Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Hum Mol Genet ; 30(23): 2286-2299, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34244757

RESUMO

Aortic aneurysms (AAs) are pathological dilatations of the aorta. Pathogenic variants in genes encoding for proteins of the contractile machinery of vascular smooth muscle cells (VSMCs), genes encoding proteins of the transforming growth factor beta signaling pathway and extracellular matrix (ECM) homeostasis play a role in the weakening of the aortic wall. These variants affect the functioning of VSMC, the predominant cell type in the aorta. Many variants have unknown clinical significance, with unknown consequences on VSMC function and AA development. Our goal was to develop functional assays that show the effects of pathogenic variants in aneurysm-related genes. We used a previously developed fibroblast transdifferentiation protocol to induce VSMC-like cells, which are used for all assays. We compared transdifferentiated VSMC-like cells of patients with a pathogenic variant in genes encoding for components of VSMC contraction (ACTA2, MYH11), transforming growth factor beta (TGFß) signaling (SMAD3) and a dominant negative (DN) and two haploinsufficient variants in the ECM elastic laminae (FBN1) to those of healthy controls. The transdifferentiation efficiency, structural integrity of the cytoskeleton, TGFß signaling profile, migration velocity and maximum contraction were measured. Transdifferentiation efficiency was strongly reduced in SMAD3 and FBN1 DN patients. ACTA2 and FBN1 DN cells showed a decrease in SMAD2 phosphorylation. Migration velocity was impaired for ACTA2 and MYH11 cells. ACTA2 cells showed reduced contractility. In conclusion, these assays for showing effects of pathogenic variants may be promising tools to help reclassification of variants of unknown clinical significance in AA-related genes.


Assuntos
Actinas/genética , Aneurisma Aórtico/etiologia , Fibrilina-1/genética , Cadeias Pesadas de Miosina/genética , Proteína Smad3/genética , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Diferenciação Celular/genética , Transdiferenciação Celular/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Modelos Biológicos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Proteína Smad2/metabolismo
2.
Mol Immunol ; 136: 128-137, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34139553

RESUMO

Transcription factor small mothers against decapentaplegic (Smad) family SMAD proteins are the essential intracellular signal mediators and transcription factors for transforming growth factor ß (TGF-ß) signal transduction pathway, which usually exert pleiotropic actions on cell physiology, including immune response, cell migration and differentiation. In this study, the Smad family was identified in the most primitive vertebrates through the investigation of the transcriptome data of lampreys. The topology of phylogenetic tree showed that the four Smads (Smad1, Smad3, Smad4 and Smad6) in lampreys were subdivided into four different groups. Meanwhile, homology analysis indicated that most Smads were conserved with typical Mad Homology (MH) 1 and MH2 domains. In addition, Lethenteron reissneri Smads (Lr-Smads) adopted general Smads folding structure and had high tertiary structural similarity with human Smads (H-Smads). Genomic synteny analysis revealed that the large-scale duplication blocks were not found in lamprey genome and neighbor genes of lamprey Smads presented dramatic differences compared with jawed vertebrates. Importantly, quantitative real-time PCR analysis demonstrated that Smads were widely expressed in lamprey, and the expression level of Lr-Smads mRNA was up-regulated with different pathogenic stimulations. Moreover, depending on the weighted gene co-expression network analysis (WGCNA), four Lr-Smads were identified as two meaningful modules (green and gray). The functional analysis of these two modules showed that they might have a correlation with ployI:C. And these genes presented strong positive correlation during the immune response from the results of Pearson's correlation analysis. In conclusion, our results would not only enrich the information of Smad family in jawless vertebrates, but also lay the foundation for immunity in further study.


Assuntos
Lampreias/genética , Lampreias/imunologia , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Sequência de Aminoácidos , Animais , Evolução Molecular , Regulação da Expressão Gênica/genética , Genoma/genética , Filogenia , Poli I-C/imunologia , Conformação Proteica , Transdução de Sinais/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína Smad6/genética , Proteína Smad6/metabolismo
3.
Int Immunopharmacol ; 34: 32-36, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26919280

RESUMO

BACKGROUND: The precision-cut kidney slice (PCKS) model appears to be a useful ex vivo model of renal fibrosis. However, little in-depth molecular investigation on the PCKS model has been performed. Therefore, the aim of this study will be to investigate and validate the molecular validity of this model. METHODS: The PCKS model was constructed in male C57BL/6 mice. To induce renal fibrosis, PCKS were incubated in recombinant human TGF-ß1 for 48 h. Protein expression of phosphorylated Smad2 (p-Smad2, cytosolic and nuclear), Smad7, phosphorylated ERK1 (p-ERK1), phosphorylated ERK2 (p-ERK2), and phosphorylated p38 MAPK (p-p38 MAPK) was measured using Western blotting. To assess Smad2/3 heteromeric complex formation and phosphorylated Smad3 (p-Smad3) expression, immunoprecipitation was performed with an anti-Smad2 or an anti-Smad3 antibody, respectively, prior to Western blotting. RESULTS: p-Smad2 and p-Smad3 were significantly upregulated in the PCKS model relative to control (p<0.05). However, we found no significant difference in Smad7 expression between the PCKS model and control (p>0.05). The PCKS model demonstrated significantly greater Smad2/3 complex formation and nuclear translocation relative to control (p<0.05). The PCKS model showed significantly greater expression of p-ERK1, p-ERK2, and p-p38 MAPK relative to control (p<0.05). CONCLUSIONS: The PCKS model displays several well-established molecular markers of renal fibrosis. However, the PCKS model failed to display Smad7 downregulation and appears to display "over-activation" of p-Smad2 and p-Smad3 as well as "under-activation" of ERK1/2 and p38 MAPK signaling vis-à-vis the well-established in vivo unilateral ureteric obstruction model of renal fibrosis.


Assuntos
Nefropatias/diagnóstico , Rim/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1 , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Humanos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/imunologia , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Endocrine ; 47(3): 783-92, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24619287

RESUMO

The objectives of the study were to improve the model system of diabetic nephropathy in nonhuman primates and assess the early renal damage. Diabetes was induced in monkeys by streptozotocin, and the animals were administered exogenous insulin to control blood glucose (BG). Animals were divided into four groups, including the normal group (N = 3), group A (streptozotocin diabetic model with control of BG < 10 mmol/L, N = 3), group B (streptozotocin diabetic model with control of BG between 15 and 20 mmol/L, N = 4), and group C (streptozotocin diabetic model with control of BG between 15 and 20 mmol/L and high-sodium and high-fat diet, N = 4). The following parameters were evaluated: (1) blood biochemistry and routine urinalysis, (2) color Doppler ultrasound, (3) angiography, (4) renal biopsy, and (5) renal fibrosis-related gene expression levels. Animals in group C developed progressive histologic changes with typical diabetic nephropathy resembling diabetic nephropathy in human patients and exhibited accelerated development of diabetic nephropathy compared with other nonhuman primate models. Significant changes in the expression of the Smad2/3 gene and eNOS in renal tissue were also observed in the early stage of diabetic nephropathy. In conclusion, our model is an excellent model of diabetic nephropathy for understanding the pathogenesis of diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/diagnóstico , Rim/patologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação da Expressão Gênica , Rim/metabolismo , Macaca mulatta , Masculino , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA