Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Saudi Med J ; 45(2): 128-138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309745

RESUMO

OBJECTIVES: To investigate the role of cell cycle protein-dependent kinase regulatory subunit 1B (CKS1B) in driving the aggressive and rapid proliferation observed in pancreatic cancer. METHODS: A comprehensive analysis was carried out using raw mRNA information and data from 2 databases: the cancer genome atlas and gene expression omnibus. The differential expression of CKS1B at the mRNA and tissue levels in cancer and adjacent paracancerous tissues were assessed. Additionally, the relationship of CKS1B expression and overall survival (OS) rate was investigated using Kaplan-Meier survival curves. Potential molecular mechanisms by which CKS1B may influence the biological characteristics of pancreatic cancer were explored using resources available within the encyclopedia of RNA interactomes database. RESULTS: The CKS1B exhibited significant differential expression at the mRNA as well as protein levels. A correlation with statistical significance between CKS1B expression and N stage, age, and alcohol consumption was observed. Notably, high CKS1B expression was determined as a predictive factor for worse OS. Furthermore, the analysis revealed a potential synergistic role between CKS1B and the molecule PKMYT1, which could impact the ATR-Chk1-Cdc25 signaling pathway and disrupt the G2/M checkpoint within the cell cycle, ultimately promoting abnormal tumor proliferation. CONCLUSION: The CKS1B may serve as a novel potential prognostic factor in pancreatic cancer and is involved in the abnormal proliferation biology phenotype by mediating cell cycle signaling pathways.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Neoplasias Pancreáticas , Humanos , Quinases relacionadas a CDC2 e CDC28/genética , Ciclo Celular/genética , Proliferação de Células/genética , Proteínas de Membrana/genética , Neoplasias Pancreáticas/genética , Fenótipo , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , RNA Mensageiro/genética , Transdução de Sinais/genética
2.
Arch Pharm (Weinheim) ; 357(4): e2300516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263717

RESUMO

PIM2, part of the PIM kinase family along with PIM1 and PIM3, is often overexpressed in hematologic cancers, fueling tumor growth. Despite its significance, there are no approved drugs targeting it. In response to this challenge, we devised a thorough virtual screening workflow for discovering novel PIM2 inhibitors. Our process includes molecular docking and diverse scoring methods like molecular mechanics generalized born surface area, XGBOOST, and DeepDock to rank potential inhibitors by binding affinities and interaction potential. Ten compounds were selected and subjected to an adequate evaluation of their biological activity. Compound 2 emerged as the most potent inhibitor with an IC50 of approximately 135.7 nM. It also displayed significant activity against various hematological cancers, including acute myeloid leukemia, mantle cell lymphoma, and anaplastic large cell lymphoma (ALCL). Molecular dynamics simulations elucidated the binding mode of compound 2 with PIM2, offering insights for drug development. These results highlight the reliability and efficacy of our virtual screening workflow, promising new drugs for hematologic cancers, notably ALCL.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Adulto , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Detecção Precoce de Câncer , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Serina-Treonina Quinases
3.
Genes (Basel) ; 14(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003007

RESUMO

BACKGROUND: A socioeconomic crisis in Russia lasted from 1991 to 1998 and was accompanied by a sharp drop in the birth rate. The main factor that influenced the refusal to have children during this period is thought to be prolonged social stress. METHODS: comparing frequencies of common gene variants associated with stress-induced diseases among generations born before, after, and during this crisis may show which genes may be preferred under the pressure of natural selection during periods of increased social stress in urban populations. RESULTS: In the "crisis" group, a statistically significant difference from the other two groups was found in rs6557168 frequency (p = 0.001); rs4522666 was not in the Hardy-Weinberg equilibrium in this group, although its frequency did not show a significant difference from the other groups (p = 0.118). Frequencies of VNTRs in SLC6A3 and MAOA as well as common variants rs17689918 in CRHR1, rs1360780 in FKBP5, rs53576 in OXTR, rs12720071 and rs806377 in CNR1, rs4311 in ACE, rs1800497 in ANKK1, and rs7412 and rs429358 in APOE did not differ among the groups. CONCLUSIONS: a generation born during a period of prolonged destructive events may differ from the rest of the gene pool of the population in some variants associated with personality traits or stress-related disorders.


Assuntos
Proteínas Serina-Treonina Quinases , Estresse Psicológico , Criança , Humanos , Estresse Psicológico/genética , Federação Russa , Fatores Socioeconômicos , Proteínas Serina-Treonina Quinases/genética
4.
J Exp Clin Cancer Res ; 41(1): 282, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151566

RESUMO

BACKGROUND: Adrenocortical cancer (ACC) is a rare and aggressive cancer with dismal 5-year survival due to a lack of effective treatments. We aimed to identify a new effective combination of drugs and investigated their synergistic efficacy in ACC preclinical models. METHODS: A quantitative high-throughput drug screening of 4,991 compounds was performed on two ACC cell lines, SW13 and NCI-H295R, based on antiproliferative effect and caspase-3/7 activity. The top candidate drugs were pairwise combined to identify the most potent combinations. The synergistic efficacy of the selected inhibitors was tested on tumorigenic phenotypes, such as cell proliferation, migration, invasion, spheroid formation, and clonogenicity, with appropriate mechanistic validation by cell cycle and apoptotic assays and protein expression of the involved molecules. We tested the efficacy of the drug combination in mice with luciferase-tagged human ACC xenografts. To study the mRNA expression of target molecules in ACC and their clinical correlations, we analyzed the Gene Expression Omnibus and The Cancer Genome Atlas. RESULTS: We chose the maternal embryonic leucine zipper kinase (MELK) inhibitor (OTS167) and cyclin-dependent kinase (CDK) inhibitor (RGB-286638) because of their potent synergy from the pairwise drug combination matrices derived from the top 30 single drugs. Multiple publicly available databases demonstrated overexpression of MELK, CDK1/2, and partnering cyclins mRNA in ACC, which were independently associated with mortality and other adverse clinical features. The drug combination demonstrated a synergistic antiproliferative effect on ACC cells. Compared to the single-agent treatment groups, the combination treatment increased G2/M arrest, caspase-dependent apoptosis, reduced cyclins A2, B1, B2, and E2 expression, and decreased cell migration and invasion with reduced vimentin. Moreover, the combination effectively decreased Foxhead Box M1, Axin2, glycogen synthase kinase 3-beta, and ß-catenin. A reduction in p-stathmin from the combination treatment destabilized microtubule assembly by tubulin depolymerization. The drug combination treatment in mice with human ACC xenografts resulted in a significantly lower tumor burden than those treated with single-agents and vehicle control groups. CONCLUSIONS: Our preclinical study revealed a novel synergistic combination of OTS167 and RGB-286638 in ACC that effectively targets multiple molecules associated with ACC aggressiveness. A phase Ib/II clinical trial in patients with advanced ACC is therefore warranted.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/metabolismo , Animais , Apoptose , Caspase 3 , Linhagem Celular Tumoral , Proliferação de Células , Quinases Ciclina-Dependentes , Ciclinas , Pontos de Checagem da Fase G2 do Ciclo Celular , Quinase 3 da Glicogênio Sintase/farmacologia , Quinase 3 da Glicogênio Sintase/uso terapêutico , Humanos , Camundongos , Proteínas Serina-Treonina Quinases , Pirazóis , RNA Mensageiro , Estatmina , Tubulina (Proteína) , Ureia/análogos & derivados , Vimentina , beta Catenina
5.
Proc Natl Acad Sci U S A ; 119(11): e2114205119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259017

RESUMO

SignificanceIntracellular gradients have essential roles in cell and developmental biology, but their formation is not fully understood. We have developed a computational approach facilitating interpretation of protein dynamics and gradient formation. We have combined this computational approach with experiments to understand how Polo-Like Kinase 1 (PLK-1) forms a cytoplasmic gradient in Caenorhabditis elegans embryos. Although the PLK-1 gradient depends on the Muscle EXcess-5/6 (MEX-5/6) proteins, we reveal differences in PLK-1 and MEX-5 gradient formation that can be explained by a model with two components, PLK-1 bound to MEX-5 and unbound PLK-1. Our combined approach suggests that a weak coupling between PLK-1 and MEX-5 reaction-diffusion mechanisms dictates the dynamic exchange of PLK-1 with the cytoplasm, explaining PLK-1 high diffusivity and smooth gradient.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteoma , Proteômica , Animais , Embrião não Mamífero , Modelos Biológicos , Método de Monte Carlo , Morfogênese , Proteínas Serina-Treonina Quinases , Transporte Proteico , Proteômica/métodos
6.
Autophagy ; 18(10): 2481-2494, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35220905

RESUMO

Defective mitophagy contributes to normal aging and various neurodegenerative and cardiovascular diseases. The newly developed methodologies to visualize and quantify mitophagy allow for additional progress in defining the pathophysiological significance of mitophagy in various model organisms. However, current knowledge regarding mitophagy relevant to human physiology is still limited. Model organisms such as mice might not be optimal models to recapitulate all the key aspects of human disease phenotypes. The development of the human-induced pluripotent stem cells (hiPSCs) may provide an exquisite approach to bridge the gap between animal mitophagy models and human physiology. To explore this premise, we take advantage of the pH-dependent fluorescent mitophagy reporter, mt-Keima, to assess mitophagy in hiPSCs and hiPSC-derived cardiomyocytes (hiPSC-CMs). We demonstrate that mt-Keima expression does not affect mitochondrial function or cardiomyocytes contractility. Comparison of hiPSCs and hiPSC-CMs during different stages of differentiation revealed significant variations in basal mitophagy. In addition, we have employed the mt-Keima hiPSC-CMs to analyze how mitophagy is altered under certain pathological conditions including treating the hiPSC-CMs with doxorubicin, a chemotherapeutic drug well known to cause life-threatening cardiotoxicity, and hypoxia that stimulates ischemia injury. We have further developed a chemical screening to identify compounds that modulate mitophagy in hiPSC-CMs. The ability to assess mitophagy in hiPSC-CMs suggests that the mt-Keima hiPSCs should be a valuable resource in determining the role mitophagy plays in human physiology and hiPSC-based disease models. The mt-Keima hiPSCs could prove a tremendous asset in the search for pharmacological interventions that promote mitophagy as a therapeutic target.Abbreviations: AAVS1: adeno-associated virus integration site 1; AKT/protein kinase B: AKT serine/threonine kinase; CAG promoter: cytomegalovirus early enhancer, chicken ACTB/ß-actin promoter; CIS: cisplatin; CRISPR: clustered regularly interspaced short palindromic repeats; FACS: fluorescence-activated cell sorting; FCCP: carbonyl cyanide p-trifluoromethoxyphenylhydrazone; hiPSC: human induced pluripotent stem cell; hiPSC-CMs: human induced pluripotent stem cell-derived cardiomyocytes; ISO: isoproterenol; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RT: room temperature; SB: SBI-0206965; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mitofagia , Actinas , Animais , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona , Cisplatino , Doxorrubicina , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Isoproterenol , Camundongos , Proteínas Associadas aos Microtúbulos , Mitofagia/genética , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt , Serina , Sirolimo , Serina-Treonina Quinases TOR , Ubiquitina-Proteína Ligases/metabolismo
7.
Stem Cell Reports ; 17(1): 159-172, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34971563

RESUMO

Transplantation in Parkinson's disease using human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons is a promising future treatment option. However, many of the mechanisms that govern their differentiation, maturation, and integration into the host circuitry remain elusive. Here, we engrafted hESCs differentiated toward a ventral midbrain DA phenotype into the midbrain of a preclinical rodent model of Parkinson's disease. We then injected a novel DA-neurotropic retrograde MNM008 adeno-associated virus vector capsid, into specific DA target regions to generate starter cells based on their axonal projections. Using monosynaptic rabies-based tracing, we demonstrated for the first time that grafted hESC-derived DA neurons receive distinctly different afferent inputs depending on their projections. The similarities to the host DA system suggest a previously unknown directed circuit integration. By evaluating the differential host-to-graft connectivity based on projection patterns, this novel approach offers a tool to answer outstanding questions regarding the integration of grafted hESC-derived DA neurons.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/metabolismo , Biomarcadores , Rastreamento de Células , Expressão Gênica , Genes Reporter , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Mesencéfalo/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Transplante de Células-Tronco
8.
J Cell Mol Med ; 25(14): 6652-6663, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34080290

RESUMO

Lung cancer is a very aggressive cancer characterized with molecular heterogeneities in different subtypes, including lung adenocarcinoma and lung squamous cell carcinoma. However, few related molecular signatures have been established for the treatment of lung cancer subtypes. Polo-like kinase (PLK) family is a crucial regulator during cell division. Aberrant genetic and epigenetic alteration of PLK members plays a controversial role among different cancers. In this study, we performed an analysis of transcriptional and protein expression to identify overexpressed PLK1/4 and under-expressed PLK2/3 in lung cancer subtypes. We then analysed biological function of PLKs and related genes. Besides, we estimated a correlation of PLKs with patient's genders and TP53 mutation in lung cancer. Higher PLK1/4 expression was significantly associated with male patient and TP53 mutant status, separately. Moreover, we carried out a methylation profile analysis including methylation level, DNA methyltransferases correlation and survival analysis of global methylation. Global methylation survival analysis showed that prognostic value of PLK1/2/4 methylation remained the same significant trend between two lung cancer subtypes, whereas prognostic value of PLK3 methylation lacked consistency. Taken together, these results provided instructive insights into a comprehensive evaluation for advanced therapeutic strategy based on epigenetic evidences.


Assuntos
Adenocarcinoma de Pulmão/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/patologia , Metilação de DNA/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Prognóstico , Proteína Supressora de Tumor p53/genética , Quinase 1 Polo-Like
9.
Methods Mol Biol ; 2256: 89-124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014518

RESUMO

PDZ domains are small globular domains involved in protein-protein interactions. They participate in a wide range of critical cellular processes. These domains, very abundant in the human proteome, are widely studied by high-throughput interactomics approaches and by biophysical and structural methods. However, the quality of the results is strongly related to the optimal folding and solubility of the domains. We provide here a detailed description of protocols for a strict quality assessment of the PDZ constructs. We describe appropriate experimental approaches that have been selected to overcome the small size of such domains to check the purity, identity, homogeneity, stability, and folding of samples.


Assuntos
Biofísica , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Domínios PDZ , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Sítios de Ligação , Eletroforese Capilar , Humanos , Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Conformação Proteica
10.
Methods Mol Biol ; 2322: 175-184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043203

RESUMO

The nematode Caenorhabditis elegans (C. elegans) is a powerful model organism to systematically analyze the functions of genes of interest in vivo. Especially, C. elegans nervous system is suitable for morphological and functional analyses of neuronal genes due to its optical transparency of the body and the well-established anatomy including neural connections. The C. elegans ortholog of Parkinson's disease-associated gene LRRK2, named lrk-1, has been shown to play a role in the regulation of axonal morphology in a subset of neurons. Here I describe the detailed methodologies for the assessment of LRK-1/LRRK2 function as well as the analysis of genetic interaction involving lrk-1/LRRK2 by performing live imaging of C. elegans mechanosenrory neurons.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Axônios/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética
11.
Nat Metab ; 3(3): 428-441, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33758424

RESUMO

Obesity reduces adipocyte mitochondrial function, and expanding adipocyte oxidative capacity is an emerging strategy to improve systemic metabolism. Here, we report that serine/threonine-protein kinase 3 (STK3) and STK4 are key physiological suppressors of mitochondrial capacity in brown, beige and white adipose tissues. Levels of STK3 and STK4, kinases in the Hippo signalling pathway, are greater in white than brown adipose tissues, and levels in brown adipose tissue are suppressed by cold exposure and greatly elevated by surgical denervation. Genetic inactivation of Stk3 and Stk4 increases mitochondrial mass and function, stabilizes uncoupling protein 1 in beige adipose tissue and confers resistance to metabolic dysfunction induced by high-fat diet feeding. Mechanistically, STK3 and STK4 increase adipocyte mitophagy in part by regulating the phosphorylation and dimerization status of the mitophagy receptor BNIP3. STK3 and STK4 expression levels are elevated in human obesity, and pharmacological inhibition improves metabolic profiles in a mouse model of obesity, suggesting STK3 and STK4 as potential targets for treating obesity-related diseases.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético , Mitofagia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Obesidade/prevenção & controle , Obesidade/terapia , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinase 3
12.
Hum Reprod ; 36(4): 1120-1133, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33582778

RESUMO

STUDY QUESTION: Do genetic variations in the DNA damage response pathway modify the adverse effect of alkylating agents on ovarian function in female childhood cancer survivors (CCS)? SUMMARY ANSWER: Female CCS carrying a common BR serine/threonine kinase 1 (BRSK1) gene variant appear to be at 2.5-fold increased odds of reduced ovarian function after treatment with high doses of alkylating chemotherapy. WHAT IS KNOWN ALREADY: Female CCS show large inter-individual variability in the impact of DNA-damaging alkylating chemotherapy, given as treatment of childhood cancer, on adult ovarian function. Genetic variants in DNA repair genes affecting ovarian function might explain this variability. STUDY DESIGN, SIZE, DURATION: CCS for the discovery cohort were identified from the Dutch Childhood Oncology Group (DCOG) LATER VEVO-study, a multi-centre retrospective cohort study evaluating fertility, ovarian reserve and risk of premature menopause among adult female 5-year survivors of childhood cancer. Female 5-year CCS, diagnosed with cancer and treated with chemotherapy before the age of 25 years, and aged 18 years or older at time of study were enrolled in the current study. Results from the discovery Dutch DCOG-LATER VEVO cohort (n = 285) were validated in the pan-European PanCareLIFE (n = 465) and the USA-based St. Jude Lifetime Cohort (n = 391). PARTICIPANTS/MATERIALS, SETTING, METHODS: To evaluate ovarian function, anti-Müllerian hormone (AMH) levels were assessed in both the discovery cohort and the replication cohorts. Using additive genetic models in linear and logistic regression, five genetic variants involved in DNA damage response were analysed in relation to cyclophosphamide equivalent dose (CED) score and their impact on ovarian function. Results were then examined using fixed-effect meta-analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Meta-analysis across the three independent cohorts showed a significant interaction effect (P = 3.0 × 10-4) between rs11668344 of BRSK1 (allele frequency = 0.34) among CCS treated with high-dose alkylating agents (CED score ≥8000 mg/m2), resulting in a 2.5-fold increased odds of a reduced ovarian function (lowest AMH tertile) for CCS carrying one G allele compared to CCS without this allele (odds ratio genotype AA: 2.01 vs AG: 5.00). LIMITATIONS, REASONS FOR CAUTION: While low AMH levels can also identify poor responders in assisted reproductive technology, it needs to be emphasized that AMH remains a surrogate marker of ovarian function. WIDER IMPLICATIONS OF THE FINDINGS: Further research, validating our findings and identifying additional risk-contributing genetic variants, may enable individualized counselling regarding treatment-related risks and necessity of fertility preservation procedures in girls with cancer. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the PanCareLIFE project that has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602030. In addition, the DCOG-LATER VEVO study was funded by the Dutch Cancer Society (Grant no. VU 2006-3622) and by the Children Cancer Free Foundation (Project no. 20) and the St Jude Lifetime cohort study by NCI U01 CA195547. The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Reserva Ovariana , Adolescente , Adulto , Hormônio Antimülleriano/genética , Criança , Estudos de Coortes , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ovário , Proteínas Serina-Treonina Quinases , Estudos Retrospectivos
13.
Arch Physiol Biochem ; 127(3): 285-289, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31328564

RESUMO

B-lineage acute lymphoblastic leukemia (B-ALL) is the most common acute leukemia in childhood and adults, which caused by many various crystalline and unclear agents. Owning to this matter, no significant progress has been made in the patients-recovery. Recently, autophagy pathway is considered as an ambiguous agent in leukemia evaluation. We aim to discover the expression levels of upstream autophagy-regulating genes in newly diagnosed B-ALL patients. In B-ALL group, BECN1, HIF1A and ERN1 expressions were significantly down-regulated, while BCL2 expression was up-regulated compared to the control group (p < .05). Moreover, there was significant positive correlation between the decreased BECN1 compared with Hypoxia and endoplasmic reticulum (ER) stress-related genes expression in the patients (p < .05). Our findings revealed that, ERN1 and ER stress pathway-related genes could be effective regulators of autophagy in B-ALL. More investigation is recommended to gain a deeper understanding into molecular pathophysiology of B-ALL to improve treatment and monitoring approaches in affected patients.


Assuntos
Autofagia , Carcinogênese , Estresse do Retículo Endoplasmático , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Hipóxia Tumoral , Endorribonucleases/metabolismo , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
15.
Science ; 366(6468): 1029-1034, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31754005

RESUMO

The Hippo signaling pathway and its two downstream effectors, the YAP and TAZ transcriptional coactivators, are drivers of tumor growth in experimental models. Studying mouse models, we show that YAP and TAZ can also exert a tumor-suppressive function. We found that normal hepatocytes surrounding liver tumors displayed activation of YAP and TAZ and that deletion of Yap and Taz in these peritumoral hepatocytes accelerated tumor growth. Conversely, experimental hyperactivation of YAP in peritumoral hepatocytes triggered regression of primary liver tumors and melanoma-derived liver metastases. Furthermore, whereas tumor cells growing in wild-type livers required YAP and TAZ for their survival, those surrounded by Yap- and Taz-deficient hepatocytes were not dependent on YAP and TAZ. Tumor cell survival thus depends on the relative activity of YAP and TAZ in tumor cells and their surrounding tissue, suggesting that YAP and TAZ act through a mechanism of cell competition to eliminate tumor cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colangiocarcinoma/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Colangiocarcinoma/patologia , Via de Sinalização Hippo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas Experimentais/patologia , Melanoma/metabolismo , Melanoma/secundário , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Transativadores/economia , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Carga Tumoral , Proteínas de Sinalização YAP
16.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717404

RESUMO

Rett syndrome (RTT), a neurodevelopmental disorder, is mainly caused by mutations in methyl CpG-binding protein 2 (MECP2), which has multiple functions such as binding to methylated DNA or interacting with a transcriptional co-repressor complex. It has been established that alterations in cyclin-dependent kinase-like 5 (CDKL5) or forkhead box protein G1 (FOXG1) correspond to distinct neurodevelopmental disorders, given that a series of studies have indicated that RTT is also caused by alterations in either one of these genes. We investigated the evolution and molecular features of MeCP2, CDKL5, and FOXG1 and their binding partners using phylogenetic profiling to gain a better understanding of their similarities. We also predicted the structural order-disorder propensity and assessed the evolutionary rates per site of MeCP2, CDKL5, and FOXG1 to investigate the relationships between disordered structure and other related properties with RTT. Here, we provide insight to the structural characteristics, evolution and interaction landscapes of those three proteins. We also uncovered the disordered structure properties and evolution of those proteins which may provide valuable information for the development of therapeutic strategies of RTT.


Assuntos
Simulação por Computador , Evolução Molecular , Fatores de Transcrição Forkhead/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteínas do Tecido Nervoso/genética , Proteínas Serina-Treonina Quinases/genética , Síndrome de Rett/genética , Animais , Cordados/genética , Ontologia Genética , Humanos , Mutação de Sentido Incorreto/genética , Especificidade de Órgãos , Filogenia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Frações Subcelulares/metabolismo
17.
FASEB J ; 33(9): 9742-9751, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31120803

RESUMO

Mitophagy has been implicated in mitochondrial quality control and in various human diseases. However, the study of in vivo mitophagy remains limited. We previously explored in vivo mitophagy using a transgenic mouse expressing the mitochondria-targeted fluorescent protein Keima (mt-Keima). Here, we generated mt-Keima Drosophila to extend our efforts to study mitophagy in vivo. A series of experiments confirmed that mitophagy can be faithfully and quantitatively measured in mt-Keima Drosophila. We also showed that alterations in mitophagy upon environmental and genetic perturbation can be measured in mt-Keima Drosophila. Analysis of different tissues revealed a variation in basal mitophagy levels in Drosophila tissues. In addition, we found a significant increase in mitophagy levels during Drosophila embryogenesis. Importantly, loss-of-function genetic analysis demonstrated that the phosphatase and tensin homolog-induced putative kinase 1 (PINK1)-Parkin pathway is essential for the induction of mitophagy in vivo in response to hypoxic exposure and rotenone treatment. These studies showed that the mt-Keima Drosophila system is a useful tool for understanding the role and molecular mechanism of mitophagy in vivo. In addition, we demonstrated the essential role of the PINK1-Parkin pathway in mitophagy induction in response to mitochondrial dysfunction.-Kim, Y. Y., Um, J.-H., Yoon, J.-H., Kim, H., Lee, D.-Y., Lee, Y. J., Jee, H. J., Kim, Y. M., Jang, J. S., Jang, Y.-G., Chung, J., Park, H. T., Finkel, T., Koh, H., Yun, J. Assessment of mitophagy in mt-Keima Drosophila revealed an essential role of the PINK1-Parkin pathway in mitophagy induction in vivo.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitofagia/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Genótipo , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética
18.
Med Sci Monit ; 25: 87-97, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30606998

RESUMO

BACKGROUND The uncoupling protein 1 (UCP1) gene has a role in mitochondrial energy expenditure in brown adipose tissue. This study aimed to investigate the effects of berberine, a benzylisoquinoline alkaloid used in traditional Chinese medicine, on energy expenditure, expression of the UCP1 gene, the cell stress protein inositol-requiring enzyme 1α (IRE1α), apoptosis genes, and macrophage phenotype (M1 and M2) in white and brown adipose tissue in an obese mouse model fed a high-fat diet. MATERIAL AND METHODS Four-week-old C57BL/6J male mice (n=20) were divided into a high-fat diet group, a normal diet group, a group treated with berberine at 100 mg/kg/d in 0.9% normal saline, and a non-treated group. Whole-body fat mass, blood glucose, insulin resistance, and oxygen expenditure during physical activity were measured. After 16 weeks, the mice were euthanized for examination of liver and adipose tissue. The expression of pro-inflammatory cytokines, apoptosis genes, thermogenic genes (including UCP1), and IRE1α, were investigated using immunohistochemistry, Western blot, and quantitative reverse transcription polymerase chain reaction (qRT-PCR), in white and brown adipose tissue. Magnetic cell sorting harvested M1 and M2 macrophages in adipose tissue. Clodronate liposomes were used to inhibit macrophage recruitment. RESULTS Berberine treatment in mice fed a high-fat diet increased energy metabolism, glucose tolerance, and expression of UCP1, and reduced expression of pro-inflammatory cytokines, macrophage recruitment, and resulted in M2 macrophage polarization in white adipose tissue. Polarized M2 macrophages showed reduced expression of apoptotic genes and IRE1α. CONCLUSIONS Berberine improved metabolic function in a mouse model fed a high-fat diet.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Berberina/farmacologia , Tecido Adiposo/efeitos dos fármacos , Animais , China , Dieta Hiperlipídica , Endorribonucleases/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Inflamação/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteína Desacopladora 1/efeitos dos fármacos
19.
SLAS Discov ; 24(3): 284-294, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30418800

RESUMO

Protein kinases are attractive targets for both biological research and drug development. Several assay kits, especially for the detection of adenosine diphosphate (ADP), which is universally produced by kinases, are commercially available for high-throughput screening (HTS) of kinase inhibitors, but their cost is quite high for large-scale screening. Here, we report a new enzyme-coupled fluorescence assay for ADP detection, which uses just 10 inexpensive, commercially available components. The assay protocol is very simple, requiring only the mixing of test solutions with ADP detection solution and reading the fluorescence intensity of resorufin produced by coupling reaction. To validate the assay, we focused on CDC2-like kinase 1 (CLK1), a dual-specificity kinase that plays an important role in alternative splicing, and we used the optimized assay to screen an in-house chemical library of about 215,000 compounds for CLK1 inhibitors. We identified and validated 12 potent inhibitors of CLK1, including a novel inhibitory scaffold. The results demonstrate that this assay platform is not only simple and cost-effective, but also sufficiently robust, showing good reproducibility and giving similar results to those obtained with the widely used ADP-Glo bioluminescent assay.


Assuntos
Difosfato de Adenosina/análise , Ensaios Enzimáticos/métodos , Ensaios de Triagem em Larga Escala/economia , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteínas Quinases/química , Custos e Análise de Custo , Fluorescência , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Reprodutibilidade dos Testes
20.
Cancer Invest ; 36(8): 407-414, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30277841

RESUMO

This case/control study is aimed at investigating the expression of CEP55, PLK1 and FOXM1 in bladder cancer tissues and comparing it with healthy tissue and their relationship with clinicopathological features of BC. Total RNA was extracted; then, gene expression was performed using real-time PCR relative to 18 s rRNA. 2-ΔΔCT method was used to calculate the relative expression of genes. A significant over expression of FOXM1, PLK1 and CEP55 was observed in tumor samples compared to adjacent and normal bladder tissues (all p = 0.001). Therefore, they may be supposed as potential candidate's biomarkers for early diagnosis and targets for cancer therapy.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células de Transição/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Bexiga Urinária/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células de Transição/patologia , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Feminino , Proteína Forkhead Box M1/genética , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias da Bexiga Urinária/patologia , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA