibit P. aeruginosa B 52, C. glabrata and C. parapsilosis growth. The lowest concentration of Ag/AgCl-NPs (7.8125 µg/ml) inhibited the growth of C. orthopsilosis, P. aeruginosa ATCC 27853 and B. subtilis ATCC 6633. A total of 125 µg/ml of Ag/AgCl-NPs was used to prevent P. aeruginosa B 52 biofilm growth. The concentration of 62.5 µg/ml Ag/AgCl-NPs also eradicated both P. aeruginosa 48 and P. aeruginosa B 52 biofilms. The results showed that Hg2+ and Pb2+ contaminants in water could be colorimetrically detected by these nanoparticles.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Fungos/efeitos dos fármacos , Malva/metabolismo , Nanopartículas Metálicas , Prata/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/toxicidade , Colorimetria , Química Verde , Chumbo/análise , Mercúrio/análise , Testes de Sensibilidade Microbiana , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Prata/metabolismo , Prata/toxicidade , Poluentes Químicos da Água/análise
13.
IET Nanobiotechnol ; 12(8): 1047-1055, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30964012

RESUMO

This study reports an eco-friendly-based method for the preparation of biopolymer Ag-Au nanoparticles (NPs) by using gum kondagogu (GK; Cochlospermum gossypium), as both reducing and protecting agent. The formation of GK-(Ag-Au) NPs was confirmed by UV-absorption, fourier transformed infrared (FTIR), atomic force microscopy (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The GK-(Ag-Au) NPs were of 1-12 nm in size. The anti-proliferative activity of nanoparticle constructs was assessed by MTT assay, confocal microscopy, flow cytometry and quantitative real-time polymerase chain reaction (PCR) techniques. Expression studies revealed up-regulation of p53, caspase-3, caspase-9, peroxisome proliferator-activated receptors (PPAR) PPARa and PPARb, genes and down-regulation of Bcl-2 and Bcl-x(K) genes, in B16F10 cells treated with GK-(Ag-Au) NPs confirming the anti-proliferative properties of the nanoparticles.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ouro/farmacologia , Nanopartículas Metálicas/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Biotecnologia/métodos , Linhagem Celular Tumoral , Ouro/química , Ouro/metabolismo , Química Verde/métodos , Camundongos , Prata/química , Prata/metabolismo , Prata/farmacologia
14.
Ecotoxicology ; 25(8): 1543-1555, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27614742

RESUMO

Despite the increasing interest in silver nanoparticles toxicity still few works dealt with the hazards of nanosized Ag in soils (either dissolved in pore water or coupled to colloids) although disposal of biosolids in landfills has been reported as the major source of silver nanoparticles in terrestrial environments. Presently, Eisenia fetida was used to assess the toxicity of 5 nm sized PVP-PEI coated silver nanoparticles in soil through the implementation of different exposure media Standard Toxicity Tests (Paper Contact and Artificial Soil -OECD-207- and Reproduction -OECD-222- Tests) together with cellular biomarkers measured in extruded coelomocytes. In order to decipher the mode of action of silver nanoparticles in soil and the uptake routes in earthworms, special attention was given to the Ag accumulation and distribution in tissues. High Ag accumulation rates, weight loss, and mortality due to the disruption of the tegument could be the result of a dermal absorption of Ag ions released from silver nanoparticles (Paper Contact Test). However, autometallography showed metals mainly localized in the digestive tract after Artificial Soil Test, suggesting that Ag uptake occurred mostly through soil ingestion. That is, silver nanoparticles attached to soil colloids seemed to be internalized in earthworms after ingestion of soil and transferred to the digestive gut epithelium where at high doses they have triggered severe effects at different levels of biological complexity.


Assuntos
Nanopartículas Metálicas/toxicidade , Oligoquetos/fisiologia , Prata/metabolismo , Poluentes do Solo/metabolismo , Testes de Toxicidade/métodos , Animais , Organização para a Cooperação e Desenvolvimento Econômico , Prata/toxicidade , Solo , Poluentes do Solo/toxicidade , Testes de Toxicidade/normas
15.
Int J Nanomedicine ; 10: 4203-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26170659

RESUMO

BACKGROUND: Recently, the use of nanotechnology has been expanding very rapidly in diverse areas of research, such as consumer products, energy, materials, and medicine. This is especially true in the area of nanomedicine, due to physicochemical properties, such as mechanical, chemical, magnetic, optical, and electrical properties, compared with bulk materials. The first goal of this study was to produce silver nanoparticles (AgNPs) using two different biological resources as reducing agents, Bacillus tequilensis and Calocybe indica. The second goal was to investigate the apoptotic potential of the as-prepared AgNPs in breast cancer cells. The final goal was to investigate the role of p53 in the cellular response elicited by AgNPs. METHODS: The synthesis and characterization of AgNPs were assessed by various analytical techniques, including ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). The apoptotic efficiency of AgNPs was confirmed using a series of assays, including cell viability, leakage of lactate dehydrogenase (LDH), production of reactive oxygen species (ROS), DNA fragmentation, mitochondrial membrane potential, and Western blot. RESULTS: The absorption spectrum of the yellow AgNPs showed the presence of nanoparticles. XRD and FTIR spectroscopy results confirmed the crystal structure and biomolecules involved in the synthesis of AgNPs. The AgNPs derived from bacteria and fungi showed distinguishable shapes, with an average size of 20 nm. Cell viability assays suggested a dose-dependent toxic effect of AgNPs, which was confirmed by leakage of LDH, activation of ROS, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in MDA-MB-231 breast cancer cells. Western blot analyses revealed that AgNPs induce cellular apoptosis via activation of p53, p-Erk1/2, and caspase-3 signaling, and downregulation of Bcl-2. Cells pretreated with pifithrin-alpha were protected from p53-mediated AgNPs-induced toxicity. CONCLUSION: We have demonstrated a simple approach for the synthesis of AgNPs using the novel strains B. tequilensis and C. indica, as well as their mechanism of cell death in a p53-dependent manner in MDA-MB-231 human breast cancer cells. The present findings could provide insight for the future development of a suitable anticancer drug, which may lead to the development of novel nanotherapeutic molecules for the treatment of cancers.


Assuntos
Agaricales/metabolismo , Antineoplásicos , Apoptose/efeitos dos fármacos , Bacillus/metabolismo , Nanopartículas Metálicas/química , Prata , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Prata/química , Prata/metabolismo , Prata/farmacologia
16.
J Proteome Res ; 14(4): 1872-9, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25668573

RESUMO

Antibody microarrays can detect multiple proteins simultaneously, but the need for bulky and expensive fluorescence scanners limits their adaptation in clinical settings. Here we introduce a 15-plex enzyme-mediated silver enhanced sandwich immunoassay (SENSIA) on a microarray as an economic alternative to conventional fluorescence microarray assays. We compared several gold and silver amplification schemes, optimized HRP-mediated silver amplification, and evaluated the use of flatbed scanners for microarray quantification. Using the optimized assay condition, we established binding curves for 15 proteins using both SENSIA and conventional fluorescence microarray assays and compared their limits of detection (LODs) and dynamic ranges (DRs). We found that the LODs for all proteins are in the pg/mL range, with LODs for 12 proteins below 10 pg/mL. All but two proteins (ENDO and IL4) have similar LODs (less than 10-fold difference) and all but two proteins (IL1b and MCP1) are similar in DR (less than 1.5-log difference). Furthermore, we spiked six proteins in diluted serum and measured them by both silver enhancement and fluorescence detection and found a good agreement (R(2) > 0.9) between the two methods, suggesting that a complex matrix such as serum has a minimal effect on the measurement. By combining enzyme-mediated silver enhancement and consumer electronics for optical detection, SENSIA presents a new opportunity for low-cost high-sensitivity multiplex immunoassays for clinical applications.


Assuntos
Anticorpos/farmacologia , Imunoensaio/métodos , Nanopartículas Metálicas , Análise Serial de Proteínas/métodos , Proteínas/análise , Limite de Detecção , Prata/metabolismo
17.
Biotechnol Lett ; 36(10): 2079-84, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24966039

RESUMO

Biomediated silver nanoparticle were synthesized using a cell free extract of a soil bacterium, Exiguobacterium mexicanum PR 10.6. The silver nanoparticles were characterised using UV-Vis spectroscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The nanoparticles ranged from 5 to 40 nm. Extracellular polymeric substance played a critical role in the reduction of silver ion and nanoparticle stabilisation when using the cell free extract. The synthesis using E. mexicanum is an effective eco-friendly, rapid method for silver nanoparticle synthesis within 1 h.


Assuntos
Bactérias/metabolismo , Nanopartículas Metálicas/química , Prata/metabolismo , Nanopartículas Metálicas/economia , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
18.
J Microbiol Biotechnol ; 24(4): 522-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24394192

RESUMO

Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of Ag(+) ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of Ag(+) ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.


Assuntos
Anti-Infecciosos/metabolismo , Substâncias Macromoleculares/metabolismo , Nanopartículas/metabolismo , Scenedesmus/metabolismo , Prata/metabolismo , Bactérias/efeitos dos fármacos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica , Nanopartículas/química , Nanopartículas/ultraestrutura , Análise Espectral , Difração de Raios X
19.
Anal Biochem ; 295(1): 1-8, 2001 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-11476538

RESUMO

Development of microarrays has revolutionized gene expression analysis and molecular diagnosis through miniaturization and the multiparametric features. Critical factors affecting detection efficiency of targets hybridization on microarray are the design of capture probes, the way they are attached to the support, and the sensitivity of the detection method. Microarrays are currently detected in fluorescence using a sophisticated confocal laser-based scanner. In this work, we present a new colorimetric detection method which is intented to make the use of microarray a powerful procedure and a low-cost tool in research and clinical settings. The signal generated with this method results from the precipitation of silver onto nanogold particles bound to streptavidin, the latter being used for detecting biotinylated DNA. This colorimetric method has been compared to the Cy-3 fluorescence method. The detection limit of both methods was equivalent and corresponds to 1 amol of biotinylated DNA attached on an array. Scanning and data analysis of the array were obtained with a colorimetric-based workstation.


Assuntos
Colorimetria/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Prata/análise , Proteínas de Bactérias/genética , Biotinilação , Precipitação Química , Colorimetria/economia , Citomegalovirus/genética , DNA/genética , DNA/metabolismo , Ouro/análise , Ouro/química , Cinética , Microscopia Eletrônica de Varredura , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/economia , Oxirredução , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Prata/química , Prata/metabolismo , Staphylococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA