Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Inform ; 38(5): e1800141, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30725529

RESUMO

For drug design projects it is essential to rationally induce and explain selectivity. In this context shape complementarity as well as protein and ligand flexibility represent important factors. Currently available tools for the analysis of protein-ligand interactions focus mainly on electrostatic complementarity and/or static structures. Here we address the shortcomings of available methods by presenting two new tools: The first one can be used to assess steric complementarity in flexible protein-ligand complexes in order to explain selectivity of known ligands. It further allows to determine ligand atoms with especially good or bad shape-fit which can be of use in lead optimization projects. The second tool was designed to detect differences in protein flexibility in similar proteins along with their exploitation for virtual screening. Both tools yield interesting results when applied to data of protein tyrosine phosphatase 1B (PTP1B): The case of PTP1B has proven especially difficult in terms of selectivity, due to a closely related phosphatase connected to severe undesired effects. With our tool for steric complementarity assessment we were able to explain previously undisclosed causes of moderate selectivity of selected PTP1B ligands. The second tool allowed us to find differences of flexibility in the two highly similar proteins and give directions for exploitation in virtual screening.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Eletricidade Estática
2.
Chem Pharm Bull (Tokyo) ; 66(5): 483-492, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29710045

RESUMO

Diabetes mellitus is the seventh leading cause of death globally. Ninety percent of the diabetic population suffers from type-2 diabetes, which still needs an effective, safe and economical oral hypoglycemic therapy. Plants are rich sources of various therapeutic molecules. More than 400 medicinal plants of interesting phytochemical diversity have been reported for their antidiabetic potential. Naphthoquinones are a group of phytochemicals, which have a wide range of pharmacological potential, including antidiabetic activity. Naphthoquinones exert their antidiabetic effects through various mechanisms such as the inhibition of α-glucosidase and protein tyrosine phosphatase 1B, increased glucose uptake in myocytes and adipocytes via glucose transporter type 4 (GLUT4) and GLUT2 translocations, enhanced peroxisome proliferator-activated receptor gamma (PPARγ) ligand activity, and by normalizing carbohydrate metabolizing enzymes in the liver. Moreover, naphthoquinone inhibits adipogenesis by both upstream and downstream regulation to control obesity, which is one of the important risk factors for diabetes. Naturally occurring naphthoquinones, as well as their plant sources, are therefore of interest for exploring their antidiabetic potential. The present review aims to overview the antidiabetic potential of naphthoquinones and their plant resources in Thailand.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Naftoquinonas/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Adipogenia/efeitos dos fármacos , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Obesidade/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Tailândia , alfa-Glucosidases/metabolismo
3.
Curr Med Chem ; 23(25): 2874-2891, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26997154

RESUMO

Public academic research sites, private institutions as well as small companies have made substantial contributions to the ongoing development of antidiabetic vanadium compounds. But why is this endeavor not echoed by the globally operating pharmaceutical companies, also known as "Big Pharma"? Intriguingly, today's clinical practice is in great need to improve or replace insulin treatment against Diabetes Mellitus (DM). Insulin is the mainstay therapeutically and economically. So, why do those companies develop potential antidiabetic drug candidates without vanadium (vanadium- free)? We gathered information about physicochemical and pharmacological properties of known vanadium-containing antidiabetic compounds from the specialized literature, and converted the data into explanations (arguments, the "pros and cons") about the underpinnings of antidiabetic vanadium. Some discoveries were embedded in chronological order while seminal reviews of the last decade about the Medicinal chemistry of vanadium and its history were also listed for further understanding. In particular, the concepts of so-called "noncomplexed or free" vanadium species (i.e. inorganic oxido-coordinated species) and "biogenic speciation" of antidiabetic vanadium complexes were found critical and subsequently documented in more details to answer the question.


Assuntos
Complexos de Coordenação/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Vanádio/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacocinética , Desenho de Fármacos , Indústria Farmacêutica , Meia-Vida , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Pesquisa
4.
J Agric Food Chem ; 62(26): 6147-58, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24881464

RESUMO

Greek oregano (Origanum vulgare), marjoram (Origanum majorana), rosemary (Rosmarinus officinalis), and Mexican oregano (Lippia graveolens) are concentrated sources of bioactive compounds. The aims were to characterize and examine extracts from greenhouse-grown or commercially purchased herbs for their ability to inhibit dipeptidyl peptidase IV (DPP-IV) and protein tyrosine phosphatase 1B (PTP1B), enzymes that play a role in insulin secretion and insulin signaling, respectively. Greenhouse herbs contained more polyphenols (302.7-430.1 µg of gallic acid equivalents/mg of dry weight of extract (DWE)) and flavonoids (370.1-661.4 µg of rutin equivalents/mg of DWE) compared to the equivalent commercial herbs. Greenhouse rosemary, Mexican oregano, and marjoram extracts were the best inhibitors of DPP-IV (IC50=16, 29, and 59 µM, respectively). Commercial rosemary, Mexican oregano, and marjoram were the best inhibitors of PTP1B (32.4-40.9% at 500 µM). The phytochemicals eriodictyol, naringenin, hispidulin, cirsimaritin, and carnosol were identified by LC-ESI-MS as being present in greenhouse-grown Mexican oregano and rosemary. Computational modeling indicated that hispidulin, carnosol, and eriodictyol would have the best binding affinities for DPP-IV. Biochemically, the best inhibitors of DPP-IV were cirsimaritin (IC50=0.43±0.07 µM), hispidulin (IC50=0.49±0.06 µM), and naringenin (IC50=2.5±0.29 µM). Overall, herbs contain several flavonoids that inhibit DPP-IV and should be investigated further regarding their potential in diabetes management.


Assuntos
Inibidores da Dipeptidil Peptidase IV/isolamento & purificação , Lippia/química , Origanum/química , Folhas de Planta/química , Inibidores de Proteínas Quinases/isolamento & purificação , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Rosmarinus/química , Animais , Produtos Agrícolas/química , Produtos Agrícolas/economia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/enzimologia , Inibidores da Dipeptidil Peptidase IV/análise , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Descoberta de Drogas , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sus scrofa
5.
Biochimie ; 95(4): 808-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23246914

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the tyrosine kinase growth factor signaling pathway, which is involved in major physiological mechanisms such as liver regeneration. We investigate early hepatic metabolic events produced by partial hepatectomy (PHx) for PTP1B deficient (PTP1B KO) and wild type (WT) mice using proton nuclear magnetic resonance spectroscopy. Metabolic response of the two genotypes produced 24 h upon PHx is compared using magic angle spinning high-resolution nuclear magnetic resonance ((1)H-HR-MAS-NMR) on intact liver tissues. In addition, genotype-associated metabolic profile changes were monitored during the first 48 h after PHx using high-resolution nuclear magnetic resonance ((1)H-HR-NMR) on liver extracts. A marked increase of lipid-related signals in regenerating livers was observed after 24 h PHx in either intact tissues or liver extracts studies. In spite of this common initial metabolic response, results obtained 48 h after PHx on liver extracts indicate a genotype-differential metabolic pattern. This metabolic pattern resulted in line with well known regenerative features such as more sustained cell proliferation, a better management of lipids as energy fuel and lessened liver injury for PTP1B KO mice as compared to WT. Taken together, these findings suggest the metabolic basis to the pivotal role of PTP1B in liver regeneration.


Assuntos
Hepatectomia , Regeneração Hepática , Metaboloma , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Acetonitrilas/química , Animais , Clorofórmio/química , Técnicas de Inativação de Genes , Fígado/citologia , Fígado/metabolismo , Fígado/cirurgia , Espectroscopia de Ressonância Magnética , Masculino , Metanol/química , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 1/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Fatores de Tempo , Água/química
6.
J Med Chem ; 55(9): 4489-500, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22500930

RESUMO

The effects of addition of a methyl group to a lead compound on biological activity are examined. A literature analysis of >2000 cases reveals that an activity boost of a factor of 10 or more is found with an 8% frequency, and a 100-fold boost is a 1 in 200 event. Four cases in the latter category are analyzed in depth to elucidate any unusual aspects of the protein-ligand binding, distribution of water molecules, and changes in conformational energetics. The analyses include Monte Carlo/free-energy perturbation (MC/FEP) calculations for methyl replacements in inhibitor series for p38α MAP kinase, ACK1, PTP1B, and thrombin. Methyl substitutions ortho to an aryl ring can be particularly effective at improving activity by inducing a propitious conformational change. The greatest improvements in activity arise from coupling the conformational gain with the burial of the methyl group in a hydrophobic region of the protein.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteínas Tirosina Quinases/química , Trombina/química , Amidas/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Método de Monte Carlo , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirimidinas/farmacologia , Pirrolidinonas/farmacologia , Relação Estrutura-Atividade , Termodinâmica , Tiofenos/farmacologia , Trombina/antagonistas & inibidores , Trombina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA