Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 354-361, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38710518

RESUMO

Objective To prepare a monoclonal antibody (mAb) against mouse NOD-like receptor family pyrin domain-containing 3 (NLRP3) and assess its specificity. Methods A gene fragment encoding mouse NLRP3 exon3 (Ms-N3) was inserted into the vector p36-G3-throhFc to construct a recombinant plasmid named Ms-N3-throhFc. This plasmid was then transfected into HEK293F cells for eukaryotic expression. NLRP3-/- mice were immunized with Ms-N3 protein purified using a protein A chromatography column, and splenocytes from the immunized mice were fused with SP2/0 myeloma cells to generate hybridoma cells. Specific mAbs against murine NLRP3 from hybridoma cells were screened using ELISA and immunofluorescence assay(IFA). Results The Ms-N3-throhFc recombinant plasmid was successfully constructed and exhibited stable expression in HEK293F cells. Twelve hybridoma cell lines were initially screened using ELISA. IFA revealed that the mAb secreted by the 9-B8-3-2-C5 cell line specifically recognized the native form of mouse NLRP3 protein. The heavy and light chain subtypes of this mAb were identified as IgM and κ, respectively. Conclusion A monoclonal antibody against mouse NLRP3 has been successfully prepared.


Assuntos
Anticorpos Monoclonais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Humanos , Células HEK293 , Hibridomas , Transfecção , Éxons , Clonagem Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Ensaio de Imunoadsorção Enzimática
2.
Eur J Neurol ; 31(7): e16301, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38628041

RESUMO

BACKGROUND AND PURPOSE: Cryopyrin-associated periodic syndrome is a rare autoinflammatory disease caused by gain-of-function mutations or variants in the NLRP3 gene. Clinically, patients suffer from a broad spectrum of both systemic and neurological symptoms. The aim of this study was to determine whether systemic inflammation demonstrated by serum amyloid A (SAA) elevation is associated with neuroinflammation assessed by optical coherence tomography (OCT). METHODS: Thirty eyes of 15 patients with NLRP3 low penetrance mutations (PwNLRP3) and 20 eyes of 10 age- and sex-matched healthy controls were examined by spectral-domain OCT as part of routine clinical care. All retinal layers and clinical features were evaluated. RESULTS: At baseline no significant retinal neuroaxonal inflammation or degeneration was observed in all measured retinal layers amongst PwNLRP3 compared with healthy controls. In a pooled analysis of all individual OCT time points a significant difference regarding the macular retinal nerve fibre layer was detected. Increased levels of SAA showed a positive association with averaged combined outer plexiform layer and outer nuclear layer volumes (ρ < 0.0001, r2 = 0.35). CONCLUSION: In cryopyrin-associated periodic syndrome increased combined outer plexiform layer and outer nuclear layer volumes are mirrored by SAA increase, an acute phase reactant indicating systemic inflammation. Our findings identify OCT as a candidate biomarker to monitor subclinical neuroinflammation and to assess disease activity in PwNLRP3.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Tomografia de Coerência Óptica , Humanos , Masculino , Feminino , Síndromes Periódicas Associadas à Criopirina/diagnóstico por imagem , Síndromes Periódicas Associadas à Criopirina/genética , Adulto , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Adolescente , Adulto Jovem , Criança , Pessoa de Meia-Idade , Proteína Amiloide A Sérica/metabolismo , Retina/diagnóstico por imagem , Retina/patologia
3.
J Ethnopharmacol ; 309: 116334, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36863638

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Psoraleae Fructus is a well-known Traditional Chinese Medicine which has long been used to warm and tonify the kidney and treat diseases such as osteoporosis and diarrhea. However, it may cause multiorgan injury, which limited its use. AIM OF THE STUDY: The aim of this study was to identify the components of ethanol extract of salt-processed Psoraleae Fructus (EEPF) and systematically investigate its acute oral toxicity and the mechanism underlying its acute hepatotoxicity. MATERIALS AND METHODS: In this study, the UHPLC-HRMS analysis was carried out for components identification. Followed by acute oral toxicity test in Kunming mice, which received oral gavage of EEPF from 3.85 to 78.00 g/kg. Body weight, organ indexes, biochemical analysis, morphology, histopathology, oxidative stress state, TUNEL, mRNA and protein expression of NLRP3/ASC/Caspase-1/GSDMD signaling pathway were evaluated to study the EEPF-induced acute hepatotoxicity and its underlying mechanisms. RESULTS: The results showed that 107 compounds such as psoralen and isopsoralen were identified in EEPF. And the acute oral toxicity test demonstrated the LD50 of EEPF was 15.95 g/kg in Kunming mice. The survival mice displayed non-significant difference in body weight compared with Control at the end of the observation period. And the organ indexes of heart, liver, spleen, lung, and kidney showed no significant difference. However, the morphological and histopathological changes of these organs in high-dose-groups mice indicated that the liver and kidney might be the main target toxic organs of EEPF, which showed hepatocyte degeneration with lipid droplets and protein cast in kidney. It could be confirmed by the significant increases of liver and kidney function parameters such as AST, ALT, LDH, BUN, and Crea. In addition, the oxidative stress markers, MDA in the liver and kidney was significantly increased while SOD, CAT, GSH-Px (only liver), and GSH were significantly decreased. Furthermore, EEPF increased the TUNEL-positive cells and the mRNA and protein expression of NLRP3, Caspase-1, ASC and GSDMD in liver with increased protein expression of IL-1ß and IL-18. Notably, cell viability test showed that the specific inhibitor of Caspase-1 could reverse the Hep-G2 cell death induced by EEPF. CONCLUSION: To summarize, this study analyzed the 107 compounds of EEPF. The acute oral toxicity test demonstrated the LD50 value of EEPF was 15.95 g/kg in Kunming mice and the liver and kidney might be the main target toxic organs of EEPF. It caused liver injury through oxidative stress and pyroptotic damage via NLRP3/ASC/Caspase-1/GSDMD signaling pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Etanol , Camundongos , Animais , Etanol/toxicidade , Etanol/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fígado , Extratos Vegetais/química , Doença Hepática Induzida por Substâncias e Drogas/patologia , Testes de Toxicidade , RNA Mensageiro/metabolismo
4.
Free Radic Biol Med ; 194: 12-22, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436727

RESUMO

Acute lung injury (ALI) remains a global public health issue without specific and effective treatment options available in the clinic. Alveolar macrophage polarization is involved in the initiation, development and progression of ALI; however, the underlying mechanism remains poorly understood. Heme oxygenase-1 (HO-1) acts as an antioxidant in pulmonary inflammation and has been demonstrated to be linked with the severity and prognosis of ALI. In this study, the therapeutic effects of HO-1 were examined, along with the mechanisms involved, mainly focusing on alveolar macrophage polarization. HO-1 depletion induced higher iNOS and CD86 (M1 phenotype) expression but was significantly decreased in Arg-1 and CD206 (M2 phenotype) expression in BALF alveolar macrophages after equivalent LPS stimulation. We also found that HO-1 deletion distinctly accelerated the expression of inflammasome-associated components NLRP3, ASC and caspase-1 in vivo and in vivo and in vitro. Moreover, on the basis of LPS for MH-S cells, levels of TXNIP, NLRP3, ASC and caspase-1 were increased and HO-1 depletion exacerbated these changes, whereas double depletion of HO-1 and TXNIP partially mitigated these elevations. Also, HO-1 knockdown induced more M1 phenotype and less M2 phenotype compared with LPS alone, whereas double silence of HO-1 and TXNIP partially changed the polarization state. Taken together, we demonstrated that HO-1 could modulate macrophage polarization via TXNIP/NLRP3 signaling pathway, which could be a potential therapeutic target for ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Heme Oxigenase-1 , Humanos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Endotoxinas/efeitos adversos , Endotoxinas/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Macrófagos/metabolismo , Caspases/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(7): E1530-E1539, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378952

RESUMO

Activation of the NLRP3 inflammasome induces maturation of IL-1ß and IL-18, both validated targets for treating acute and chronic inflammatory diseases. Here, we demonstrate that OLT1177, an orally active ß-sulfonyl nitrile molecule, inhibits activation of the NLRP3 inflammasome. In vitro, nanomolar concentrations of OLT1177 reduced IL-1ß and IL-18 release following canonical and noncanonical NLRP3 inflammasome activation. The molecule showed no effect on the NLRC4 and AIM2 inflammasomes, suggesting specificity for NLRP3. In LPS-stimulated human blood-derived macrophages, OLT1177 decreased IL-1ß levels by 60% and IL-18 by 70% at concentrations 100-fold lower in vitro than plasma concentrations safely reached in humans. OLT1177 also reduced IL-1ß release and caspase-1 activity in freshly obtained human blood neutrophils. In monocytes isolated from patients with cryopyrin-associated periodic syndrome (CAPS), OLT1177 inhibited LPS-induced IL-1ß release by 84% and 36%. Immunoprecipitation and FRET analysis demonstrated that OLT1177 prevented NLRP3-ASC, as well as NLRP3-caspase-1 interaction, thus inhibiting NLRP3 inflammasome oligomerization. In a cell-free assay, OLT1177 reduced ATPase activity of recombinant NLRP3, suggesting direct targeting of NLRP3. Mechanistically, OLT1177 did not affect potassium efflux, gene expression, or synthesis of the IL-1ß precursor. Steady-state levels of phosphorylated NF-κB and IkB kinase were significantly lowered in spleen cells from OLT1177-treated mice. We observed reduced IL-1ß content in tissue homogenates, limited oxidative stress, and increased muscle oxidative metabolism in OLT1177-treated mice challenged with LPS. Healthy humans receiving 1,000 mg of OLT1177 daily for 8 d exhibited neither adverse effects nor biochemical or hematological changes.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamassomos/antagonistas & inibidores , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nitrilas/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Caspase 1/metabolismo , Células Cultivadas , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Nitrilas/química , Nitrilas/uso terapêutico
6.
FASEB J ; 31(11): 5087-5101, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28765172

RESUMO

In visceral leishmaniasis, we found that the antileishmanial drug Amp B produces a higher level of IL-1ß over the infected control. Moreover, administering anti-IL-1ß antibody to infected Amp B-treated mice showed significantly less parasite clearance. Investigation revealed that Leishmania inhibits stimuli-induced expression of a multiprotein signaling platform, NLRP3 inflammasome, which in turn inhibits caspase-1 activation mediated maturation of IL-1ß from its pro form. Attenuation of NLRP3 and pro-IL-1ß in infection was found to result from decreased NF-κB activity. Transfecting infected cells with constitutively active NF-κB plasmid increased NLRP3 and pro-IL-1ß expression but did not increase mature IL-1ß, suggesting that IL-1ß maturation requires a second signal, which was found to be reactive oxygen species (ROS). Decreased NF-κB was attributed to increased expression of A20, a negative regulator of NF-κB signaling. Silencing A20 in infected cells restored NLRP3 and pro-IL-1ß expression, but also increased matured IL-1ß, implying an NF-κB-independent A20-modulated IL-1ß maturation. Macrophage ROS is primarily regulated by mitochondrial uncoupling protein 2 (UCP2), and UCP2-silenced infected cells showed an increased IL-1ß level. Short hairpin RNA-mediated knockdown of A20 and UCP2 in infected mice independently documented decreased liver and spleen parasite burden and increased IL-1ß production. These results suggest that Leishmania exploits A20 and UCP2 to impair inflammasome activation for disease propagation.-Gupta, A. K., Ghosh, K., Palit, S., Barua, J., Das, P. K., Ukil, A. Leishmania donovani inhibits inflammasome-dependent macrophage activation by exploiting the negative regulatory proteins A20 and UCP2.


Assuntos
Inflamassomos/metabolismo , Leishmania donovani/metabolismo , Leishmaniose Visceral/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/biossíntese , Proteína Desacopladora 2/biossíntese , Animais , Inflamassomos/genética , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Leishmaniose Visceral/genética , Leishmaniose Visceral/patologia , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/economia , Espécies Reativas de Oxigênio/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína Desacopladora 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA