RESUMO
The escalating global incidence of infectious diseases caused by pathogenic bacteria, especially in developing countries, emphasises the urgent need for rapid and portable pathogen detection devices. This study introduces a sensitive and specific electrochemical biosensing platform utilising cost-effective electrodes fabricated by inkjet-printing gold and silver nanoparticles on a plastic substrate. The biosensor exploits the CRISPR/Cas12a system for detecting a specific DNA sequence selected from the genome of the target pathogen. Upon detection, the trans-activity of Cas12a/gRNA is triggered, leading to the cleavage of rationally designed single-strand DNA reporters (linear and hairpin) labelled with methylene blue (ssDNA-MB) and bound to the electrode surface. In principle, this sensing mechanism can be adapted to any bacterium by choosing a proper guide RNA to target a specific sequence of its DNA. The biosensor's performance was assessed for two representative pathogens (a Gram-negative, Escherichia coli, and a Gram-positive, Staphylococcus aureus), and results obtained with inkjet-printed gold electrodes were compared with those obtained by commercial screen-printed gold electrodes. Our results show that the use of inkjet-printed nanostructured gold electrodes, which provide a large surface area, in combination with the use of hairpin reporters containing a poly-T loop can increase the sensitivity of the assay corresponding to a signal variation of 86%. DNA targets amplified from various clinically isolated bacteria, have been tested and demonstrate the potential of the proposed platform for point-of-need applications.
Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , Escherichia coli , Ouro , Nanopartículas Metálicas , Staphylococcus aureus , Técnicas Biossensoriais/instrumentação , Ouro/química , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/genética , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Nanopartículas Metálicas/química , Prata/química , DNA Bacteriano/análise , DNA Bacteriano/genética , Técnicas Eletroquímicas/métodos , Humanos , Nanoestruturas/química , DNA de Cadeia Simples/química , Eletrodos , Impressão , Proteínas de Bactérias/genética , Endodesoxirribonucleases , Proteínas Associadas a CRISPRRESUMO
Type III CRISPR-Cas systems provide adaptive immunity against foreign mobile genetic elements through RNA-guided interference. Sequence-specific recognition of RNA targets by the type III effector complex triggers the generation of cyclic oligoadenylate (cOA) second messengers that activate ancillary effector proteins, thus reinforcing the host immune response. The ancillary nuclease Can2 is activated by cyclic tetra-AMP (cA4); however, the mechanisms underlying cA4-mediated activation and substrate selectivity remain elusive. Here we report crystal structures of Thermoanaerobacter brockii Can2 (TbrCan2) in substrate- and product-bound complexes. We show that TbrCan2 is a single strand-selective DNase and RNase that binds substrates via a conserved SxTTS active site motif, and reveal molecular interactions underpinning its sequence preference for CA dinucleotides. Furthermore, we identify a molecular interaction relay linking the cA4 binding site and the nuclease catalytic site to enable divalent metal cation coordination and catalytic activation. These findings provide key insights into the molecular mechanisms of Can2 nucleases in type III CRISPR-Cas immunity and may guide their technological development for nucleic acid detection applications.
Assuntos
Proteínas Associadas a CRISPR , Endorribonucleases , Thermoanaerobacter , Sítios de Ligação , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleases/metabolismo , Endorribonucleases/metabolismo , RNA/metabolismo , Sistemas do Segundo Mensageiro , Thermoanaerobacter/enzimologia , Thermoanaerobacter/metabolismoRESUMO
Next-generation sequencing (NGS) has identified disease hallmarks and catalogued a vast reservoir of genetic information from humans and other species. Precise nucleotide-interrogation properties of clustered regularly interspaced short palindromic repeats (CRISPR) proteins have been harnessed to rapidly identify DNA-RNA signatures for diverse applications, bypassing the cost and turnaround times associated with diagnostic NGS.
Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas Genéticas , Técnicas de Diagnóstico Molecular/métodos , Biomarcadores Tumorais/genética , Proteínas Associadas a CRISPR/genética , DNA , Técnicas Genéticas/economia , Humanos , Plantas Medicinais/genética , RNA , Tuberculose/diagnóstico , Tuberculose/microbiologiaRESUMO
Ideal methods for detecting pathogens should be sensitive, specific, rapid, cost-effective and instrument-free. Conventional nucleic acid pathogen detection strategies, mostly PCR-based techniques, have various limitations, such as expensive equipment, reagents and skilled performance. Recently, CRISPR/Cas-based methods have burst onto the scene, with the potential to power the pathogen detection field. Here we introduce these unique methods and discuss its hurdles and promises.
Assuntos
Sistemas CRISPR-Cas , Doenças Transmissíveis/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Proteínas Associadas a CRISPR/metabolismo , Humanos , Técnicas de Diagnóstico Molecular/economia , RNA Guia de Cinetoplastídeos/farmacologia , Sensibilidade e EspecificidadeRESUMO
Point-of-care testing (POCT) in low-resource settings requires tools that can operate independently of typical laboratory infrastructure. Due to its favorable signal-to-background ratio, a wide variety of biomedical tests utilize fluorescence as a readout. However, fluorescence techniques often require expensive or complex instrumentation and can be difficult to adapt for POCT. To address this issue, we developed a pocket-sized fluorescence detector costing less than $15 that is easy to manufacture and can operate in low-resource settings. It is built from standard electronic components, including an LED and a light dependent resistor, filter foils and 3D printed parts, and reliably reaches a lower limit of detection (LOD) of ≈ 6.8 nM fluorescein, which is sufficient to follow typical biochemical reactions used in POCT applications. All assays are conducted on filter paper, which allows for a flat detector architecture to improve signal collection. We validate the device by quantifying in vitro RNA transcription and also demonstrate sequence-specific detection of target RNAs with an LOD of 3.7 nM using a Cas13a-based fluorescence assay. Cas13a is an RNA-guided, RNA-targeting CRISPR effector with promiscuous RNase activity upon recognition of its RNA target. Cas13a sensing is highly specific and adaptable and in combination with our detector represents a promising approach for nucleic acid POCT. Furthermore, our open-source device may be used in educational settings, through providing low cost instrumentation for quantitative assays or as a platform to integrate hardware, software and biochemistry concepts in the future.
Assuntos
Proteínas de Bactérias/genética , Técnicas Biossensoriais/instrumentação , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Fluorescência , RNA Bacteriano/análise , RNA Bacteriano/genética , Proteínas de Fluorescência Verde , Técnicas In Vitro , Limite de Detecção , Transcrição GênicaRESUMO
Cas9 (from Streptococcus pyogenes) in complex with a guide RNA targets complementary DNA for cleavage. Here, we developed a single-molecule FRET analysis to study the mechanisms of specificity enhancement of two engineered Cas9s (eCas9 and Cas9-HF1). A DNA-unwinding assay showed that mismatches affect cleavage reactions through rebalancing the unwinding-rewinding equilibrium. Increasing PAM-distal mismatches facilitates rewinding, and the associated cleavage impairment shows that cleavage proceeds from the unwound state. Engineered Cas9s depopulate the unwound state more readily with mismatches. The intrinsic cleavage rate is much lower for engineered Cas9s, preventing cleavage from transiently unwound off-targets. Engineered Cas9s require approximately one additional base pair match for stable binding, freeing them from sites that would otherwise sequester them. Therefore, engineered Cas9s achieve their improved specificity by inhibiting stable DNA binding to partially matching sequences, making DNA unwinding more sensitive to mismatches and slowing down the intrinsic cleavage reaction.
Assuntos
Sistemas CRISPR-Cas , Transferência Ressonante de Energia de Fluorescência , Proteínas Associadas a CRISPR/metabolismo , DNA/química , Clivagem do DNA , Endonucleases/metabolismo , Cinética , Cadeias de Markov , Mutação , Oligonucleotídeos , RNA Guia de Cinetoplastídeos/metabolismo , Streptococcus pyogenes/metabolismoRESUMO
In this issue of Molecular Cell, Nuñez et al. (2016) report that site-specific integration of foreign DNA into CRISPR loci by the Cas1-Cas2 integrase complex is promoted by a host factor, IHF (integration host factor), that binds and bends CRISPR leader DNA.
Assuntos
Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Bactérias/genética , Sequência de Bases , DNA , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Integrases/genética , Serviços TerceirizadosAssuntos
Agaricus/genética , Agricultura/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Engenharia Genética/métodos , Agricultura/economia , Cruzamento , Proteínas Associadas a CRISPR , Inativação Gênica , Engenharia Genética/legislação & jurisprudência , Organismos Geneticamente Modificados , Estados UnidosAssuntos
Sistemas CRISPR-Cas/genética , Engenharia Genética/legislação & jurisprudência , Patentes como Assunto/legislação & jurisprudência , Pesquisa/legislação & jurisprudência , Proteínas Associadas a CRISPR/metabolismo , Engenharia Genética/economia , Engenharia Genética/estatística & dados numéricos , Terapia Genética/economia , Terapia Genética/legislação & jurisprudência , Terapia Genética/métodos , Humanos , Licenciamento/economia , Licenciamento/legislação & jurisprudência , Reação em Cadeia da Polimerase , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Pesquisa/economia , Pesquisadores/economia , Pesquisadores/legislação & jurisprudênciaRESUMO
The interface between viruses and their hosts' are hot spots for biological and biotechnological innovation. Bacteria use restriction endonucleases to destroy invading DNA, and industry has exploited these enzymes for molecular cut-and-paste reactions that are central to many recombinant DNA technologies. Today, another class of nucleases central to adaptive immune systems that protect bacteria and archaea from invading viruses and plasmids are blazing a similar path from basic science to profound biomedical and industrial applications.