Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Neuropsychopharmacol ; 27(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365306

RESUMO

Economic development and increased stress have considerably increased the prevalence of psychiatric disorders in recent years, which rank as some of the most prevalent diseases globally. Several factors, including chronic social stress, genetic inheritance, and autogenous diseases, lead to the development and progression of psychiatric disorders. Clinical treatments for psychiatric disorders include psychotherapy, chemotherapy, and electric shock therapy. Although various achievements have been made researching psychiatric disorders, the pathogenesis of these diseases has not been fully understood yet, and serious adverse effects and resistance to antipsychotics are major obstacles to treating patients with psychiatric disorders. Recent studies have shown that the mammalian target of rapamycin (mTOR) is a central signaling hub that functions in nerve growth, synapse formation, and plasticity. The PI3K-AKT/mTOR pathway is a critical target for mediating the rapid antidepressant effects of these pharmacological agents in clinical and preclinical research. Abnormal PI3K-AKT/mTOR signaling is closely associated with the pathogenesis of several neurodevelopmental disorders. In this review, we focused on the role of mTOR signaling and the related aberrant neurogenesis in psychiatric disorders. Elucidating the neurobiology of the PI3K-AKT/mTOR signaling pathway in psychiatric disorders and its actions in response to antidepressants will help us better understand brain development and quickly identify new therapeutic targets for the treatment of these mental illnesses.


Assuntos
Transtornos Mentais , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Sirolimo/farmacologia , Antidepressivos/farmacologia , Transtornos Mentais/tratamento farmacológico
2.
Med Oncol ; 40(1): 8, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36308567

RESUMO

After revealing the anti-cancer properties of boron, which is included in the category of essential elements for human health by the World Health Organization, the therapeutic potential of boron compounds has been begun to be evaluated, and its molecular effect mechanisms have still been among the research subjects. In ovarian cancer, mutations or amplifications frequently occur in the PI3K/Akt/mTOR pathway components, and dysregulation of this pathway is shown among the causes of treatment failure. In the present study, it was aimed to investigate the anti-cancer properties of boron-containing DPD in SKOV3 cells, which is an epithelial ovarian cancer model, through PI3K/AKT/mTOR pathway. The cytotoxic activity of DPD in SKOV3 cells was evaluated by WST-1 test, apoptotic effect by Annexin V and JC-1 test. The gene expressions associated with PI3K/AKT/mTOR pathway were determined by real-time qRT-PCR. In SKOV3 cells, the IC50 value of DPD was found to be 6.7 mM, 5.6 mM, and 5.2 mM at 24th, 48th and 72nd hour, respectively. Compared with the untreated control group, DPD treatment was found to induce apoptosis 2.6-fold and increase mitochondrial membrane depolarization 4.5-fold. DPD treatment was found to downregulate PIK3CA, PIK3CG, AKT2, IGF1, IRS1, MAPK3, HIF-1, VEGFC, CAB39, CAB39L, STRADB, PRKAB2, PRKAG3, TELO2, RICTOR, MLST8, and EIF4B genes and upregulate TP53, GSK3B, FKBP8, TSC2, ULK1, and ULK2 genes. These results draw attention to the therapeutic potential of DPD, which is frequently exposed in daily life, in epithelial ovarian cancer and show that it can be a candidate compound in combination with chemotherapeutics.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Boro/farmacologia , Boro/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígenos de Neoplasias , Proteínas Reguladoras de Apoptose/farmacologia , Proteínas Reguladoras de Apoptose/uso terapêutico
3.
J Agric Food Chem ; 70(39): 12418-12429, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129441

RESUMO

Oligopeptides (Thr-His-Leu-Pro-Lys (THLPK), His-Pro-Leu-Lys (HPLK), Leu-Pro-Lys (LPK), His-Leu-Lys (HLK), and Leu-His-Lys (LHK)) are newly identified from rapeseed napin (Brassica napus) protein-derived hydrolysates with the capability of upregulating glucose transporter-4 (GLUT4) expression and translocation. However, whether each of them enhances GLUT4 expression and translocation and their specific mechanisms remain unclear. Here, we assess the effects of the oligopeptides against insulin resistance (IR) and oxidative stress in hepatocytes and screen out the most antidiabetic one. Specifically, compared with other oligopeptides, LPK not only remarkably elevated glucose consumption to 8.45 mmol/L protein; superoxide dismutase (SOD) activity to 319 U/mg protein; GLUT4 expression and translocation; and phosphorylated level of insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) (P < 0.05) but also remarkably attenuated the reactive oxygen species (ROS) level to 2255, lactate dehydrogenase (LDH) activity to 20.5 U/mg protein, malondialdehyde (MDA) content to 241 nmol/mg protein, and NO content to 1302 µmol/mL protein (P < 0.05). These findings demonstrated that antidiabetic oligopeptide LPK possessed the most potential to protect HepG2 cells from IR and oxidative stress via activating IRS-1/PI3K/Akt/GLUT4 and regulating common oxidative markers in vitro.


Assuntos
Brassica napus , Resistência à Insulina , Brassica napus/genética , Brassica napus/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Células Hep G2 , Humanos , Hipoglicemiantes , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Lactato Desidrogenases/metabolismo , Malondialdeído , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Estresse Oxidativo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
4.
Tissue Cell ; 77: 101845, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35679681

RESUMO

Cervical and endometrial cancers are common gynecologic cancers. Protein phosphatase 1 regulatory subunit 14B (PPP1R14B) is aberrantly expressed in several tumors, while its functions in cervical and endometrial cancers remain largely uncertain. The differentially expression of PPP1R14B in cervical and endometrial cancers was predicted by GEPIA2 and Human Protein Atlas databases. The diagnostic value was analyzed by AUC curve. The association between PPP1R14B expression and overall survival was predicted using Kaplan-Meier Plotter database. The function of PPP1R14B was investigated according to in vitro assessment. PPP1R14B and phosphorylation level of Akt were analyzed through western blotting. Cell proliferation was investigated by CCK-8 and EdU staining assays. Cell apoptosis was evaluated via TUNEL staining and caspase-3 activity assays. PPP1R14B level was upregulated in cervical and endometrial cancers, and it was associated with diagnosis and worse prognosis. PPP1R14B silencing constrained cell proliferation and promoted cell death in cervical and endometrial cancers cells. PPP1R14B knockdown suppressed activation of the Akt pathway. Re-activation of the Akt signaling reversed the anti-proliferative and cell death-promoting roles of PP1R14B knockdown in cervical and endometrial cancers cells. In conclusion, PPP1R14B knockdown represses cell proliferation and facilitates cell death by inhibiting the activation of the Akt signaling in cervical and endometrial cancers.


Assuntos
Neoplasias do Endométrio , Proteínas Proto-Oncogênicas c-akt , Feminino , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Proteína Fosfatase 1/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Clin Oral Investig ; 26(9): 5833-5846, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35556176

RESUMO

OBJECTIVES: To investigate the effects of anti-obesity drug sibutramine hydrochloride (SB) on redox state and biochemical parameters in the salivary glands. MATERIALS AND METHODS: Adult male Wistar rats were randomly divided into the following groups (n = 8 per group): control rats treated with vehicle (C) and rats treated with SB (10 mg/kg/day) by intragastric gavage for 28 days. The parotid (PG) and submandibular (SMG) glands were processed using histomorphometric analysis, and total protein, amylase, mucin, and oxidative damage to lipids were determined by measuring the formation of thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), uric acid (UA), total glutathione (tGSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and AKT phosphorylation. RESULTS: SB decreased the acinar area, and increased the stromal area in PG, while no effect on the morphometric parameters was observed in SMG. SB also increased oxidative damage to lipids (TBARs). The SB group showed lower total protein, amylase, TAC, UA, tGSH, SOD, CAT, and GPx than the C group in PG, while in SMG, SB decreased total protein, mucin, tGSH, SOD, CAT, and GPx. However, increased AKT phosphorylation observed in both salivary glands suggests that SB exerts low-intensity oxidative stress. CONCLUSIONS: SB impaired enzymatic and non-enzymatic antioxidant defenses in the salivary glands of rats. CLINICAL RELEVANCE: Chronic treatment with SB could mitigate salivary gland dysfunction due to disturbance of redox state.


Assuntos
Fármacos Antiobesidade , Antioxidantes , Amilases/metabolismo , Animais , Fármacos Antiobesidade/metabolismo , Fármacos Antiobesidade/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ciclobutanos , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/farmacologia , Lipídeos , Masculino , Mucinas/metabolismo , Oxirredução , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Ratos , Ratos Wistar , Glândulas Salivares , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia
6.
J Pharmacokinet Pharmacodyn ; 49(2): 227-241, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34773540

RESUMO

The development of innate and/or acquired resistance to human epidermal growth factor receptor type-2 (HER2)-targeted therapy in HER2-positive breast cancer (HER2 + BC) is a major clinical challenge that needs to be addressed. One of the main mechanisms of resistance includes aberrant activation of the HER2 and phosphatidylinositol 3-kinase/AKT8 virus oncogene cellular homolog/mammalian target of rapamycin (PI3K/Akt/mTOR) pathways. In the present work, we propose to use a triple combination therapy to combat this resistance phenomenon. Our strategy involves evaluation of two targeted small molecule agents, everolimus and dasatinib, with complementary inhibitory circuitries in the PI3K/Akt/mTOR pathway, along with a standard cytotoxic agent, paclitaxel. Everolimus inhibits mTOR, while dasatinib inhibits Src, which is a protein upstream of Akt. An over-activation of these two proteins has been implicated in approximately 50% of HER2 + BC cases. Hence, we hypothesize that their simultaneous inhibition may lead to enhanced cell-growth inhibition. Moreover, the potent apoptotic effects of paclitaxel may help augment the overall cytotoxicity of the proposed triple combination in HER2 + BC cells. To this end, we investigated experimentally and assessed computationally the in vitro pharmacodynamic drug-drug interactions of the various dual and triple combinations to assess their subsequent combinatorial effects (synergistic/additive/antagonistic) in a HER2-therapy resistant BC cell line, JIMT-1. Our proposed triple combination therapy demonstrated synergism in JIMT-1 cells, thus corroborating our hypothesis. This effort may form the basis for further investigation of the triple combination therapy in vivo at a mechanistic level in HER2-therapy resistant BC cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Interações Medicamentosas , Resistencia a Medicamentos Antineoplásicos , Everolimo/farmacologia , Everolimo/uso terapêutico , Feminino , Humanos , Paclitaxel/farmacologia , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Receptor ErbB-2 , Serina-Treonina Quinases TOR/metabolismo , Trastuzumab/uso terapêutico
7.
Artigo em Inglês | MEDLINE | ID: mdl-34753699

RESUMO

OBJECTIVE: Lymphatic malformations are characterized by the overgrowth of lymphatic vessels during development. Activation of PI3K/AKT and MAPK/ERK signaling pathways occur in isolated lymphatic malformation and in those associated with syndromes such as CLOVES and Klippel-Trenaunay. We aimed to assess the activation of these pathways in sporadic oral lymphatic malformations. STUDY DESIGN: A convenience sample of 14 formalin-fixed paraffin-embedded samples of oral lymphatic malformations underwent immunohistochemical reactions for the phosphorylated forms of AKT1 (pAKT-Ser473) and ERK1/2 (pERK1/2-Thr202/Tyr204), which are markers of PI3K/AKT and MAPK/ERK pathways activation, respectively. RESULTS: Positive staining for pAKT1 and pERK1/2 was observed in the endothelial cells in all samples of oral lymphatic malformations evaluated. CONCLUSIONS: Our results suggest that activation of PI3K/AKT and MAPK/ERK signaling pathways participates in the pathogenesis of oral lymphatic malformations.


Assuntos
Vasos Linfáticos/anormalidades , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases , Células Endoteliais/metabolismo , Humanos , Boca , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Gene ; 790: 145699, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33964380

RESUMO

Progesterone (P4) is an anti-androgen compound whose role in sperm maturation and functionality remains unclear in sheep. Here, we aimed to investigate the regulation mechanism of P4 on the epididymal secretion of dihydrotestosterone (DHT). To this end, we performed enzyme-linked immunosorbent assays, immunohistochemical staining, western blotting, and quantitative real-time polymerase chain reaction to detect P4 concentration as well as StAR, P450scc, and 3ß-HSD expression in sheep epididymis. Besides, cauda epithelial cells were cultured at different concentrations of P4 (10-9-10-5 g ml-1) as well as with or without the P4 receptor (PGR) inhibitor RU486 (10-7 M) or the PI3K-AKT inhibitor LY294006 (10-7 M) to explore the effect of P4 on DHT secretion and the underlying regulatory mechanism. The results showed that the caput, corpus, and cauda of sheep epididymis could synthesize P4 but had different synthesis ability. The PGR expression levels were the highest in the cauda, followed by the corpus. In vitro cell culture showed that P4 inhibition of DHT secretion and 5α-reductase 1 and 2 expression in epididymal epithelial cells could be moderately mitigated by RU486 but not by LY294002. Our results indicated that the paracrine and autocrine P4 could affect the secretion of DHT in epididymal cells through PGR. Overall, this study provides new data regarding the involvement of P4 in sperm maturation and functionality in sheep.


Assuntos
Di-Hidrotestosterona/metabolismo , Epididimo/metabolismo , Progesterona/farmacologia , Animais , Células Cultivadas , Epididimo/efeitos dos fármacos , Feminino , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ovinos
9.
Chem Biol Drug Des ; 98(1): 114-126, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961336

RESUMO

3-O-trans-caffeoyloleanolic acid (COA) is a pentacyclic triterpenoid compound, with significant anti-inflammatory effects. In this study, we report the protective effects of COA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explored its mechanism of action. LPS was used to construct in vivo mouse ALI models to observe the effects of COA pretreatment on lung pathology, inflammation, and oxidative stress. In vitro, mouse alveolar macrophages MH-S cells were cultured and stimulated with LPS to investigate the effects of COA pretreatment on inflammation and oxidative stress. Western blotting was used to investigate the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K from in vivo and in vitro samples. The results showed that COA significantly improved lung injury, inhibited neutrophil infiltration, prevented macrophage infiltration, inhibited the release of inflammatory factors, reduced oxidative stress, and down-regulated the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K in ALI mice caused by LPS. In vitro, COA inhibited the release of inflammatory factors, reduced oxidative stress, and down-regulated the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K in MH-S cells stimulated with LPS. Of interest, the protective effects of COA were significantly attenuated in MH-S cells pretreated with the PI3K phosphopeptide activator 740Y-P with no effect on TLR4 expression observed. Taken together, these findings confirm the protective effects of COA on ALI. We further demonstrate that the anti-inflammation and antioxidant effects of COA are mediated through its effects on PI3K/AKT and potentially TLR4.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/química , Ácido Oleanólico/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/metabolismo , Macrófagos/citologia , Masculino , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Fosfopeptídeos/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
10.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808081

RESUMO

In the present investigation, we examined whether a change in whole body energy fluxes could affect ovarian follicular development, employing mice ectopically expressing uncoupling protein 1 in skeletal muscle (UCP1-TG). Female UCP1-TG and wild-type (WT) mice were dissected at the age of 12 weeks. Energy intake and expenditure, activity, body weight and length, and body composition were measured. Plasma insulin, glucose, leptin, plasma fibroblast growth factor 21 (FGF21) and plasma insulin-like growth factor 1 (IGF1) levels were analyzed and ovarian follicle and corpus luteum numbers were counted. IGF1 signaling was analyzed by immunohistochemical staining for the activation of insulin receptor substrate 1/2 (IRS1/2) and AKT. UCP1-TG female mice had increased energy expenditure, reduced body size, maintained adiposity, and decreased IGF1 concentrations compared to their WT littermates, while preantral and antral follicle numbers were reduced by 40% and 60%, respectively. Corpora lutea were absent in 40% of the ovaries of UCP1-TG mice. Phospho-IRS1, phospho-AKT -Ser473 and -Thr308 immunostaining was present in the granulosa cells of antral follicles in WT ovaries, but faint to absent in the antral follicles of UCP1-TG mice. In conclusion, the reduction in circulating IGF1 levels due to the ectopic expression of UCP1 is associated with reduced immunostaining of the IRS1-PI3/AKT pathway, which may negatively affect ovarian follicle development and ovulation.


Assuntos
Metabolismo Energético , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Proteína Desacopladora 1/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Ingestão de Energia/fisiologia , Feminino , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Células da Granulosa/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Desacopladora 1/genética
11.
Life Sci ; 273: 119235, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607152

RESUMO

Although the central role of Nurr-1/GDNF has been reviewed amply, scarce data are available on their peripheral impact. Carvedilol and morin hydrate have previously conferred their hepatic anti-fibrotic action. AIM: Thus, our aim was to unveil the potential hepatoprotective role of carvedilol (CR) and/or morin hydrate (MH) using a hepatic 70% partial warm ischemia/reperfusion (I/R) rat model. MAIN METHOD: Rats were allocated into sham-operated, hepatic I/R, and I/R preceded by oral administration of CR (10 and 30 mg/kg; CR10/CR30), MH (30 mg/kg), or CR10 + MH for one week. KEY FINDINGS: On the molecular level, pretreatment with CR and/or MH increased the hepatic contents of Nurr-1, GDNF, and the protein expression of active/p-AKT. On the other hand, they inactivated GSK3ß and NF-κB to increase the antioxidant enzymes (GPx, SOD, CAT). All regimens also enhanced the autophagy/lysosomal function and boosted the protein expression of beclin-1, LC3II, and TFEB. Moreover, their antiapoptotic effect was signified by increasing the anti-apoptotic molecule Bcl2 and inhibiting Bax, Bax/Bcl2 ratio, and caspase-3, effects that were confirmed by the TUNEL assay. These improvements were reflected on liver function, as they decreased serum aminotransferases and liver structural alterations induced by I/R. Despite its mild impact, CR10 showed marked improvements when combined with MH; this synergistic interaction overrides the effect of either regimen alone. SIGNIFICANCE: In conclusion, CR, MH, and especially the combination regimen, conferred hepatoprotection against I/R via activating the Nurr-1/GDNF/AKT trajectory to induce autophagy/lysosomal biogenesis, inhibit GSK3ß/NF-кB hub and apoptosis, and amend redox balance.


Assuntos
Carvedilol/farmacologia , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Isquemia/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Apoptose , Autofagia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Isquemia/metabolismo , Isquemia/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
12.
Hamostaseologie ; 40(S 01): S21-S25, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33187007

RESUMO

INTRODUCTION: The diagnosis of platelet function disorder in children is challenging. Light transmission aggregometry is the gold standard for platelet function disorders. However, large blood volumes are required. Currently, there are no existing tools for the diagnosis of platelet function disorders that use small blood volumes. AKT signaling plays a central role in platelet activation during hemostasis and might be visualized by flow cytometry. METHODS: Platelet-rich plasma obtained by centrifugation of citrated blood from healthy volunteers was activated with arachidonic acid, thrombin receptor activating peptide-6 (TRAP-6), collagen, adenosine diphosphate ADP, collagen-related peptide (CRP), and epinephrine. After platelet activation, the phosphorylation of AKT was assessed by flow cytometer using a Navios cytometer. RESULTS: Healthy volunteers showed a reproducible phosphorylation of AKT upon activation. In comparison to nonactivated platelets, we documented an increase in pAKT expression with all agonists. Especially TRAP-6 and CRP caused considerable increase in percentage of pAKT expression throughout all the tested healthy volunteers. CONCLUSION: An activation of the AKT-signal pathway by different agonists can clearly be detected on the flow cytometer, indicating that the visualization of signaling in platelets by flow cytometry might be an efficient alternative for light transmission aggregometry to test platelet function in children.


Assuntos
Plaquetas/metabolismo , Citometria de Fluxo/métodos , Ativação Plaquetária/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Voluntários Saudáveis , Humanos , Transdução de Sinais
13.
Sci Rep ; 10(1): 647, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959776

RESUMO

Accumulating evidence suggests AKT1 and DRD2-AKT-GSK3 signaling involvement in schizophrenia. AKT1 activity is also required for lithium, a GSK3 inhibitor, to modulate mood-related behaviors. Notably, GSK3 inhibitor significantly alleviates behavioral deficits in Akt1-/- female mice, whereas typical/atypical antipsychotics have no effect. In agreement with adjunctive therapy with lithium in treating schizophrenia, our data mining indicated that the average utilization rates of lithium in the Taiwan National Health Insurance Research Database from 2002 to 2013 are 10.9% and 6.63% in inpatients and outpatients with schizophrenia, respectively. Given that lithium is commonly used in clinical practice, it is of great interest to evaluate the effect of lithium on alleviating Akt1-related deficits. Taking advantage of Akt1+/- mice to mimic genetic deficiency in patients, behavioral impairments were replicated in female Akt1+/- mice but were alleviated by subchronic lithium treatment for 13 days. Lithium also effectively alleviated the observed reduction in phosphorylated GSK3α/ß expression in the brains of Akt1+/- mice. Furthermore, inhibition of Akt expression using an Akt1/2 inhibitor significantly reduced neurite length in P19 cells and primary hippocampal cell cultures, which was also ameliorated by lithium. Collectively, our findings implied the therapeutic potential of lithium and the importance of the AKT1-GSK3 signaling pathway.


Assuntos
Bases de Dados Factuais , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Seguro Saúde , Compostos de Lítio/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Transdução de Sinais , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Humanos , Compostos de Lítio/farmacologia , Masculino , Camundongos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Taiwan , Adulto Jovem
14.
Artigo em Inglês | MEDLINE | ID: mdl-31669706

RESUMO

Strongly seasonal environments pose challenges for performance and survival of animals, especially when resource abundance seasonally fluctuates. We investigated the seasonal variation of key metabolic biomarkers in the muscles of males from three species (Rhinella jimi, R. granulosa and Pleurodema diplolister) of anurans from the drastically seasonal Brazilian semi-arid area, Caatinga. We examined the expression of proteins regulating energy turnover (AMP-activated protein kinase [AMPK] and protein kinase B [AKT]), protein synthesis and homeostasis (total and phosphorylated eukaryotic initiation factor 2α [eIF2α and p-eIF2α] and chaperone proteins [HSP 60, 70, and 90]) in muscles predominantly related to reproduction and locomotion. Cytochrome c oxidase (COX) activity was also assessed as an index of the muscle aerobic capacity. The expression pattern of metabolic biomarkers indicates that the maintenance of muscular function is regulated in a species-specific manner during the drastic seasonal variation. Rhinella jimi and R. granulosa that remain active during the drought appear to maintain muscles through more energy expensive pathways including elevated protein synthesis, while the aestivating P. diplolister employs energy conservation strategy suppressing protein synthesis, decreasing chaperone expression and increasing expression of AMPK. Two (P. diplolister and R. granulosa) of the three studied species activate cell survival pathways during the drought likely to prevent muscle atrophy, and all three studied species maintain the muscle aerobic capacity throughout the year, despite the resource limitation. These strategies are important considering the unpredictability of the reproductive event and high demand on muscular activity during the reproductive season in these amphibians. SUMMARY STATEMENT: We studied seasonal variation of key metabolic biomarkers in the muscles of anurans that experience drastic variation in environmental conditions and differ in seasonal activity patterns.


Assuntos
Anuros/fisiologia , Biomarcadores/metabolismo , Metabolismo Energético , Músculo Esquelético/metabolismo , Reprodução , Estações do Ano , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Brasil , Secas , Proteínas de Choque Térmico/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
Invest New Drugs ; 37(4): 616-624, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30168013

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most serious life-threatening malignancies. Although chemotherapeutic targets and agents for ESCC have made much progress recently, the efficacy is still unsatisfactory. Therefore, there is still an unmet medical need for patients with ESCC. Here, we report the expression status of HDAC1 in human ESCC and matched paracancerous tissues, and the results indicated that HDAC1 was generally upregulated in ESCC specimens. Furthermore, we comprehensively assessed the anti-ESCC activity of a highly active HDAC1 inhibitor quisinostat. Quisinostat could effectively suppress cellular viability and proliferation of ESCC cells, as well as induce cell cycle arrest and apoptosis even at low treatment concentrations. The effectiveness was also observed in KYSE150 xenograft model when quisinostat was administered at tolerated doses (3 mg/kg and 10 mg/kg). Meanwhile, quisinostat also had the ability to suppress the migration and invasion (pivotal steps of tumor metastasis) of ESCC cells. Western blot analysis indicated that quisinostat exerted its anti-ESCC effects mainly through blockade of Akt/mTOR and MAPK/ERK signaling cascades. Overall, HDAC1 may serve as a potential therapeutic target for ESCC, and quisinostat deserves to be further assessed as a promising drug candidate for the treatment of ESCC.


Assuntos
Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Camundongos SCID , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral
16.
Cell Death Dis ; 9(9): 876, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158592

RESUMO

Stimulation of white adipose tissue (WAT) browning is considered as a potential approach to treat obesity and metabolic diseases. Our previous studies have shown that phytochemical butein can stimulate WAT browning through induction of Prdm4 in adipocytes. Here, we investigated the effects of butein on diet-induced obesity and its underlying molecular mechanism. Treatment with butein prevented weight gains and improved metabolic profiles in diet-induced obese mice. Butein treatment groups also displayed higher body temperature, increased energy expenditure, and enhanced expression of thermogenic genes in adipose tissue. Butein also suppressed body weight gains and improved glucose and insulin tolerance in mice housed at thermoneutrality (30 °C). These effects were associated with adipose-selective induction of Prdm4, suggesting the role of Prdm4 in butein-mediated anti-obese effects. To directly assess the in vivo role of Prdm4, we generated aP2-Prdm4 transgenic mouse lines overexpressing Prdm4 in adipose tissues. Adipose-specific transgenic expression of Prdm4 recapitulated the butein's actions in stimulating energy expenditure, cold tolerance, and thermogenic gene expression, resulting in prevention of obesity and improvement of metabolism. Mechanistically, direct inhibition of PI3Kα activity followed by selective suppression of its downstream Akt1 mirrored butein's effect on Ucp1 expression and oxygen consumption. In addition, effects of butein were completely abolished in Akt1 KO mouse embryonic fibroblasts. Together, these studies demonstrate the role of butein in obesity and metabolic diseases, further highlighting that adipose PI3Kα-Akt1-Prdm4 axis is a regulator of energy expenditure.


Assuntos
Tecido Adiposo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Metabolismo Energético/fisiologia , Resistência à Insulina/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo , Aumento de Peso/fisiologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/fisiologia , Tecido Adiposo/efeitos dos fármacos , Animais , Linhagem Celular , Chalconas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Camundongos , Camundongos Knockout , Camundongos Obesos , Obesidade/metabolismo , Termogênese/efeitos dos fármacos , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo , Aumento de Peso/efeitos dos fármacos
17.
Cancer Lett ; 410: 20-31, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28942012

RESUMO

Sex affects the risk, treatment responses and outcome of many types of cancers. The mechanism of gender disparity in development of hepatocellular carcinoma (HCC) remains obscure. Sex-determining region on Y chromosome (SRY) was overexpressed in approximate 84% male patient HCC. Moreover, we are the first to generate a liver-specific transgenic (TG) murine model with overexpression of the male specific gene SRY. Subject to a single intraperitoneal injection N-nitrosodiethylamine (DEN) at day 14, TG and wildtype (WT) mice of both genders were sacrificed at different time points (6-13.5 months). Overexpression of SRY in male TG and ectopic expression of SRY in female TG livers promoted DEN-induced hepatocarcinogenesis compared to age- and sex-matched WT. This accelerated tumorigenesis in TG of both genders was a consequence of increased injury and inflammation, fibrosis, and compensatory enhancement in hepatocytes proliferation secondary to activation of downstream targets Sox9 and platelet-derived growth factor receptor α (PDGFRα)/phosphoinositide 3-kinase (PI3K)/Akt and c-myc/CyclinD1. In conclusion, activation of SRY and its downstream Sox9 and PDGFRα pathways are commonly involved in male hepatocarcinogenesis, which provides novel insights into gender disparity and sex-specific therapeutic strategies of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/metabolismo , Disparidades nos Níveis de Saúde , Neoplasias Hepáticas/metabolismo , Proteína da Região Y Determinante do Sexo/metabolismo , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ciclina D1/metabolismo , Dietilnitrosamina , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores Sexuais , Proteína da Região Y Determinante do Sexo/genética , Transdução de Sinais , Fatores de Tempo , Microambiente Tumoral , Regulação para Cima
18.
Biomed Pharmacother ; 92: 249-253, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28551544

RESUMO

Myocardial infarction (MI) is the one of the major causes of death worldwide, however the molecular mechanisms hidden under this disease conditions remain unknown. This demands serious attention to unravel the molecular mechanisms to identify the therapeutic strategies either to prevent or to control MI. Ayurveda is becoming one of the best alternatives for the modern medicines. On the other hand, Vitex negundo is one of the medicinally important plants used for various diseases and to date, its cardioprotective role is not fully elucidated. In the present study, we made an attempt to understand the cardiac signaling cascade of Akt1 and NF-κB in isoproterenol (ISO)-induced MI, and targeting these signaling molecules by using V. negundo leaf ethanolic extract (VNE). Our findings demonstrate that VNE significantly protects the ISO-induced MI by regulating NF-κB and Akt1experssion in rats.


Assuntos
Cardiotônicos/uso terapêutico , Isoproterenol/toxicidade , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/prevenção & controle , Vitex , Animais , Cardiotônicos/isolamento & purificação , Cardiotônicos/farmacologia , Masculino , Infarto do Miocárdio/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Resultado do Tratamento
19.
Food Chem Toxicol ; 109(Pt 2): 910-922, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28249781

RESUMO

The anti-cancerous activity of 6-gingerol extracted from Tongling White Ginger was investigated. 6-Gingerol inhibited the growth of HeLa cells with IC50 (96.32 µM) and IC80 (133.01 µM) and led to morphological changes, induced the cell cycle arrest in G0/G1-phase and ultimately resulted into apoptosis. Among cell cycle-related genes and proteins, the expression of cyclin (A, D1, E1) reduced, while of CDK-1, p21 and p27 showed slight decrease, except cyclin B1 and E1 (protein). Western blotting reported the induction of apoptosis with an increased Bax/Bcl-2 ratio, release of cytochrome c, cleavage of caspase-3, -8, -9 and PRPP in treated cells. 6-Gingerol activated AMPK, but inhibited PI3K/AKT phosphorylation with reduced P70S6K expression and also suppressed the mTOR phosphorylation. 6-Gingerol with 5-FU and Ptx resulted in 83.2% and 52% inhibition respectively, this synergy have stimulated apoptosis proteins more efficiently as compared to 6-Gingerol alone (10.75%) under in vitro conditions.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Zingiber officinale/química , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/fisiopatologia , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Feminino , Fluoruracila/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/fisiopatologia
20.
Drug Des Devel Ther ; 10: 2137-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445461

RESUMO

Molecular modeling has been employed in the search for lead compounds of chemotherapy to fight cancer. In this study, pharmacophore models have been generated and validated for use in virtual screening protocols for eight known anticancer drug targets, including tyrosine kinase, protein kinase B ß, cyclin-dependent kinase, protein farnesyltransferase, human protein kinase, glycogen synthase kinase, and indoleamine 2,3-dioxygenase 1. Pharmacophore models were validated through receiver operating characteristic and Güner-Henry scoring methods, indicating that several of the models generated could be useful for the identification of potential anticancer agents from natural product databases. The validated pharmacophore models were used as three-dimensional search queries for virtual screening of the newly developed AfroCancer database (~400 compounds from African medicinal plants), along with the Naturally Occurring Plant-based Anticancer Compound-Activity-Target dataset (comprising ~1,500 published naturally occurring plant-based compounds from around the world). Additionally, an in silico assessment of toxicity of the two datasets was carried out by the use of 88 toxicity end points predicted by the Lhasa's expert knowledge-based system (Derek), showing that only an insignificant proportion of the promising anticancer agents would be likely showing high toxicity profiles. A diversity study of the two datasets, carried out using the analysis of principal components from the most important physicochemical properties often used to access drug-likeness of compound datasets, showed that the two datasets do not occupy the same chemical space.


Assuntos
Simulação por Computador , Plantas Medicinais/química , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Bases de Dados Factuais , Desenho de Fármacos , Humanos , Modelos Moleculares , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA