Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.739
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Oral Health ; 24(1): 579, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762747

RESUMO

BACKGROUND: Vinyl polyether silicone (VPES) is a novel impression biomaterial made of a combination of vinyl polysiloxane (VPS) and polyether (PE). Thus, it is significant to assess its properties and behaviour under varied disinfectant test conditions. This study aimed to assess the dimensional stability of novel VPES impression material after immersion in standard disinfectants for different time intervals. METHODS: Elastomeric impression material used -medium body regular set (Monophase) [Exa'lence GC America]. A total of 84 Specimens were fabricated using stainless steel die and ring (ADA specification 19). These samples were distributed into a control group (n=12) and a test group (n=72). The test group was divided into 3 groups, based on the type of disinfectant used - Group-A- 2% Glutaraldehyde, Group-B- 0. 5% Sodium hypochlorite and Group-C- 2% Chlorhexidine each test group was further divided into 2 subgroups (n=12/subgroup) based on time intervals for which each sample was immersed in the disinfectants - subgroup-1- 10 mins and Subgroup 2- 30 mins. After the impression material was set, it was removed from the ring and then it was washed in water for 15 seconds. Control group measurements were made immediately on a stereomicroscope and other samples were immersed in the three disinfection solutions for 10 mins and 30 mins to check the dimensional stability by measuring the distance between the lines generated by the stainless steel die on the samples using a stereomicroscope at x40 magnification. RESULTS: The distance measured in the control group was 4397.2078 µm and 4396.1571 µm; for the test group Group-A- 2% Glutaraldehyde was 4396.4075 µm and 4394.5992 µm; Group-B- 0. 5% Sodium hypochlorite was 4394.5453 µm and 4389.4711 µm Group-C- 2% Chlorhexidine was 4395.2953 µm and 4387.1703 µm respectively for 10 mins and 30 mins. Percentage dimensional change was in the range of 0.02 - 0.25 for all the groups for 10 mins and 30 mins. CONCLUSIONS: 2 % Glutaraldehyde is the most suitable disinfectant for VPES elastomeric impression material in terms of dimensional stability and shows minimum dimensional changes as compared to that of 2% Chlorhexidine and 0.5% Sodium hypochlorite.


Assuntos
Materiais para Moldagem Odontológica , Glutaral , Teste de Materiais , Polivinil , Siloxanas , Materiais para Moldagem Odontológica/química , Polivinil/química , Siloxanas/química , Fatores de Tempo , Glutaral/química , Desinfetantes de Equipamento Odontológico/química , Hipoclorito de Sódio/química , Desinfetantes/química , Clorexidina/química , Propriedades de Superfície , Humanos
2.
Clin Exp Dent Res ; 10(3): e856, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38818850

RESUMO

OBJECTIVES: This study aimed to compare the flexural strength of monolithic zirconia with different thicknesses and two sintering techniques. MATERIALS AND METHODS: This in vitro, experimental study was conducted on 28 monolithic zirconia discs with 10 mm diameter and 0.5 (n = 14) and 1.2 mm (n = 14) thickness. Each group was divided into two subgroups (n = 7) for fast (60 min) and conventional (120 min) sintering at 1450°C. After sintering, the specimens were thermocycled and their flexural strength was measured by piston-on-3-balls technique in a universal testing machine (0.5 mm/min, 1.2 mm pin diameter). Data were analyzed by the Weibull test, one-way analysis of variance, and Tukey's test (α = .05). RESULTS: The flexural strength of specimens with 1.2 mm thickness was significantly higher than that of specimens with 0.5 mm thickness (p < .05). The flexural strength of 1.2 mm/120-min group was slightly, but not significantly, higher than that of 1.2 mm/60-min group (p > .05). The flexural strength of 0.5 mm/120-min group was slightly, but not significantly, higher than that of 0.5 mm/60-min group (p > .05). CONCLUSION: The increase in thickness of monolithic zirconia increases its flexural strength; however, increasing the sintering time appears to have no significant effect on the flexural strength of monolithic zirconia.


Assuntos
Materiais Dentários , Resistência à Flexão , Teste de Materiais , Zircônio , Zircônio/química , Materiais Dentários/química , Análise do Estresse Dentário , Propriedades de Superfície , Temperatura Alta , Técnicas In Vitro
3.
Sci Total Environ ; 934: 173236, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761522

RESUMO

During plastic waste degradation into micro/nanoplastics (MNPLs) their physicochemical characteristics including surface properties (charge, functionalization, biocorona, etc.) can change, potentially affecting their biological effects. This paper focuses on the surface functionalization of MNPLs to determine if it has a direct impact on the toxicokinetic and toxicodynamic interactions in human umbilical vein endothelial cells (HUVECs), at different exposure times. Pristine polystyrene nanoplastics (PS-NPLs), as well as their carboxylated (PS-C-NPLs) and aminated (PS-A-NPLs) forms, all around 50 nm, were used in a wide battery of toxicological assays. These assays encompassed evaluations on cell viability, cell internalization, induction of intracellular reactive oxygen species (iROS), and genotoxicity. The experiments were conducted at a concentration of 100 µg/mL, chosen to ensure a high internalization rate across all treatments while maintaining a sub-toxic concentration. Our results show that all PS-NPLs are internalized by HUVECs, but the internalization dynamic depends on the particle's functionalization. PS-NPLs and PS-C-NPLs internalization modify the morphology of the cell increasing its inner complexity/granularity. Regarding cell toxicity, only PS-A-NPLs reduced cell viability. Intracellular ROS was induced by the three different PS-NPLs but at different time points. Genotoxic damage was induced by the three PS-NPLs at short exposures (2 h), but not for PS-C-NPLs at 24 h. Overall, this study suggests that the toxicological effects of PSNPLs on HUVEC cells are surface-dependent, highlighting the relevance of using human-derived primary cells as a target.


Assuntos
Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana , Microplásticos , Espécies Reativas de Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Microplásticos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas/toxicidade , Propriedades de Superfície , Poliestirenos/toxicidade , Células Endoteliais/efeitos dos fármacos
4.
PeerJ ; 12: e17237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699192

RESUMO

Background: Root perforation repair presents a significant challenge in dentistry due to inherent limitations of existing materials. This study explored the potential of a novel polydopamine-based composite as a root repair material by evaluating its sealing efficacy, radiopacity, and surface topography. Methods: Confocal microscopy assessed sealing ability, comparing the polydopamine-based composite to the gold standard, mineral trioxide aggregate (MTA). Radiopacity was evaluated using the aluminium step wedge technique conforming to ISO standards. Surface roughness analysis utilized atomic force microscopy (AFM), while field emission scanning electron microscopy (FESEM) visualized morphology. Results: The polydopamine-based composite exhibited significantly superior sealing efficacy compared to MTA (P < 0.001). Radiopacity reached 3 mm aluminium equivalent, exceeding minimum clinical requirements. AFM analysis revealed a smooth surface topography, and FESEM confirmed successful composite synthesis. Conclusion: This study demonstrates promising properties of the polydopamine-based composite for root perforation repair, including superior sealing efficacy, clinically relevant radiopacity, and smooth surface topography. Further investigation is warranted to assess its clinical viability and potential translation to endodontic practice.


Assuntos
Compostos de Alumínio , Compostos de Cálcio , Indóis , Óxidos , Polímeros , Materiais Restauradores do Canal Radicular , Silicatos , Propriedades de Superfície , Polímeros/química , Indóis/química , Silicatos/química , Compostos de Cálcio/química , Óxidos/química , Materiais Restauradores do Canal Radicular/química , Compostos de Alumínio/química , Humanos , Combinação de Medicamentos , Microscopia Eletrônica de Varredura , Microscopia de Força Atômica/métodos , Microscopia Confocal , Teste de Materiais , Raiz Dentária/lesões , Raiz Dentária/diagnóstico por imagem , Raiz Dentária/cirurgia
5.
J Dent ; 144: 104942, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494044

RESUMO

OBJECTIVES: This study endeavours to investigate the effect of printing orientation on the trueness of additively manufactured molar zirconia crowns. The areal surface roughness and the characteristics of the marginal regions of the crowns were also considered. METHODS: Twelve molar crowns were manufactured at 0°, 45°, and, 90° printing orientations in a Lithoz and AON zirconia printer, respectively. Twelve milled crowns were used as a comparison. Samples were scanned and analysed in metrology software to determine the trueness of the groups. Regions of interest were defined as the margins, intaglio surface and contact points. Areal surface roughness and print layer thickness were further analysed using a confocal laser scanning microscope. RESULTS: The results indicate that there are clear differences between the investigated desktop (AON) and industrial (Lithoz) 3D printer. The 45° Lithoz group is the only sample group showing no significantly different results in trueness for all regions analysed compared to the milled group. Areal surface roughness analysis indicates that the print layers in the marginal regions are within clinically tolerable limits and surface characteristics. CONCLUSIONS: The printing orientation for zirconia crowns is critical to trueness, and differences are evident between different AM apparatuses. Considerations for design and orientation between different apparatuses should therefore be considered when utilising direct additive manufacturing processes. The areal surface roughness of the marginal regions is within acceptable clinical limits for all manufacturing processes and print orientations considered. CLINICAL SIGNIFICANCE: The materials and apparatuses for additive manufacturing of zirconia crowns are now clinically acceptable from the perspective of the trueness of a final crown for critical functional surfaces and areal surface roughness of the marginal regions.


Assuntos
Desenho Assistido por Computador , Coroas , Planejamento de Prótese Dentária , Impressão Tridimensional , Propriedades de Superfície , Zircônio , Zircônio/química , Humanos , Materiais Dentários/química , Microscopia Confocal , Dente Molar , Teste de Materiais , Adaptação Marginal Dentária
6.
Int J Oral Maxillofac Implants ; 39(2): 320, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38457263

RESUMO

PURPOSE: To investigate the biocompatibility of silver nanoparticle (AgNP)-doped Ti-6Al-4V surfaces by evaluating the viability and proliferation rate of human gingival fibroblasts (HGFs)-as the dominant cells of peri-implant soft tissues-seeded on the modified surfaces. MATERIALS AND METHODS: AgNPs (sizes 8 nm and 30 nm) were incorporated onto Ti-6Al-4V specimen surfaces via electrochemical deposition, using colloid silver dispersions with increasing AgNP concentrations of 100 ppm, 200 ppm, and 300 ppm. One control and six experimental groups were included in the study: (1) control (Ti-6Al-4V), (2) 8 nm/100 ppm, (3) 8 nm/200 ppm, (4) 8 nm/300 ppm, (5) 30 nm/100 ppm, (6) 30 nm/200 ppm, and (7) 30 nm/300 ppm. HGF cell primary cultures were isolated from periodontally healthy donor patients and cultured in direct contact with the group specimens for 24 and 72 hours. The cytotoxicity of AgNP-doped Ti-6Al-4V specimens toward HGF was assessed by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) and BrdU (5-bromo-2'-deoxyuridine) assay tests. Calcein AM and ethidium homodimer (EthD-1) fluorescent stains were used to determine the live and dead cells. The morphology and attachment properties of the HGFs were determined via scanning electron microscopy (SEM). RESULTS: Energy dispersive x-ray (EDX) analysis confirmed the presence of AgNPs on the specimens. The MTT test revealed that AgNPs of both sizes and all concentrations presented a decreased cellular metabolic activity compared to the control discs. All concentrations of both sizes of AgNPs affected the cell proliferation rate compared to the control group, as revealed by the BrdU assay. Overall, cytotoxicity of the modified Ti-6Al-4V surfaces depended on cell exposure time. Observation via confocal microscopy confirmed the results of the MTT and BrdU assay tests. Specifically, most cells remained alive throughout the 72-hour culture period. SEM images revealed that adjacent cells form bonds with each other, creating confluent layers of conjugated cells. CONCLUSIONS: The findings of the present study indicate that Ti-6Al-4V surfaces modified with 8 nm and 30 nm AgNPs at concentrations of 100 ppm, 200 ppm, and 300 ppm do not produce any serious cytotoxicity toward HGFs. The initial arrest of the HGF proliferation rate recovered at 72 hours. These results on the antibacterial activity against common periodontal pathogens, in combination with the results found in a previous study by the same research group, suggest that AgNP-doped Ti-6Al-4V surfaces are potential candidates for use in implant abutments for preventing peri-implant diseases.


Assuntos
Ligas , Proliferação de Células , Sobrevivência Celular , Fibroblastos , Gengiva , Nanopartículas Metálicas , Prata , Propriedades de Superfície , Tiazóis , Titânio , Humanos , Fibroblastos/efeitos dos fármacos , Titânio/toxicidade , Titânio/química , Gengiva/citologia , Gengiva/efeitos dos fármacos , Prata/química , Prata/toxicidade , Proliferação de Células/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ligas/toxicidade , Teste de Materiais , Ligas Dentárias/química , Ligas Dentárias/toxicidade , Microscopia Eletrônica de Varredura , Corantes , Materiais Biocompatíveis/química , Sais de Tetrazólio
7.
Int J Nanomedicine ; 19: 1273-1285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348176

RESUMO

Purpose: To investigate the inhibition of Streptococcus mutans (S.mutans) and its biofilm by AgBr-nanoparticles (NP) @CTMAB (cetyltrimethyl-ammonium bromide) and evaluate the changes in Polymethyl methacrylate (PMMA)'s surface roughness (Ra), microhardness, and flexural strength during prolonged immersion in AgBr-NP@CTMAB for application in the denture cleaning industry. Patients and Methods: The antibacterial activity of AgBr-NP@CTMAB against S.mutans was measured colony formation assay, OD600 and laser confocal microscopy. Changes in the specimens' values for surface roughness, microhardness, and flexural strength (MPa) were measured after immersion solutions for 180 or 360 days. Results: The AgBr-NP@CTMAB solution exhibited a robust antibacterial effect on planktonic S. mutans, with a minimum bactericidal concentration of 5 µg/mL. The 10 µg/mL AgBr-NP@CTMAB solution efficiently inhibited S. mutans biofilm formation. (2) No significant difference in surface roughness after immersion in AgBr-NP@CTMAB (10 µg/mL and 20 µg/mL) comparing with distilled water (P > 0.05) and Polident had significantly higher than distilled water (P < 0.05). There was a significant decrease in the surface hardness of the PMMA specimens that were immersed in the Polident compared with those in distilled water (P < 0.05). While, no significant differences in surface hardness after immersion in the AgBr-NP@CTMAB (P > 0.05). The result of flexural strength suggested that there was no statistically significant difference (P < 0.05) between AgBr-NP@CTMAB as well as Polident and water. Conclusion: AgBrNP@CTMAB can efficiently inhibit the growth of plankton S.mutans and biofilm formation, without affecting the flexural strength, microhardness, or surface roughness of PMMA. Therefore, AgBrNP@CTMAB holds promise as a new denture cleaning agent.


Assuntos
Boratos , Nanopartículas , Polimetil Metacrilato , Sulfatos , Dureza , Resistência à Flexão , Streptococcus mutans , Bases de Dentadura , Água , Antibacterianos/farmacologia , Propriedades de Superfície , Teste de Materiais
8.
Molecules ; 29(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338415

RESUMO

Tissue engineering is an interdisciplinary field of science that has been developing very intensively over the last dozen or so years. New ways of treating damaged tissues and organs are constantly being sought. A variety of porous structures are currently being investigated to support cell adhesion, differentiation, and proliferation. The selection of an appropriate biomaterial on which a patient's new tissue will develop is one of the key issues when designing a modern tissue scaffold and the associated treatment process. Among the numerous groups of biomaterials used to produce three-dimensional structures, hydroxyapatite (HA) deserves special attention. The aim of this paper was to discuss changes in the double electrical layer in hydroxyapatite with an incorporated boron and strontium/electrolyte solution interface. The adsorbents were prepared via dry and wet precipitation and low-temperature nitrogen adsorption and desorption methods. The specific surface area was characterized, and the surface charge density and zeta potential were discussed.


Assuntos
Boro , Hidroxiapatitas , Humanos , Hidroxiapatitas/química , Alicerces Teciduais/química , Durapatita , Materiais Biocompatíveis/química , Estrôncio/química , Propriedades de Superfície
9.
Clin Exp Dent Res ; 10(1): e841, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38345509

RESUMO

OBJECTIVES: Access to the implant surface plays a significant role in effective mechanical biofilm removal in peri-implantitis treatment. Mechanical decontamination may also alter the surface topography of the implant, potentially increasing susceptibility to bacterial recolonization. This in vitro study aimed to evaluate a newly developed, anatomically realistic, and adaptable three-dimensional (3D)printed model with a peri-implant bone defect to evaluate the accessibility and changes of dental implant surfaces after mechanical decontamination treatment. MATERIAL AND METHODS: A split model of an advanced peri-implant bone defect was prepared using 3D printing. The function of the model was tested by mechanical decontamination of the exposed surface of dental implants (Standard Implant Straumann AG) coated with a thin layer of colored occlusion spray. Two different instruments for mechanical decontamination were used. Following decontamination, the implants were removed from the split model and photographed. Image analysis and fluorescence spectroscopy were used to quantify the remaining occlusion spray both in terms of area and total amount, while scanning electron microscopy and optical profilometry were used to analyze alteration in the implant surface morphology. RESULTS: The 3D model allowed easy placement and removal of the dental implants without disturbing the implant surfaces. Qualitative and quantitative assessment of removal of the occlusion spray revealed differences in the mechanism of action and access to the implant surface between tested instruments. The model permitted surface topography analysis following the decontamination procedure. CONCLUSION: The developed 3D model allowed a realistic simulation of decontamination of implant surfaces with colored occlusion spray in an advanced peri-implant defect. 3D printing allows easy adaptation of the model in terms of the shape and location of the defect. The model presents a valuable tool for in vitro investigation of the accessibility and changes of the implant surface after mechanical and chemical decontamination.


Assuntos
Implantes Dentários , Peri-Implantite , Humanos , Descontaminação/métodos , Propriedades de Superfície , Peri-Implantite/prevenção & controle , Microscopia Eletrônica de Varredura
10.
J Oral Sci ; 66(1): 42-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38233153

RESUMO

PURPOSE: To compare the shear-bond-strength (SBS) of a highly-filled-flowable composite (HFFC) and a paste-type composite for indirect composite repair and to evaluate the effect of different surface treatments (ST), concerning the composite repair protocol. METHODS: Eighty-four 5 × 5 × 2 mm cylindrical specimens were prepared using Gradia Plus and SR Nexco indirect composite materials. The samples were thermocycled 5,000 times. According to the ST, the samples were divided into three groups (control, bur, and air-abrasion). After ST, the sample subgroups were divided into two sub-groups according to the repair material: paste-type composite and HFFC (n = 7). Another 5,000 cycles of aging were performed. SBS values were measured with a universal testing machine (Shimadzu, Japan). Shapiro-Wilk, 3-way ANOVA, and Tukey HSD test were used to evaluate data (P < 0.05). RESULTS: ST was considered significant for SBS (P < 0.001). The mean values were (13.9 ± 5.7), (17.0 ± 6.4), (20.4 ± 4.9) MPa for the control, bur and phosphoric acid, and air-abrasion groups, respectively. The surface treatment and repair material interaction was considered significant for SBS (P = 0.044). The highest mean bond strength (24.5 ± 4.5 MPa) was observed for the interaction of SR Nexco, air-abrasion ST, and HFFC repair. CONCLUSION: Repairing with HFFC following air abrasion might enhance the SBS for indirect composite restorations.


Assuntos
Abrasão Dental por Ar , Colagem Dentária , Abrasão Dental por Ar/métodos , Colagem Dentária/métodos , Propriedades de Superfície , Resinas Compostas , Japão , Teste de Materiais , Resistência ao Cisalhamento
11.
Nanoscale ; 16(10): 5149-5163, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265106

RESUMO

Given the growing scientific and industrial interests in green microalgae, a comprehensive understanding of the forces controlling the colloidal stability of these bioparticles and their interactions with surrounding aqueous microenvironment is required. Accordingly, we addressed here the electrostatic and hydrophobic surface properties of Chlorella vulgaris from the population down to the individual cell levels. We first investigated the organisation of the electrical double layer at microalgae surfaces on the basis of electrophoresis measurements. Interpretation of the results beyond zeta-potential framework underlined the need to account for both the hydrodynamic softness of the algae cells and the heterogeneity of their interface formed with the outer electrolyte solution. We further explored the nature of the structural charge carriers at microalgae interfaces through potentiometric proton titrations. Extraction of the electrostatic descriptors of interest from such data was obscured by cell physiology processes and dependence thereof on prevailing measurement conditions, which includes light, temperature and medium salinity. As an alternative, cell electrostatics was successfully evaluated at the cellular level upon mapping the molecular interactions at stake between (positively and negatively) charged atomic force microscopy tips and algal surface via chemical force microscopy. A thorough comparison between charge-dependent tip-to-algae surface adhesion and hydrophobicity level of microalgae surface evidenced that the contribution of electrostatics to the overall interaction pattern is largest, and that the electrostatic/hydrophobic balance can be largely modulated by pH. Overall, the combination of multiscale physicochemical approaches allowed a drawing of some of the key biosurface properties that govern microalgae cell-cell and cell-surface interactions.


Assuntos
Chlorella vulgaris , Microalgas , Prótons , Propriedades de Superfície , Água , Interações Hidrofóbicas e Hidrofílicas , Microalgas/metabolismo
12.
Gen Dent ; 71(6): 61-67, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37889246

RESUMO

This study aimed to use spectrophotometry to assess the color stability of composite resins polished with different polishing techniques and scanning electron microscopy (SEM) to evaluate the surface micromorphology of the specimens. In this in vitro experimental study, a total of 96 disc-shaped specimens were fabricated from microfilled (Renamel Microfill, shade SB3) and nanohybrid (Estelite Sigma Quick, shade BW) composite resins in bright white shades (n = 48). Each group was randomized into 1 control and 2 experimental subgroups (n = 16): no polishing (control), polishing with aluminum oxide discs (experimental), or polishing with diamond-impregnated spiral wheels (experimental). In each subgroup, half of the specimens were immersed in a coffee solution and the other half in a tea solution for 48 hours after finishing (control) or polishing (experimental). Spectrophotometry was used to measure the color of the specimens at baseline, after finishing, after polishing (experimental groups only), and after immersion in tea and coffee. The surface micromorphology of a randomly selected specimen from each subgroup was assessed under SEM. The color change (ΔE*) of the specimens between measurements was calculated and analyzed using 1-way, 2-way, and 3-way analyses of variance (ANOVAs) and the Tukey test. Both tea and coffee caused significant color change in the composite resin specimens, with specimens immersed in coffee undergoing significantly greater color change than those immersed in tea (P < 0.001; 2-way ANOVA). The nanohybrid composite specimens polished with polishing discs had a significantly greater color change than nanohybrid specimens polished with spiral wheels (P = 0.041). The Tukey test revealed that there was no overall significant difference between the 2 polishing techniques (P = 0.505), but both of these subgroups exhibited a significantly lower color change than the control group (P < 0.001). In general, SEM did not reveal substantial differences between the 2 polishing techniques, but specimens polished by spiral wheels appeared to have a smoother surface. All polished specimens demonstrated clinically acceptable mean color change values (ΔE* < 3.5). The type of coloring agent had a greater effect on color stability than either the polishing technique or type of composite resin, with coffee causing a greater color change than tea.


Assuntos
Café , Resinas Compostas , Humanos , Resinas Compostas/uso terapêutico , Espectrofotometria , Chá , Propriedades de Superfície , Teste de Materiais , Cor , Polimento Dentário/métodos
13.
BMC Oral Health ; 23(1): 789, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875872

RESUMO

OBJECTIVES: The aim was to evaluate the color stability of six commercial restorative resin composites after being exposed to commonly consumed beverages. Repolishing impact on the stained composite was also assessed. METHODS: One-hundred and fifty disc specimens (8 mm diameter & 3 mm thickness) were prepared from Filtek™ Universal Restorative, SDR flow+, everX Flow, G-ænial A'CHORD, G-ænial Universal Flo and G-ænial Universal Injectable. To assess the color stability in five various beverages, 25 specimens from each material were randomly distributed into five groups (n = 5), according to the utilized staining solution. Group 1: distilled water, Group 2: coffee, Group 3: red wine, Group 4: energy drink, Group 5: coke. The color changes (∆E) for all materials were measured using spectrophotometer at the baseline, after 84 days of staining and after repolishing. Data was collected and analyzed using ANOVA (α = 0.05). RESULTS: Both material type and staining solution had a significant effect on the color stability of specimens (p < 0.05). Compared to other beverages, the color value of the specimens submerged in coffee and wine showed the most statistically significant (p < 0.05) mean ∆E. SDR flow + in coffee and wine presented the highest ∆E when compared to other tested materials (p < 0.05). After staining of the composites, repolishing was successful in lowering the ∆E value. CONCLUSIONS: All the beverages had an impact on the color stability of the tested resin composites, with coffee and wine demonstrating the most significant effects. The variations in color stability varied depending on the specific material utilized. Dentists should possess awareness regarding the chemical interactions that occur between different beverages and various types of resin composites. Additionally, repolishing serves as an effective technique for eliminating surface discoloration in composite restorations.


Assuntos
Café , Vinho , Humanos , Bebidas , Cor , Resinas Compostas , Materiais Dentários , Teste de Materiais , Espectrofotometria , Propriedades de Superfície
14.
Dent Traumatol ; 39(6): 597-604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37341416

RESUMO

BACKGROUND/AIM: Removing resin composites used for bonding dental trauma splints may result in irreversible damage to the enamel. This in vitro study evaluated the influence of additional violet illumination and different bur types on damage caused to tooth enamel. MATERIALS AND METHODS: Fifteen maxillary models with four bovine incisor teeth were prepared. All models were scanned using a laboratory scanning system (s600 ARTI; Zirkonzahn). Six experimental groups (n = 10) were generated by two study factors: lighting type (three levels), (1) low-cost (5-7 US$) violet LED flashlight (LUATEK, LT 408); (2) VALO Cordless light curing unit (Ultradent) with black lens; or (3) without additional illumination; and rotatory instrument (two levels), (1) diamond bur or (2) multifluted tungsten-carbide bur. New scanning was performed after splint removal, and the generated files were superimposed on the initial scans using Cumulus software. The light emitted by both violet light sources was characterized by using integrating sphere and beam profile. A qualitative and quantitative analysis of enamel damage and two-way ANOVA followed by Tukey's post hoc was used at an α = 0.05. RESULTS: The use of low-cost violet flashlight that emitted the violet peak light at 385 nm and VALO Cordless with black lens at 396 nm resulted in significantly lower damage to the enamel surface than those in the groups without additional violet light (p < .001). An interaction between rotatory instruments and lighting was found. When no additional violet lighting was used, the diamond bur presented higher mean and maximum depth values. CONCLUSIONS: Fluorescence lighting facilitated the removal of remnant resin composite dental trauma splints, leading to less invasive treatment. The diamond bur resulted in higher enamel damage than that affected by the multifluted bur when no violet lighting was used. A low-cost violet flashlight is a useful fluorescence-aided identification technique for removing resin composite dental trauma splints.


Assuntos
Colagem Dentária , Contenções , Animais , Bovinos , Propriedades de Superfície , Descolagem Dentária/métodos , Esmalte Dentário/lesões , Resinas Compostas , Microscopia Eletrônica de Varredura , Diamante
15.
Int J Biol Macromol ; 244: 125369, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37321435

RESUMO

The adhesion forces of cells to peptide-coated functionalized materials were assessed through the Single Cell Force Spectroscopy (SCFS) technique in order to develop a methodology that allows the fast selection of peptide motifs that favor the interaction between cells and the biomaterial. Borosilicate glasses were functionalized using the activated vapor silanization process (AVS) and subsequently decorated with an RGD- containing peptide using the EDC/NHS crosslinking chemistry. It is shown that the RGD-coated glass induces larger attachment forces on mesenchymal stem cell cultures (MSCs), compared to the bare glass substrates. These higher forces correlate well with the enhanced adhesion of the MSCs observed on RGD-coated substrates through conventional adhesion cell cultures and inverse centrifugation tests. The methodology based on the SCFS technique presented in this work constitutes a fast procedure for the screening of new peptides or their combinations to select candidates that may enhance the response of the organism to the implant of the functionalized biomaterials.


Assuntos
Materiais Biocompatíveis , Oligopeptídeos , Adesão Celular/fisiologia , Análise Espectral/métodos , Materiais Biocompatíveis/química , Oligopeptídeos/química , Microscopia de Força Atômica/métodos , Propriedades de Superfície
16.
Dent Mater ; 39(7): 669-676, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230861

RESUMO

OBJECTIVES: The aim of this study was to evaluate the mechanical properties and cost efficiency of direct ink writing (DIW) printing of two different zirconia inks compared to casting and subtractive manufacturing. METHODS: Zirconia disks were manufactured by DIW printing and the casting process and divided into six subgroups (n = 20) according to sintering temperatures (1350 °C, 1450 °C and 1550 °C) and two different ink compositions (Ink 1, Ink 2). A CAD/CAM-milled high strength zirconia (3Y-TZP) was added as reference group. The biaxial flexural strength (BFS) was measured using the piston-on-three-balls test. X-ray-diffraction (XRD) was used for microstructural analysis. The cost efficiency was compared for DIW printing and subtractive manufacturing by calculation of the manufacturing costs of one dental crown. RESULTS: Using XRD, monoclinic and tetragonal phases were detected for Ink 1, for all other groups no monoclinic phase was detected. The CAD/CAM-milled ceramic showed a significantly higher BFS than all other groups. The BFS of Ink 2 was significantly higher than the BFS of Ink 1. At a sintering temperature of 1550 °C the mean BFS of the printed Ink 2 was 822 ± 174 MPa. The BFS of the cast materials did not show a significantly higher BFS than the corresponding printed group for any tested parameter-set. The manufacturing costs of DIW printed crowns are lower than the manufacturing costs of CAD/CAM-milled crowns. CONCLUSION: DIW has a high potential to replace subtractive processes for dental applications, as it shows promising mechanical properties for appropriate ink compositions and facilitates a highly cost effective production.


Assuntos
Cerâmica , Tinta , Teste de Materiais , Propriedades de Superfície , Cerâmica/química , Zircônio/química , Desenho Assistido por Computador , Impressão Tridimensional , Materiais Dentários/química
17.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834746

RESUMO

Peri-implantitis is an inflammatory disease similar to periodontitis, caused by biofilms formed on the surface of dental implants. This inflammation can spread to bone tissues and result in bone loss. Therefore, it is essential to inhibit the formation of biofilms on the surface of dental implants. Thus, this study examined the inhibition of biofilm formation by treating TiO2 nanotubes with heat and plasma. Commercially pure titanium specimens were anodized to form TiO2 nanotubes. Heat treatment was performed at 400 and 600 °C, and atmospheric pressure plasma was applied using a plasma generator (PGS-200, Expantech, Suwon, Republic of Korea). Contact angles, surface roughness, surface structure, crystal structure, and chemical compositions were measured to analyze the surface properties of the specimens. The inhibition of biofilm formation was assessed using two methods. The results of this study showed that the heat treatment of TiO2 nanotubes at 400 °C inhibited the adhesion of Streptococcus mutans (S. mutans), associated with initial biofilm formation, and that heat treatment of TiO2 nanotubes at 600 °C inhibited the adhesion of Porphyromonas gingivalis (P. gingivalis), which causes peri-implantitis. Applying plasma to the TiO2 nanotubes heat-treated at 600 °C inhibited the adhesion of S. mutans and P. gingivalis.


Assuntos
Implantes Dentários , Nanotubos , Peri-Implantite , Humanos , Nanotubos/química , Biofilmes , Titânio/química , Propriedades de Superfície , Streptococcus mutans
18.
J Biomed Mater Res B Appl Biomater ; 111(5): 987-995, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444900

RESUMO

Integration of native bone into orthopedic devices is a key factor in long-term implant success. The material-tissue interface is generally accepted to consist of a hydroxyapatite layer so bioactive materials that can spontaneously generate this hydroxyapatite layer after implantation may improve patient outcomes. Per the ISO 22317:2014 standard, "Implants for surgery - In vitro evaluation for apatite-forming ability of implant materials," bioactivity performance statements can be assessed by soaking the material in simulated body fluid (SBF) and evaluating the surface for the formation of a hydroxyapatite layer; however, variations in test methods may alter hydroxyapatite formation and result in false-positive assessments. The goal of this study was to identify the effect of SBF formulation on bioactivity assessment. Bioglass® (45S5 and S53P4) and non-bioactive Ti-6Al-4V were exposed to SBF formulations varying in calcium ion and phosphate concentrations as well as supporting ion concentrations. Scanning electron microscopy and X-ray powder diffraction evaluation of the resulting hydroxyapatite layers revealed that SBF enriched with double or quadruple the calcium and phosphate ion concentrations increased hydroxyapatite crystal size and quantity compared to the standard formulation and can induce hydroxyapatite crystallization on surfaces traditionally considered non-bioactive. Altering concentrations of other ions, for example, bicarbonate, changed hydroxyapatite induction time, quantity, and morphology. For studies evaluating the apatite-forming ability of a material to support bioactivity performance statements, test method parameters must be adequately described and controlled. It is unclear if apatite formation after exposure to any of the SBF formulations is representative of an in vivo biological response. The ISO 23317 standard test method should be further developed to provide additional guidance on apatite characterization and interpretation of the results.


Assuntos
Apatitas , Líquidos Corporais , Humanos , Apatitas/química , Cálcio/química , Propriedades de Superfície , Durapatita/química , Líquidos Corporais/química , Microscopia Eletrônica de Varredura , Difração de Raios X
19.
J Contemp Dent Pract ; 24(12): 944-950, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38317391

RESUMO

AIM: To assess the potential for systemic toxicity when silver nanoparticle-coated mini-implants were implanted in Wistar albino rats conducted as a comparative study in the animal model by assessing the blood biochemistry, liver and kidney function, and histology of the implanted site. MATERIALS AND METHODS: The surface of the mini-implant was coated with a green-mediated silver nanoparticle. Uncoated mini-implants were placed in two groups of eight Wistar albino rats, and silver nanoparticle-coated mini-implants were placed in another eight rats. The bone's general conditions, blood biochemistry assessing for ALT, AST, GPT, GOT, and histological sections using H and E stain and Masson's Trichrome stain were examined at 7, 14, and 28-day intervals. RESULTS: The creatinine, urea, ALP, and ALT showed no signs of systemic toxicity during the 28-day follow-up period in the Wistar rats both in the test and control groups. The histological evaluation, which was conducted using HE and MTS stain, revealed osteogenesis and adequate healing of the insertion site in the group where coated mini-implant was placed. The bone sample revealed no abnormalities in the control group with uncoated mini-implants. CONCLUSION: Green synthesized silver nanoparticle-coated mini-implant does not cause systemic toxicity as indicated by no abnormalities in the levels of creatinine, urea, ALT, ALP, GPT, and GOT. The bone histology indicates that the coated mini-implants placed in animal bone healed with adequate osteogenesis. CLINICAL SIGNIFICANCE: Silver nanoparticles have potential for antimicrobial activity. Mini-implants placed as temporary anchorage devices in orthodontics often fail due to inflammation and plaque. Silver nanoparticle-coated mini-implants would reduce the risk of mini-implant failure as it would have antimicrobial potential and eliminate this cause for failure of mini-implants. How to cite this article: Sreenivasagan S, Subramanian AK, Mohanraj KG, et al. Assessment of Toxicity of Green Synthesized Silver Nanoparticle-coated Titanium Mini-implants with Uncoated Mini-implants: Comparison in an Animal Model Study. J Contemp Dent Pract 2023;24(12):944-950.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Ratos , Animais , Prata/toxicidade , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Osseointegração , Creatinina/farmacologia , Ratos Wistar , Modelos Animais , Anti-Infecciosos/farmacologia , Ureia/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Propriedades de Superfície
20.
J Contemp Dent Pract ; 23(6): 613-617, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36259300

RESUMO

AIM: The aim of the current research was to evaluate the tensile bond strength of a soft liner to the denture base resin with different surface management techniques. MATERIALS AND METHODS: Dies made up of stainless steel and having dimensions of 40 × 10 × 10 were used to fabricate polymethyl-methacrylate resinous blocks. To make sure of the regularity of the soft liner in the test, dies made up of stainless steel and having dimensions of 10 × 10 × 3 were fabricated to serve as spacers. These acrylic resinous blocks were allocated to three groups depending upon the particular surface management technique as: group I-Absence of surface treatment (Control), group II-Surface management with methyl methacrylate (MMA) monomer, and group III-Surface management with Phosphoric acid. All the samples underwent thermocycling at 5° centigrade and 55° centigrade in two water baths for 500 cycles at a dwell tenure of 30 seconds in every bath to reproduce the oral circumstances. The samples were then subjected to testing in the universal testing machine for evaluation of the tensile strength. RESULTS: The highest tensile strength was noted in the soft liner with denture base resin that was subjected to treatment with a monomer having a mean score of 1.88 ± 0.11 in pursuit by surface management using phosphoric acid at 1.16 ± 0.90 as well as the control group at 0.94 ± 0.02 in that order. There was a statistically noteworthy disparity amid the three dissimilar surface management techniques with a p-value <0.001. There was a statistically noteworthy differentiation amid group I vs group II as well as group II vs group III with a p-value <0.001. However, there was no statistically significant disparity amid group I vs group III with p-value >0.001. CONCLUSION: The current research arrived at the conclusion that the samples subjected to treatment with MMA monomer exhibited higher and noteworthy bond strength than those attained by additional surface management techniques for soft lining of the denture base resins. CLINICAL SIGNIFICANCE: Soft denture lining materials play a pivotal position in contemporary prosthodontic practice as they possess the ability to restore the health of swollen as well as deformed mucosal tissues. They are comfortable in those individuals who are unable to endure pressure from occlusal forces, like in a situation of residual ridge resorption, sore tissues, and ridges that attain a knife-edge shape. Failing bond causes delamination of the reliner and therefore lack of adaptability of the denture to the oral mucosal tissues. For this reason, superior bonding to the denture base beneath is critical for the clinical triumph of relining agents.


Assuntos
Colagem Dentária , Reembasadores de Dentadura , Humanos , Bases de Dentadura , Aço Inoxidável , Elastômeros de Silicone/química , Teste de Materiais , Propriedades de Superfície , Metilmetacrilato , Água/química , Metacrilatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA